Resonant Ultrasound Spectroscopy
Close to Its Applicability Limits

Michal LANDA®, Hanus SEINER"", Petr SEDIAK P,
Lucie BICANOVA®P, Jan ZDEK?, Ludék HELLER*

aInstitute of Thermomechanics v.v.i., Academy of SciendeSaech Republic,
Dolejskova 5, 18200 Prague 8, Czech Republic
PFaculty of Nuclear Sciences and Physical Engineering, i€Zechnical University in
Prague, Trojanova 13, 12000 Prague 2, Czech Republic

ABSTRACT — This chapter brings a critical review of the applicabilitf/the res-
onant ultrasound spectroscopy (RUS) for determinationlloindependent elastic
coefficients of anisotropic solids. Such applicability ilisnare sought which follow
from the properties of the examined materials, i.e. fromgtiength and class of
the anisotropy, etc.. After introducing the general théoaé background of RUS,
particular limiting factors are illustrated on experimantesults, namely on the in-
vestigation of extremely strongly anisotropic single tays of weakly anisotropic
polycrystals (where neither the class nor the orientatfagheanisotropy are known)
and of single crystals with strong temperature-dependexgneto-elastic attenua-
tion. In all these cases, a sensitivity analysis is carrigdto show which elastic
coefficients (their combinations) can be accurately ddatethform RUS measure-
ments and which cannot, whereto the complementarity of 8 Bnd pulse-echo
methods is shown and utilized. The general findings of baghhikoretical introduc-
tion and the experimental part are summarized in a conajuskction, which tries to
formulate the most essential open questions of the RUS metho

1 Introduction

Although the fundamentals of resonant ultrasound spemipys(RUS) are known to the
physics community for more than fifteen years [1, 2], thishodtcannot still be counted
among well established or routinely used experimentalriegtes for evaluation of elastic
properties of anisotropic solids. In comparison with methbased on acoustic wave ve-
locity measurements, as are the family of pulse-echo tegciesi (either contact or with im-
mersion in a liquid), point-source/point-receiver (PSYBRsurface acoustic waves (SAW)
methods, the employment and the scientific impact of RUS adeuwbtedly minor, except
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of some cases where e.g. measurements in wide ranges ofrtgorps are required [3-5]
which disqualifies the above more conventional methodsusecaf technical difficulties.

The reason why such reliable and accurate method finds oméiiyhigds way into a
broader awareness could be sought neither in requiremariteedested specimens (RUS
has been already successfully applied to prisms [1, 2]eplg], membranes [7], spherical
balls [8], cylindrical nanotubes [9], rods [10], or sampié®ven more general shapes [11])
nor in requirements on the experiment instrumentation. fifodlem lies in thenverse
procedure i.e. in the procedure necessary to obtain the desirednveton (the elastic
coefficients) from the experimental data. Whereas the petb® measurements result in
sets of ultrasound velocities in various directions, iatlieg clearly and understandably the
anisotropy of the material, the outputs of RUS (resonanttsp@®f mechanical vibrations
of a chosen specimen) require a sophisticated postprogessieveal the information on
the material encrypted in it. This inverse procedure cabratonstructed universally, once
for ever — each particular application of RUS requires slighdification of the procedure,
taking the geometry of the specimen, strength of the amipgtor the attenuation in the
material into account. Thatis the reason why the RUS tectasigppear to be unsuitable for
automation, and thus, for massive use in commercial devicggstry or applied research.

This chapter aims to bring an analysis of what the appli@gbimits of RUS can be,
searching for the novel ways how the inverse procedures eaihstructed to push these
limits at least a tiny bit further. It focuses on the limityvgn by the nature of the method
itself, rather than these resulting from the experimergéls, although some such prob-
lems are mentioned as well. In the first half of this chaptenegal ideas of the RUS
method is overviewed with special emphasis laid on theicgldietween the properties of
the examined material and the information obtainable omthg RUS measurements. The
essentiality of the knowledge of such relations is revealgte second half of the chapter,
where the RUS method is applied to particular issues froid stite physics and materials
science.

2 Resonant ultrasound spectroscopy - a general background

2.1 Historic development of RUS

The fact that the resonant spectra of free vibrations of adgemeous, elastically
anisotropic, rectangular parallelepiped contain a sefficiinformation on the elastic
anisotropy of the material became fully understood in thst fialf of 1970s by Demarest
et al. [13]. After significant extensions by Ohno [14], thisding has found a broad ap-
plicability in geophysics, which, according to [15], mated Migliori et al. [2] to develop
a similar method for investigation of elastic propertiessofall crystalline samples, and
introduce, thus, these approaches to the general physiosigoity. As the resonant fre-
guencies of such small specimens were in the ultrasonic imhorivhgliori et al. decided
to refer this new method to as thesonant ultrasound spectroscofabbreviated as RUS),
which was an equivalent of the tenmctangular parallelepiped resonance meth@&®PR)
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used in geophysics.

The main idea of RUS was following: Let us consider that thet firesonant frequen-
cies (f,—1...n,) of free elastic vibrations of a small rectangular paraipgbed of the examined
material are obtained experimentally. Then, let us consaunumerical procedure which
for every guess of elastic coefficientg calculates an estimate of the firstesonant fre-
quencies of such rectangular parallelepipgq ,(c;;)). By matching the experimental
and calculated frequencies, i.e. by minimizing the diffexe

n

Aley) = (fo— [2(cij))? 1)

p=1

over allc;;, one can easily reach the coefficients which describe thawamal properties
(and, consequently, the elasticity) in some "optimal’ way.

For the numerical calculation of the vibrational modes fieg c;;, Migliori et al.
overtook the original RPR algorithm and used a variatioRaly(eigh-Ritz) method. For
the consequent minimization of (1), a gradient searchmewtias adopted. During the next
fifteen years, this basic scheme of the inverse method remaiearly unchanged. The
only significant improvement came from Ogi et al. [17], whoposed to identify particular
modes of vibrations by scanning the surface of the specimendser interferometer during
the measurements. This mode identification enabled a ¢association of the pairs of
resonant frequencies (the measured and the calculatedaiapg in (1), which stabilized
significantly the minimization procedure. The RUS methods wuch mode identification
became later calleshodal resonant ultrasound spectroscgMRUS) to emphasize the role
of the shapes of the vibrational modes played in the inversesglure.

The RUS method was successfully tested on known materiatadly SrTiQ in [2])
and immediately applied for determination of the elastmperties of advanced materials,
such as high-temperature superconductors [2, 18, 19], asicnystals [20, 21], where both
the need of measurements in extremely low temperaturesharshtall dimensions of the
obtainable specimens precluded the use of the pulse-ectimdse Along with the appli-
cation of RUS for particular materials, the method itselédrme more and more general.
Whereas the use of the original algorithm described in [2§ vesstricted to a rectangular
parallelepiped cut exactly along the principal axes of @éinashombic (or higher) symmetry,
Sarrao et al. [16] have shown soon that the method can be sgsbfar identification of the
crystallographic orientation of the material anisotropgide the specimen. In the widely
cited paper [15], Maynard writes about the applicabilityté RUS method to 'prisms,
spheroids, ellipsoids, shells, bells, eggs, potatoesivighes and other shapes’, meaning
that the inverse procedure can be easily modified for any gaarally well-defined shape.
However, the first successful attempts to use RUS for inyastin of thin films and coatings
came about ten years later [22—24].

In the most recent applications, the outputs of RUS are aft¢mestricted to the elastic
coefficients only. The results of the RUS measurements doeldlso the piezoelectric
constants [25] or the internal friction parameters [26]both [27]. Moreover, the changes
in the resonant spectra can simply serve as reliable irateaf damage in the material
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Figure 1: The main experimental schemes of RUS: The cldssibame, the tripod scheme
and the fully non-contact scheme.

[28-30]. The main idea of the method, however, remains péaelsame, always consisting
of measurements of the resonant spectra and, consequirltig, analysis of these spectra
by an inverse algorithm.

For completeness, let us here also summarize the recenbogment in the experimen-
tal part of RUS, i.e. the methodology how the resonant spece experimentally obtained.
Three principally different experimental arrangementROfS measurements can be found
in the available literature (Fig. 1):

1. Theclassical schemeavas adopted by the pioneering works in RUS and remained as
a most widely used RUS experimental methodology till nowaddhis scheme fol-
lows the setups used in the RPR measurements in geophysiEgy.1(a), the main
idea of this scheme is outlined: The specimen (paralle&hipphere, or any other
bulk shape) is placed between two transducers such thabittaeat area between the
specimen and the transducers is minimal (e.g. a cube ispkagzh that it touches
the transducers by two opposite corners only) to ensure débe fgossible approxi-
mation of fully free vibrations. Then, one of the transdscdsrused as a generator
of ultrasonic waves (either scanning slowly the frequenaighin a chosen range, or
generating a broadband pulse), whereas the second as eodedaviously, the main
disadvantage of such method lies in the fact that the vitmatare not purely free,
as the specimen is restricted by the contact forces fronrémsducers. This effect
was repeatedly shown to be negligible [33, 34], but for thi&k Bpecimens only. For
thin plates or shells, which have bending stiffness in sommections comparable to
the forces applied by the contact of the transducers, tresicla scheme becomes
unsuitable.

As mentioned above, the classical scheme can be signifydargroved by scanning
the specimen by a laser vibrometer during the measuremewotsiéer to obtain the
shapes of particular eigenmodes.

2. Thetripod schemesolves the problem of contact forces for thin plates. Fusteied
by Ogi [17], this scheme uses the arrangement outlined i@y The contact
forces are minimized to the gravitation of the specimendyiha tripod of rod-like
transducers. Alternatively, either all the rods can besdlaicers, one used as a gener-
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ator, the other two detecting the vibrations, or one of thlisrcan be just supporting
the specimen and the remaining two be the generator andtaeténother crucial

advantage of the tripod scheme is that the rods can be theyuiges only, transmit-

ting the ultrasonic signal to/from the specimen from/to piezoelectric transducers
situated relatively far away from the specimen. This ermlite tripod scheme to
be used for measurements at extreme temperatures withatistrcers (which are
temperature-sensitive as well) situated safely outsidéitimace or the cryostat [35].

Again, the tripod scheme can be improved by detecting theesotlvibrations.

3. Thefully non-contact scheme(Fig.1(c)) is a logical extension of the tripod. In this
arrangement, the specimen is not laid on a firm tripod buteitlung on thin wires
(glued to two 25@m wires using a minimal amount of Torr-seal epoxy in [36]) or
laid on a soft underlay made of a material with extremely l@ewstic impedance
(cork wood used in most of the results presented by the authidinin this chapter).
The vibrations here are both generated and detected bysJakercontact with the
transducers is fully avoided. It is more than natural thatrtiode identification can
be easily implemented in this scheme. The fully non-cordaeingement seems also
to be optimal for the use at elevated or low temperatures.

There is, however, another way how to perform RUS experimant fully non-
contact regime. It is thelectromagnetic acoustic resonance method (EMBR),
where a solenoidal coil and a static magnetic field are useuditewe a induce Lorentz
forces on specimen surfaces without using any mechanicghcts. More over, this
is method sometimes called mode-selective, which meangpérdcular sets of vi-
bration modes can be selectively excited and detected mgamgthe direction of the
applied magnetic field. The EMAR measurements are, on thex btind, fully depen-
dent on the conductivity and other electromagnetic progedf the tested specimen,
and cannot be counted among general experimental tectsnidiriS.

All the experimental data presented in this chapter werainbtl by the fully non-contact
RUS technique. The elastic vibrations in the specimen weriezl by sequences of pulses
of an unfocused infrared laser beam (Nd:YAG, General Phogdorporation TWO-45Q,
nominal wavelength 1064nm) from the side of the specimes.vilbrations were recorded
by scanning red-light laser vibrometer (Polytec OFV-25¢0ipped by a scanning unit
consisting of two dielectric mirrors on motorized positbstages) on the upper surface of
the specimen.

2.2 The forward problem

The termforward problem of RUS$s, in general, used for the evaluation of eigenfrequen-
cies and eigenmodes of free vibrations of an elastic specohgiven geometry and known
elastic coefficients. To solve the forward problem, the ratstarting point is to formulate
the energetic quantities of a dynamically deformed elagiecimen. For given displace-
ment fieldu(x, t) and its time derivativei(x, ¢), and for given density and the elastic



6 M. Landaet al.

coefficientsC};,;, these quantities are: the kinetic energy

K(a(x, 1)) = = / piindV, @)
2 )y
the potential (stored, elastic) energy

ou; 8uk
P( / Cz]kla a 7 V (3)

and the Lagrangian energy
L( (X t) (X t) t) = K(fl(X,t),t) - P(U(X, t)vﬂ» (4)

which is their difference. All the volumetric integratioase meant over the whole volume
of the specimery’.

As we are searching for harmonic solutions (eigenvibratioan assumption about the
form of the displacement field can be done by stating

u(x,t) = u(x) cos(wt) and u(x,t) = —u(x) sin(wt). (5)
This simplifies the Lagrangian energy into

1 8uz auk

L(u(x),t) = 5/‘/ [uﬂpuiui sin?(wt) — Cijkl%a—:rl cos2(wt)] dv. (6)
j

One of the basic properties of the Lagrangian energy is thalidws stationary paths
between each two given time poihtsn our case of. = L(u(x), t) it means that
to to to
) L(u(x),t)dt = / L(u(x) + ou(x), t)dt — / L(u(x),t)dt =0, (7)

t1 t1 t1

for arbitrary but givert; andts, wheret; < to. By choosing these time points such that
te = t1 + 27 /w, and taking the equality

27 Jw 27 Jw
2 _ 2
/0 cos” (wt) _/0 sin”(wt) (8)

into account, the time coordinate can be simply eliminated] we arrive another varia-
tional condition:

auz aUk; ef
0=20d= / {w puitti = Cijri g~ 8x1} AV = 5A(u(x)), (©)

L\ (u(x))

1So-calledprinciple of stationary (or minimal) Lagrangian actiar Hamiltonian principle e.g. [31].
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where we have defined two new quantities: tinee-averaged Lagrangian energyu(x))
and its density\(u(x)). Following the basic theorems of the calculus of variativa,can
express the variation of(u(x)) explicitly as

1 oA d O\ O\
SA(u(x)) = —/ SR A 5uidV+/n-%5uidS, 10

whereS is the surface of the specimen andts outer normal. As the variations,; are
arbitrary, we can require that

oA d oA 0%y, .
ou d—x] <@> pwu; + C”"fla o =0 almost everywhere iy (11)
Lj
and nj% = njCijkl% =0 almost everywhere of. (12)
6(87“;) Oy

Obviously, (11) are the equations of steady waves in theidered continuum and (12)
are the conditions of a free surface. Thus,dy = 0, we obtain the solutions of the
elastodynamic equation (11) for boundary conditions (##)ich is exactly what we are
searching for — resonant vibrations of an unconstrainedisya.

Let us now try to construct a displacement fieltk) such that it minimizes\ (u(x)).
If the specimen is, for example, a rectangular parallelegipf dimensiong; x ds x ds,
the Lagrangian is

di/2  pd2/2  rds/2 O Oup,
pwud(x) — Cpjp = (x) =—(x) | dzydzedrs,  (13)
/d1/2/d2/2/d3/2[ jkla%'( )3$z( )| dmrdezdas

where the coordinate systenwas chosen such that it has its origin in the center of the
specimen and that the edges of lengthsds andds are oriented along the axes, x2 and

x3. As utilized by the original RPR algorithm [13] and adoptegdthe pioneering works of
RUS [1, 2], the variation of this Lagrangian with respecutx) can be approximated by
derivatives of it with respect to the coefficients of polyriahexpansions ofi(x) (so-called
variational Ritz method). In the other words, for the sauntexpected in an approximative

form
N

ui(x) = Y o Vi (%), (14)

K=1
where V¥ i (x) is some properly chosen functional (e.g. polynomial) hasis condition
dA(u(x)) = 0 is satisfied whenever

8A(a[1,1}a ey a[N,l]a O[[LQ]’ s 7a[N,2]7a[1,3]7 R a[N,?)})
804[K,i]

forall [K,i] € [{1,2,...,N},{1,2,3}]

—0 (15)
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Althoughany polynomial basis (e.g¥ ,p. = x‘fxgxg used in [2]) could be suitable for
such approximation, it is advantageous here, for the catieeatectangular parallelepiped
with mutually comparable dimensions, to take [17]

21‘1 2$2 2.%'3
WUope = Py P, P.(— 16
e = Pal VPP (16)
for
a,b,c=0,1,2,3... a+b+c<N, (17)

whereP,(x) is the normalized Legendre polynomial of degredefined as

(2n+1)/2

). (18)

dxm
The corresponding stationary condition for Lagranghaleads to a symmetric eigenvalue
problem
(W?Elapeider.) — Dlabeldes.)) Yabei = 0, (19)
with
E{ape,ij[des,j] = 0ijOadObedef (20)
and

B2 pdaf2 /2 gy Oy,
1—‘acz e axe c dzidzodx 21
labesi]ldefd] = Pd1d2d3 /d1/2/d2/2/d3/2 Oz Oz Y (21)

Let it be pointed out that for a general polynomial basis nitatrix E is not unitary, which
significantly complicates the solution of the eigenvaluggbem.

The integrations in matriX' can be done analytically (using a symbolic software) and
the eigenvalue problem for this matrix is usually solved hyagpropriate numerical algo-
rithm (e.g. the Cholesky method [32]).

Three remarks are to be done here before proceeding to tbeptem of the inverse
procedure:

1. For reasonably precise polynomial approximation (14g,rhatriced” are huge and
their construction by (21) consumes unacceptable portibtiee computation time if
it must be done again and again during the optimizing prodessthis reason, it is
beneficial to notice that this matrix is linearly dependemt;;;, regardless of how
nontrivial this dependence is.

Consequently, the derivatived,,,,,/0C;;i; are independent of;;;; and can be
computeda priori. In each run of the optimizing process, the matfrigan be, thus,

quickly constructed as

or
&= 9Cijk
J
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The summation here is carried only over the independentielesefficientsC;;y,
which means that e.g. for the cubic symmetry the matricase always obtained as
linear combinations of three matrice¥’/0cy1, OT'/Oc12 andOl' /Dcyy.

. The above described algorithm for solution of the forwardblem can be easily
modified for a nonrectangular parallelepiped by transfagrthe Lagrangian (13)
into an oblique coordinate system chosen paraxially wighetiges of the specimen.
For such oblique systegnrelated to the natural system of the anisotrafyy a linear
relation

y = Bx, (23)

the Lagrangian transforms into [49]

1 d1/2 d2/2 d3/2 p 8U aUk;
A= —/ / [—WQU? y) = Tiji=—(y) 5—(y) | dy1dyadys,
2 ) d,2)-dsj2)—ds)2 | det B S 3%( )ayz( )
(24)
where
Tijr = mcipkijpBlo' (25)

As expressions (13) and (24) are formally identical, theeigequencies of a general
parallelepiped can be then evaluated using exactly the sartaional procedure as
for the rectangular one.

. The direct problem can be significantly simplified by thensyetry. If the specimen
is, for example, a rectangular parallelepiped cut exadtiggathe principal axes of an
orthorhombic (or higher) symmetry, the variational prablg) has an orthorhombic
symmetry, which is the highest common symmetry of the spexiand the material.
Consequently, the solutions (eigenmodes) can be expeatathérit this class of
symmetry, as they fulfill the new balance laws following franfaccording to the
Noether’s principle). In such case, it is clear that the fioms u;(x) must be either
even or odd with respect to all cartesian coordinatewith (in contrary) either odd
or even partial derivativesu; /0x;. The overall vibrations of such specimen can be,
thus, fully characterized by displacement fields in the mici@& d; /2] x [0, d2/2] x
[0, d3/2]. The way how can this symmetry be utilized for in the numealcelation
of the eigenfrequencies and eigenmodes is in detail dieduigg2], where the matrix
I" is shown to split into eight independent matrices, each amesponding to one
possible symmetry of the resultant vibrational modes.

There is, moreover, another consequence of such symmeting sipecimen, which
is perhaps even more important that the simplification oftineard problem. Con-
sider, for example, an even mode of vibrations, where (flof)al

dl dl

u;i(z1 = 7,962,963) =z = —?,9627333)7
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duplication duplication

odd mode even mode even mode

Figure 2: Construction of higher modes of free vibrationsdoylication (a 2D model).
The initial odd mode is duplicated into an even one by chappnoper phases of the mode
in particular quadrants. Further duplication results i ¢éhren modes, which are obtained
without any phase changes.

d d
ui (71, 22,73 = 53) = ui(71, 2,73 = —53)7 (26)
and let this mode correspond to the eigenfrequencyrhen, another mode can be

easily constructed by duplication, i.e. by taking

p,1 dy do ds
u (_X) _U-(X_ [?7?7?]) ) (27)
in the first octant (i.e. in0, d1 /2] x [0, d2/2] x [0, d3/2]), and by periodic repetition
of this displacement field in the remaining seven eights efgppecimen. The dupli-
cated mode obviously fulfills the variational condition YXar the eigenfrequency
wP = 2w. Similarly, the input even mode (26) can be triplicated vitdquency3w,
quadruplicated withtw, or generallyn-multiplied with frequencyhw. Such multi-
plication procedure can be done also for odd modes, where

d1 dl
ui(r1 = =, @2, x3) = —ui(r1 = ——, T2, T3),
2 2
2 do
ui(z1, 22 = ?,x:a) = —u;(x1, 22 = —57563),
d d
ui(z1, x2, 23 = ?3) = —u;(x1, X2, 23 = —?3% (28)

or for any mode being alternatively even or odd in individoattesian coordinates
x;, as it follows from the symmetry of the system with respeatniaror reflections
x; — —ux; valid in the considered orthorhombic specimen. The difieeebetween
the duplication for the even and the odd modes is shown ir2 Figp summarize, we
can say that with each mode of frequengythe spectrum of an rectangular speci-
men aligned with the orthorhombic symmetry of the materaaitains also all mul-
tiplications of this frequency. In the case of generallyeated or non-rectangular
parallelepipeds, no such general conclusion can be doneevés, whenever the
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specimen has a shape suitable for spatial repetition, tarée some modes able to
be multiplied within the spectrum.

2.3 Inverse determination of elastic coefficients

As it was already mentioned, the inverse procedure is thepkayt of the all RUS tech-
niques. Within this procedure, the aim is to determine tHenown elastic coefficients, and
what we have on disposal are the experimentally obtainexhesg spectra and a numerical
algorithm for solution of the forward problem.

The obvious way how to obtain the optimal elastic coefficisend minimize the differ-
ence (1) or any nondecreasing function of it. Migliori et[a].used

n calc. 2
Aleyj) Z f (C”)), (29)

p=1

which reflects the fact that the higher frequencies are dukd@pproximation (16) less
accurately determined and are, thus, involved in (29) vatrelr weights.

Let us see now how easily can this natural weighting turn atdrawback. Let us
consider that our specimen is a thin cylindrical rod madeatfwood (cut along the grain),
and let us admit such rod to vibrate both in the longitudimal the torsional regime (but
not in the flexural modes). For the longitudinal vibratiotige steady wave equation (11)

can be written as
2 d%u
pwu+ E—5 =0, (30)
dx
wherewu is the axial displacement field arid is the Young modulus in the axial direction

of the rod, whereas for the torsional vibrations as

d%¢

pw29+GLd

=0, (31)
whered is the torsion angle and; is the shear modulus for shears in the planes normal
to the grain. As the oak wood has approximatelyG, = 30, we can estimate that the
resonant frequency of the first longitudinal mode is moratfiae times higher than the
resonant frequency of the first torsional mode, and is takem (29) with a thirty times
lower weight. In the other words, the error function (29) iimitarly sensitive to an 1%
experimental error in the first torsional mode and to a 30%rerr the first longitudinal
mode. By a particular choice of material (large differenetweenFE and G ) and of
geometry (1D rod with allowed axially symmetric modes ofraitions) we have disabled

a reliable determination of’ by any inverse procedure based on minimization of the error
function (29).

For generally anisotropic, three-dimensional speciméresway how the information
on the elastic coefficients is distributed in the resonaat8pm is extremely complicated.
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Similarly to the above discussed example, the lowest regdnequencies of such spec-
imen correspond to theoft modesand contain the information only about the smallest
(which means mostly shear) coefficients or their combimati®y moving in the spectrum
upwards, some modes corresponding to the other@eler) coefficients may appear, but
the major part could be still related to the soft ones (e.g sitectrum may contaitw, 3w,

etc. frequencies of multiple modes discussed for highlyregtnic specimens in the third
conclusive remark in the previous section.)

The question is how to determine which coefficients can barately determined from
corresponding to measured eigenfrequengfes ,, = wi /27, and letCy—, ., be
the set of independent elastic coefficients. The derivativbe frequency/;® with respect
to the constant’;, can be expressed as (using a formula from the perturbatenrythfor
further details, check [32])

of a;,fa%ap

o0,  8m2fy®
where no summation over on the right-hand-side is applied. Consequently, the rhate o
sensitivity of measured spectrum to theh elastic coefficien€;, can be taken as a sum of
squares of such derivatives over the whole spectrum, i.e.

2
afexp 2 OéTa—FOZ
2 _ A % 0.0
Sk = Z (ack ) p; i < se2fee | (33)

p=1,...,n

(32)

Our aim is to evaluate the elastic constants (or their coatlmns) which are most accu-
rately determined by the inverse procedure. Let us, for ity consider that what we are
trying to find are the linear combination¥;, related to the original set of elastic coefficients
C}. by linear equations

Cr = ®iCy. (34)

To evaluate the sensitivity to such combinations, it is seagy to transform (33) into

2
afexp 2 aTa—FOZp
*2 _ P — L9 P _ g GTGaT.
v X () ¥ (n5) e e

p=1,...,n p=1,...n
where
8f1exp 8flexp
oCcy "t 00,
(I).j = ((I)llaq>2la'--q)nl) and G = . (36)
Ofn® ofn®
ocy "0 00,

The matrixG™ G is symmetric and positive definite, and its eigenvectorsaegrthus, cho-
sen to form an orthogonal normalized system. By sortingalgenvalues in a decreasing
order and choosing.; to be thel-th eigenvector, we obtain linear combinatiaris sorted
by sensitivity.
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Consider now that we are able to construct an inverse proeedflecting somehow the
way how the information on the unknown elastic coefficieatdistributed in the spectrum,
i.e. a procedure based on a minimization of

A(cij) Z wp (fp — f%(ci ))2, (37)

wherew, are weights tuned such that they do not bias the inversiocepiore in the way
demonstrated by the above discussed example of the 1D oad medo Another problem
can than arise in the optimization itself, especially whaty aough initial guesses of the
elastic coefficients are on disposal. In the first applicetiof RUS [2], the calculated and
experimentally obtained resonances were arranged ints 8ken(37) by simple ordering,
i.e. the first calculated frequency was subtracted from teedkperimentally obtained, the
second from the second, etc. The effect which such assatiatifrequencies can have on
the minimized function can be clearly seen on the followirgreple.

Consider again a cylindrical rod with axially symmetric nescbf vibrations allowed.
For this time, let the rod be made of polycrystaline coppethw = 110GPa and
G = 63GPa, which is a quite small differenc& (G = 1.75). As the resonances con-
taining the information on the value @& and on the value ofr are close to each other,
and as we can evaluate these resonance explicitly (highgudncies are not disturbed by
higher numerical errors), we can safely choage= 1 for all p. On the left-hand-side of
Fig.3, a contour plot of sum (1) in dependencefoandG is shown, evaluated by simply
comparing the first fourteen evaluated resonant frequsiveith first fourteen obtainable
experimentally (but evaluated here for the correct valde& @nd E). The sum is ob-
viously unsuitable for minimization. Not only that there iple minima appearing on
A(FE, G) (without distinguishing between the longitudinal and tonsl modes, the values
of E andG are fully interchangeable), but the functidq E, i) is far from smooth, which
precludes a meaningful use of any gradient search method.

In the right-hand-side of Fig.3, the same (hot weighted) siplotted with themode
identification i.e. with the knowledge of which resonances are torsiondhghich are lon-
gitudinal involved. After such improvement, the functid{ £, G) becomes fully smooth,
with one well defined minimum corresponding to correct valaeE andG. For the error
function (29) weighted by/fl?, the contour plots look nearly the same.

The problem of mode identification was successfully solvedigi et al. [17], who
scanned one of the surfaces of the vibrating specimen byeailsterferometer. From the
projection of displacement patterns into that surface,&d@gi. were able to identify all the
observed modes and arrange the resonances in sum (1) ireatoeay. Similar approach
was later adopted by Landa et. al [12] and extended by autoidantification of modes,
where the measured displacements are fitted with the sareeafrdegendre polynomials,
which enables a reliable comparison to the calculated edges

However, for a generally oriented, three-dimensional@nipic specimen, the mode
association is possible only for relatively accurate atitjuesses of the sought elastic coef-
ficients and for known class and orientation of the anisgtrdjpat is another factor which



14 M. Landaet al.

Without mode identification With mode identification
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Figure 3: Comparison of the error functidx( £, G) without (on the left) and with (on the
right) the mode identification.

complicates a general use of RUS and makes it disadvantageoamparison with pulse-

echo measurements: The overall character of the anisot@pype directly seen neither
from the resonant spectra nor from the shapes of the eigegsr(@hich mix the symme-

try of the material with the symmetry of the specimen), buthaut the knowledge of this

character, the mode association, and, consequently,ltablesdetermination of the elastic
coefficients can be, in some cases, close to impossible.

Providing that we have tuned the weights such that the sund@s not priori sup-
press the information on any of the sought coefficients aattie have sufficiently accurate
initial estimates of the coefficients to identify all the nesdnvolved in the inversion, the
inverse procedure could be expected to converge to coesutts. The accuracy of these
results is given by the experimental error in the input resbfrequencies, by the accuracy
of determination of the geometry and orientation of the Bpen, by how accurately the
frequencies are evaluated within the forward problem (damb the accuracy of the Ritz
method with the accuracy of the numerical algorithm usedHersolution of the eigenvalue
problem (19)), and by the accuracy of the chosen searchitigo(i.e. how accurately the
minimum is localized). Such mixing of experimental and ndmerrors in the resultant
accuracy of the outputs of RUS nearly precludes any diretetraenation of the accuracy
of the method itself. It can be, however, guessed e.g. fromtBt€arlo simulations the
input data disturbed randomly within experimentally reegde ranges, but such approach
always enables it to be guessed only for one specific materthbne specific geometry of
the specimen.

Among the general ways how to increase the accuracy of the Resurements, at
least the following three points are worth mentioning here:

1. As far as the preparation and choice of the specimens ecoad, it is always bet-
ter to use th@yeneral bars with mutually undividable dimensionsrather than the
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exact cubes or tetragongeneral parallelepipedsrather than rectangular ones, and
specimens with general orientatiorrather than those cut along the principal axes
of the specimen. The reason is clear from the discussioneofebonant spectra of
highly symmetric specimens (see the previous section).ldler the symmetry of
the specimen is (meaning both the shape itself and the spetmrientation to the
symmetry of the material), the more general vibrational esochn be expected to ap-
pear. Let it be pointed out here that the modes constructeduityplication contain
exactly the same information on the elastic coefficienthadasic modes they were
constructed from. Moreover, for the highly symmetric spgams, some of the modes
can be degenerated (i.e. two or more modes can have the ssomamné frequency),
which significantly complicates the mode identification.

2. Theincrease of the degree of the polynomial approximatior{14) can, naturally,
increase the accuracy of the obtained results. Howevengadimension of matrix’
(without any simplification of” by possible symmetries considered) is related to the
degree of the polynomial approximation by

(N+1)(N+2)(N+3)

rank(I") = 5 ,

(38)

each increase aV is penalized by a dramatic increase of computation time.4Fig
shows comparison of eigenfrequencies computed for thffszelt degrees N: 12, 14
and 16. The dimensions of the matiixwere 1365, 2040 and 2907 respectively. The

3 T T T T
250 b
2} N=12—>|
S
=15) A/ﬂ |
1L 1
0.5F W
e W%*&%&f@;m

Mode No. (1 to 100) N=16

Figure 4: The effect of the degre¥ of the polynomial approximation on the accuracy of
the evaluated resonant frequencies.

solution taken as referential here (i.e. the solution witigresonances calculated for
different NV are compared to) was obtained by finite element method withlaege
number of degrees of freedom (0 This figure also illustrates another important
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feature: Since the plotted quantity here is

calc.(N) _ fp
Af, =22 -
fp fp )

it can be easily seen that the frequencies for [gware generally higher than both
those for highetV and those calculated by finite elements. In other words,gbe |
flexible the approximation is, the more significant shift bé tcalculated spectrum
upwards can be expected.

(39)

The choice of the polynomial approximation should also o¢flee shape of the spec-
imen, i.e. if the specimen is a thin plate or shell, anotheré¢r) degree of the poly-
nomials should be used to approximate the displacementdisidbution along the
normals to midplane of the specimen than along the curvégeitise midplane.

. For the search for the optimal coefficients, it is usuaéindficial todecompose the
inversion algorithm into particular iterative steps. The following architecture of
inversion procedure was proposed in [32]:

(a) We consider a parallelepiped sample with given mategiaimetry, density
and shape. Utilizing thest-order homogeneity of* with respect to the all
independent elastic coefficiends, we compute the matricéd’/0C}, via (21)
by settingC), = 1 andC; = 0 for all j # k.

(b) We take an initial guess of the constaﬁl,g) (e.g. elastic constants of similar
materials found in literature), complete the mafrixising equations (22), and
calculate its eigenvalues and eigenvectors.

(c) We compute the surface distributions of the displacerield in the surface of
the specimen which is scanned by the laser vibrometer. Byaason of com-
puted and experimentally measured distributions, we tgsgbciate measured
and computed spectra. If our constants are far from the cioorees (as usually
happens for the initial guesses), only the first few modessseciated.

(d) Using the equations (35) and (36), we compute the m&iG with frequen-
cies f;*” and the eigenvectors}® associated to them and determine the linear
combinationsC}; sorted by sensitivity. (The eigenvecta$® are not exactly
equal to the experimental eigenvectors and thus, the disggad f;*"/IC,

used in (35) are approximate only.)
(e) We minimize the error function
* cal * exrp 2
A = 3 (feten - ) (40)

Passoc.

where the summation over,s,.. means that only the associated modes are
taken into account. In [32], (as well as for the results pnesein this chapter,)
the minimization of (40) is done by a gradient (Levenbergrifl@rdt) method,
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which provides a fast and straightforward convergence. dffieiency of the
inverse determination of the elastic coefficients is impiblay deriving the an-
alytical expression of the gradient and the Hessian of thar éunction using
formulae from perturbation theory

Owj 0T

ac; ~ M e “1)
02w? : AT
wi o7 o' Oa; i Oa; or o, (42)
0CyoCY 7 0CEoCT ocy ) oCy
where or
T :
8aj &; a—Cl*a]
= — 5 . 43
ac; Z 2w (43)
Wi Fw;
(f) We estimate the accuracy of evaluated constafjtfrom the expression
cal _ fexp\2 ACF
Kl = Zpasso& (fp fp ) ~ ( k;) (44)

afeN: SE
ZpaSSO(L 80;;

where the last approximative equality is exactly satisfielgt & fc*! = £, for

all associated modes.

The combinationg;; with a low value ofx;, (under some chosen threshold)
are accepted, the rest is replaced by proper linear coniaisadf the initial
guesses. From such set ©f the original independent coeﬁicier@m are
computed by equations (33). Then, we return to the (b) stepeoprocedure
with new constant@,ﬁl) and repeat this process until we match all the measured
resonance modes and fit their frequencies.

This algorithm using the parametet§ sorted by accuracy; as sought variables
(rather than the original constan@$) enables us to perform the optimization gradu-
ally, i.e. to evaluate the most accurately determinabletoationC? as the first one
(with the rest being fixed), then to evaludgi¢ andC3, etc., until a chosen sensitivity
level is reached. Such inverse procedure is more robustttienlassical method
optimizing all original constant§', together [32].

There are, of course, more ways in which the RUS techniqueébeamproved. The
accuracy of the input spectra can be improved by taking ttemaation in the material
into account, i.e. by considering the effect which the atégion has on the position of the
maxima of the resonance peaks. The experiments can be danesiracuated chamber to
minimize the damping of the specimen by air. However, suctiquéar improvements can
slightly correct the obtained results, but undoubtediyncarmelp the method to overcome
its applicability limits given by material, and exceed, rifer, out of the frame of this
chapter.
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3 RUS measurements close to applicability limits

Let us now proceed to particular applications of the RUS wettbr determination of elastic
coefficients of various anisotropic solids. The aim herémat be to illustrate the reliability
and certainty of RUS when applied to materials for which thethod was already verified
and provides accurate and easily interpretable resultdte @u the contrary, the issues
described in the following text are chosen such that thebility of the RUS method for
their solution is, on the first look, questionable.

In this section, the focus will be laid on the cases where g@ieability of RUS is
embarrassed due to the properties of the examined matsel iNamely, the particular
issues solved within this section will be:

1. the case oéxtremely strong anisotropy, for which the specimen tends to vibrate in
the softest modes related to the softest elastic coeffgiend the spectrum, conse-
quently, does not contain sufficient information on the bahes

2. the case ofveak anisotropy of unknown class of symmetry and unknown oH
entation, where the inverse procedure leads to 21-dimensional gattion, as the
material must be considered as fully triclinic

3. the case otemperature dependent attenuationwhere the required information
(thermal dependencies of elastic coefficients) are shageinfultaneous changes
in the quality of the measured spectrum.

As it was mentioned in the introduction, the modificationdhd RUS method described
within this chapter cannot be understood as any kind of wsaleecipes valid for wider
classes of similar problems. They are suitable for the @aer materials, particular shapes
of the specimens and particular experimental arrangenoshisthey illustrate, according
to the main message this chapter aims to bring, the diveasttyvariability of the world of
RUS.

3.1 Extremely strong anisotropy: Single crystals of Cu-AlINi

The first example of application of RUS discussed here willhgedetermination of elastic
coefficients of a single crystal of the Cu-Al-Ni shape meraltgy. In the high-temperature
austenitic phasethe crystal of this alloy has a cubic symmetry. Upon cookmgl after

applying proper mechanical loading (for details, see [3Bp material can be transformed
into the low-temperaturenartensitic phasewhich is orthorhombic. The elasticity of the
cubic austenite can be fully described by three indeperelastic coefficients;, ¢;2 and

cq4, Which are, for the axes set parallel to the principal diogcof the material, arranged
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in the matrix of elastic coefficients in the following way:

ci1 ci2 ciz2 0 0 0
ci12 c11 ci2 0 0 0
| a2 ca2 en 0O 0 0
G100 0 0 e 0O 0 (49)
0 0 0 0 Cq4q 0
0 0 0 0 0 C44

After being transformed into martensite, the symmetry ef thaterial decreases into the
orthorhombic symmetry. Elasticity of such material canthen, fully described by nine
independent elastic coefficients, which, in natural cawatis of this system, form matrix

ci1 c2 a3 0 0 0
cl12 ¢ c3 0 0 0
o C13 (€23 (33 0 0 0
G710 0 0 ew 0 0 (46)
0 0 0 0 C55 0
0 0 0 0 0 C66

. The coordinate systems in which the elasticity matricesustenite and martensite adopt
forms (45) and (46) are related by the coordination relati@miiowing from the nature of
the martensitic phase transition between these two phase439]).

Our aim will be to determine all the independent elastic ficiehts of both austenite
and martensite from RUS measurements on a single specinegentfie same specimen
being first in austenite and then in martensite). The saluiidhis problem is significantly
complicated by the strong anisotropy of the material. Indlhigic phase, the strength of the
anisotropy can be characterized by #mésotropy factor

2644

A= (47)

e —ci2
This factor is equal to one for an isotropic material, for coom single crystals of metals
(aluminium, nickel, copper, gold, silicon) this factor s between 0.5 and 5. For the
austenitic phase of Cu-Al-Ni, this factor is approximatetyual to 12.

What does such high value @f mean physically? To understand it, we have to intro-
duce few fundamental terms of the elastodynamics of amigmmaterials, particularly of
the elastic wave propagation. The starting point for us altheChristoffel equatior{for
derivation, see [40] or any similar textbook)

(n;Cijriny — pv2din) Ui = 0, (48)

which relates the phase velocity of the elastic wayevith the direction of propagation,
the elastic coefficients of the materi@l;;,;, the density and the polarization vector of the
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wave U; 9, is the Kronecker’'s symbol. For given directian this equation becomes an
eigenvalue problem for the so-call&thristoffel matrix

L = 1 Cijrim, (49)
which can be solved by finding the roots of secular equation
det(Lix — pv3di) = 0. (50)

As it follows from definition (49), the Christoffel matrik;; is symmetric and positively
definite, therefore its eigenvalupafo are always real positive and its eigenvecfOrsreate
an orthogonal triplet.

In an isotropic case, the largest eigenva,h@e;)Q correspond to an eigenvectbr
parallel to the directiom, where the superscrigi denotes thdongitudintal mode The
remaining two solutions of (48) coincide in one wave ofransverse modelliptically
polarized in plane normal ta, which travels along the direction afat phase velocity,.

In the anisotropic case, the solutions of the Christoffelagipn are much more general.
The secular equation (50) has, in general, no degeneraitdand the corresponding polar-
ization directions are neither parallel nor normal to threctionn. It is said that the planar
waves in each direction can propagate at three differenéwandes; one quasi-longitudinal
(gL) mode and two quasi-transverse {g§T?) modes, withal the gL mode is the one with
polarization vectolU® closest to the direction of propagatian

In principal directions of a cubic material, the phase vitles can be expressed analyt-
ically. In particular, in the [110] direction of a cubic cigs, the phase velocities are

p

oL €11+ c12 + 2¢44 qet  [CL gt Caq
v, = = —, Ucp

g 2p 2p -

— /
and vjf:,/%d:d,/% (51)

The anisotropy facto relates, thus, the phase velocities of'gihd g7 modes in this
direction by relation
v = VA (52)

So, for A being approximately equal to twelve, we get
vl =2V (53)
Moreover, as the cubic materials typically héw)gL ~ 2u§4pT1, we can write

vl =207 = 4V3uT. (54)

%for the [110] direction in the examined single crystal of &N, this ratio is even higher, approximately
equalto 2.2
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In other words, if the specimen of such material was a 1D ridil@r to the oak wood rod
considered in the introduction) cut along the [110] direwstithe first resonant frequency
corresponding te’ would be approximately two times lower than the first one &spond-
ing to c44 and nearly seven times lower than the first one corresportding. With the
multiplication of the modes taken into account, we can axipnately say that 70% of the
spectrum of such rod would contain the informationcomhereas only 10% on;. With
all the resonant frequencies determined with the same acguve can, thus, expect the
coefficientcy, to be obtainable with seven times higher experimental enamc’.

In a real 3D specimen, the information on particular elastiefficients is in the spec-
trum distributed even less uniformly, as it is illustratedthe following experimental ex-
ample. The examined specimen was a parallelepiped of theratgswith dimensions 5.11
X 6.16 x 5.22mm and orientations [0.53; -0.80; -0.26], [0.858; -0.07], [0.21; -0.15;
0.96], i.e. with two directions close to [1-10] and [110]qmipal axes and the third one
close to [001]. The RUS measurement was performed in theidérezy range 0.1-0.6MHz
which resulted in 65 identified modes, which seems to be gopitgriately large number
for identification of three independent coefficients. Theense procedure was run in the
multi-stage modification (see the third item of the conahgdiliscussion in subsection 1.3)
to obtain an orthogonal set of combinations of elastic coieffits sorted by accuracy. The
resulting combination€’;_, , ; are listed in Tab.1. Unsurprisingly, the most accurately de
termined combination is nearly exactly equivalentt@and the second one tq,. As the
combinations”} are orthogonal by definition, the last combination cannadugivalent to
cr,, but it (similarly tocy) contains the information oy, + ¢1o.

It is obvious that the inaccuracy 05 is unacceptably high. The resonant spectrum
simply does not contain sufficient information on the coefficient, which is related to
longitudinal modes of propagation. The applicability o tRUS method is here restricted
to accurate determination od coefficiedtandc,4. The full anisotropy cannot be captured,
unless even more higher modes are taken into account.

Let us, on the other hand, make a short comparison of the RUlsoch&vith the pulse-
echo measurements, where the elastic coefficients areedthiom values of phase veloc-
ities by inverting relations similar to (51). Let us considespecimen being cut exactly
along the [110], [1-10] and [001] directions. In the the [1&dd [1-10] directions, the

| k| Combination | C; [GPa] | ki [GPa] |
0.71cy1 — 0.70¢12 4+ 0.07cyy 18.11 0.14
0.01c11 + 0.1c12 + 0.99¢y4 108.38 2.14

0.7c11 +0.71c12 — 0.08c44 169.46 34.94

W|IN| | =

Table 1: Combinations of elastic coefficients for the ausitephase of SMA and the accu-
racies which are the combinations determined with.
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velocities are given by (51), in the [001] directions, thiatiens are
C11 1 2 C44
U?OL = %, U?OT = U?OT = 7 (55)
Obviously, the coefficients;; andcy4 can be conveniently determined from measurements
of longitudinal and shear wave phase velocities in direcfi®1]. Then, it is sufficient to

2
measure the gL velocity in direction [110] to evaluate as2p ( [110}) — 2c44 — C11.
But how does it look like with the accuracy?

Consider that we obtain the phase velocities in fovﬁﬁn 15%[001]’ go[OOl]j:(SUcp[OOl]
andv® . -+ so™ Using the known rules for recalculation of experimentabes be-
©[110] ©[110]" .
tween quantities, we can write that
ci1=p (o™ :|:2 v v (56)
11 = P {Yyl001) p cp[OOl] ©[001)?
cas = p (0" i 2007 v (57)
44 = P\ Y1001] p <p[001] [001]’

and finally 5 9
Clz =p (U;L[no]) —2p ( @[001]) —r (chpL[0011>

+2p (”;L[no}‘s ol110] 2%[001]5%[001] + %[001]5 [001]) : (58)

For ¢’ evaluated now as;; — ¢, the experimental accuracy is

o =p (U?OL[no]évlL[no] + 2”2001]57’2[001] + 2%[001]‘5 [001]) : (59)

If we take into account that

qL ~ qL ~ qr
Yo ~ V205001 ~ 20000y (60)
and consider that all the phase velocities were determiriéhctiae same accuracy, i.e. that

o

©[110] (61)

N5U N5U

©[001] ©[o01]?

we can conclude that is from the pulse-echo measurements determined (#ith 2/2)
times lower accuracy than4. As ¢ is approximately five times smaller thap,, the pulse
echo measurements at the level of 1% experimental erray iresults in nearly 35% error
in determination of’.

If the coefficientc’ is not determined from the above procedure but from direa-me
surements of the“'TQ110 velocity, the accuracy can be incomparably higher. Howeber
experimental determination of this velocity is extremetynplicated. In paper [38], the
authors examined variously oriented single crystals ofAGN by pulse echo methods,
but were not able to detect reliably this wave in any directi®imilarly, Stipcich et al. [41]
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| k| Dominating terms | C; [GPa] | ky [GPa] |
1 c11 + c22 + 2¢55 — 2c12 51.93 0.37
2 —c11 — €22 + 2¢55 + C12 18.34 0.90
3 2¢c44 + 2c46 115.92 2.77
4 2644 — 2666 — (23 10.98 3.56
5 2633 — €23 — 2613 8.02 5.75
6 C11 + C44 + 2623 — C13 — C12 25.63 5.87
7 | 2c11 — 2c99 + ¢33 — ca3 + C13 111.60 17.08
8 2c11 + c99 — lesg + 2¢q9 182.55 53.35
9 €22 + 2c33 + c23 + c13 302.09 73.54

Table 2: Combinations (dominating terms only) of elastiefioients of martensite of Cu-
Al-Ni sorted by accuracy they can be determined with.

were not able to detect any reliable echo for this velocitijirMn-Ga although their spec-
imen was cut exactly along the (110) planes. On the other,hhisdwave was repeatedly
measured in materials with lower anisotropy factors, suiEa-Al-Ni ( [42], A =4) or
Cu-Al-Mn ( [43], A =5.4). The reasons are numerous (e.g. strong magnetoeedasti
tenuation as discussed in subsection 3.3), but the mostriengmf them probably is that
for such strong anisotropy, the §fode is extremely strongly affected by ttigectional
dispersioni.e. by the fact that the anisotropy focuses the energyechbly qT>-waves to
few preferred directions whereas the others (e.g. the [dit&Ftion) become energetically
suppressed (more details on this effect can be found, agd#40] or any similar textbook).

For ¢ determined as the difference between experimentally obdai;; andc, the
experimental error of this coefficient (59) is similarly weaptable as the error 03 ob-
tained from RUS measurements. This lead us to the idea, HbaRUS and pulse-echo
measurements can be, in some sense, complementary to baghaot that their combina-
tion could be a good way how to determine the elastic coeffisief strongly anisotropic
materials. This idea will become essential in the secondgddhis subsection, where we
will try to determine the elastic properties of the same Bpen but after being transformed
into a single variant of martensite.

In the monovariant of martensite, the shape of the specines)avnon-rectangular
parallelepiped (5.14mm5.92mmx 5.39mm) with face normals [-0.71; 0.58; -0.37], [0.32;
0.84; 0.42], [0.55; 0.23; -0.80] in the natural coordingtstem of the orthorhombic crystal
lattice of martensite. RUS measurement was performed ifme¢geency range 0.1-0.8MHz,
70 resonances were involved in the inversion proceduresiwhlias, again, run in the multi-
stage modification with the result obtained in a form of ogiwoal combinations of elastic
coefficients sorted by accuracy. These results are outiiméab.2, where the combinations
are reduced to few dominating terms to highlight the paldicaharacter of each of them.
Obviously, the combinations Nos:B are extremely inaccurately determined. The question
is, whether especially these three combinations can bendieted by pulse-echo measure-
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ments, i.e. whether the RUS and pulse-echo measurementsadigecomplementary to
each other. As the specimen in martensite has a quite gemrgsgdllographic orientation
and the class of symmetry is quite low (orthorhombic), noliaformulae can be de-
rived to relate the phase velocities in the direction nortoahe parallelepiped’s faces with
the elastic coefficients. These relations must me soughenaaily, namely by analyzing
which of the combinations from Tab.2 depend sensitively aines of which phase veloc-
ities. On this purpose, the partial derivatives of paracydhase velocities with respect to
the combinationgv,/0C; were approximated by finite differences

B, 0s(Ci.. . .CL+0CE,....C5) —vo(Cf,....Cf,....C])

~ 62
oCy 0Cy ’ (62)

and these differences were evaluated for all modes of patjsag(qL, qT', gT?) and three

possible directions (normals to the parallelepiped’s$ac€he result is graphically embod-
ied in Fig.5, from which one can conclude that the relatiotwieen the determined com-
binations and the phase velocities measurable by pulse+eetthods is rather nontrivial.
What is undisputable is the fact that the first (the most ately determined) combination

-
)

-

o
3}

v JaC, [mm/us.GPa™ ']

o <

Figure 5: Sensitivity of values of the phase velocities #® tbmbinations of elastic coef-
ficientsC}. Labels gL, qT1 and qT2 denote the modes of propagation. &cin enode,
three velocities are considered, corresponding to thnetiins given by the normals to
the specimen’s faces.

Cy is somehow related to the §Tode of propagation whereas the last (the least accu-
rately determined) combinatiafiy to the gL mode. This is an evident similarity with the
previous case of the austenitic specimen. On the other thed,ombinations cannot be
strictly divided by their correspondence to particular m®of propagation, as the combi-
nation No.3 is sensitively dependent to all modes of propaga On the other hand, the
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Source C11 C22 C33 Ca4 Cs5 C66 C23 C13 C12
[GPa] [GPa] [GPa] | [GPa] | [GPa] | [GPa] | [GPa] [GPa] [GPa]
RUS 187.17 | 149.18 | 236.38 | 69.40 | 22.62 | 63.01 93.07 65.03 140.18
+16.47 | £15.00 | +£27.10 | +£2.96 | +£0.82 | +3.85 | +£16.43 | +17.77 | +14.77
RUS 185.38 | 147.55 | 229.89 | 71.02 | 22.93 | 63.74 97.35 74.11 138.96
&qL +1.83 +1.87 +0.84 | +£1.85| £0.53 | +£1.69 | +2.14 +1.51 +1.01
[38] 184.46 | 151.45 | 238.58 | 66.39 | 22.85 | 60.55 86.83 70.09 140.41
+1.12 +0.75 +1.87 | +£0.21 | £0.18 | +£0.40 | +1.05 +1.07 +0.77

Table 3: Elastic coefficients of the martensitic phase ofAGMdiI. The results obtained by
RUS and by combination of RUS and pulse-echo measuremeis wélocities is com-
pared to the results of [38] obtained by pulse-echo measmtnon various specimens.

combinations Nos-46 do not significantly correspond to any of the modes of prafiag.

The question is how the above findings can improve the in@rakeiation of the elastic co-
efficients. The quasi-longitudinal velocitieg can be easily measured using the pulse-echo
technique, so this additional information may be used foravaxcurate determination of
combinations Nos-#9. The most natural approach seems to be the direct involveaie
the phase velocities into the optimizing process, i.e. rglditerm

3
Ay =" (v2(Cijr) — v2)? (63)

n=1

to the error function (1). However, such extension of therfunction disables the con-
struction of linear combinations, and the whole optimizatprocess becomes more com-
plicated. Another possibility is to take the combinations.N-6 as precisely determined
from the RUS measurements, and Nos:-97 as independent. After the combinations
Nos.1:-6 are determined from the frequency spectrum, the remagongpinations can be
easily fitted to the longitudinal phase velocities. Thisraagh enables us to reach the av-
erage difference between measured and calculated gL pk#assties to be smaller than
10~-mm/us without disturbing the optimality of the fit between the sw&d and calcu-
lated spectra. Tab.3 compares the accuracies of individdapendent coefficients evalu-
ated without and with involving the gL phase velocities ie tidgorithm. In the first row,
the estimates of the experimental errors were obtained froby the linear relation

K
6Ck = |yl 5, (64)

where®y,; are the coefficients of the combinations (34) and the fagtoeﬂects the fact
that the[C} — ry; O} + ki) is assumed as as3interval. In the second row, a similar
procedure was applied, but with the $tervals of combinations Nos:® determined by
Monte Carlo simulation with the requirement of agreemenglinphase velocities being
better than 10°mm/us. The impact of involvement of the gL phase velocities irite t
inverse algorithm is dramatic: The experimental errorsaefficientscss, c¢13, andcy» are
reduced more ten times. The smallest improvement is in th#ficientscyy, cs5 andcgg,
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i.e. in the shear coefficients closely related to the firstt¢st) eigenmodes and already
accurately determined by RUS.

In Tab.3 the results from RUS are also compared to thesengatdrom pulse-echo
in fifteen different directions (see [38] for more detail)aelaccuracies of the coefficients
from [38] seem to be slightly higher (except @f;). However, they were obtained by
Monte Carlo simulations with chosen input errors in the galof phase velocities and in
the specimen orientation, and are, thus, artificial in soemse; the experimental errors of
the results of RUS were, on contrary, evaluated directlynfthe nature of the method by
definition (44). Moreover, it must be pointed out that theutessfrom RUS were obtained
on one specimen only, whereas in [38], five differently oéelspecimens were used.

In general, we can conclude that the RUS method can be applimaterials with ex-
tremely strong anisotropy, but the results cannot be erpecthave satisfactory accuracy
unless some additional information is involved, e.g. thkies of gL phase velocities in
given directions of the material. For the cubic austentie, RUS method and the inver-
sion from phase velocities are fully complementary — the Gesinot accurately determine
the ¢;, coefficient, the latter the’ coefficient. In the case of the orthorhombic marten-
sitic phase, the situation is more complicated, but the doation of RUS and pulse-echo
measurements can result in acceptably accurate deteromr@tall independent elastic
coefficients.

3.2 Weak (averaged) anisotropy: Elastic properties of fingl grained materi-
als processed by ECAP

Consider now a quite different problem. Let the specimen fp&rallelepiped again, but not
a single crystal, where the orientations can be accuragtBrohined from X-ray measure-
ments, but dextured polycrystalwhere the anisotropy has a statistical, averaged characte
which can be given by both the preferred crystallographiemation of the grains and the
microstructure (i.e. the pattern of grain boundaries).uchscase, the principal axes of the
symmetry (if there are any) are completely unknown, as vethe class of the symmetry
To characterize the elasticity of the material, a full ina description with 21 indepen-
dent elastic coefficients must be used in the first step; theacher and orientation of the
anisotropy can be only estimatagbosterioriby finding some cartesian system in which the
tensorCj;;; has the highest symmetry. The only reasonable assumptiaaweo about
such anisotropy is that to expect it to be weak, i.e. to berdzsue as a small perturba-
tion of the isotropic elasticity of an untextured polycelsiith isotropic microstructure.
Obviously, the RUS technique is unreplaceable here, sire@formation obtainable from
pulse-echo measurements (three triples of phase veuitdirections normal to the faces
of the specimen) can never be sufficient for determinatioallo®1 constants. Let it be
pointed out that this problem is completely different frame ttase discussed by Sarrao et

3Both the class and the orientation of the anisotropy can bretimes approximately guessed from optical
or EBSD microscopy of the grain texture, but as our primany &i to check the power of the RUS method to
solve this problem, we will not take any such additional mfation into account.
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k Dominant coefficients (O K
[GPa] | [GPa]
1. €11 + €22 + ¢33 + 2c44 + 2¢55 + 2c66 — €23 — €13 — C12 119.47 | 0.18
2. Cc33 + Cq4 + 2655 - 3066 — €13 — C46 + C56 23.29 0.32
16. Coo + €33 — €13 — 2Co5 + 2¢35 + Cog — Cog — C34 + C36 + Cus5 22.06 7.30
17. —Co9 + €33 — Cq4 — C23 + C13 — C12 + Co5 — C35 + 2C14 + 2024 - 2634 45.48 9.64
18. C11 + 2¢33 + €93 + €13 — C14 — C1g — Co4 — Cog — C34 — 2C36 1.83 22.15
19. Cog + C12 + C14 — C16 + 2024 — Cog + 2634 — C36 183.06 40.20
20. C11 + C22 + €33 + €13 + €12 + C15 + C25 + C35 70.10 49.41
+C46 + C14 + C16 + C24 + C26 + C34 + C36
21. €11 + Cog + €13 + 12 — 2¢15 — 2C95 — 2¢35 + C14 + Coq + C36 182.14 | 58.83

Table 4: Combinations of elastic coefficients (dominatiegris only) for a weakly
anisotropic, nanograined polycrystal of copper sorteddmyieacy.

al. [16], who have shown that the RUS method can be suitablddtermination of crys-
tallographic orientations of small single crystals. Themdifference is that Sarrao et al.
knewa priori the class of symmetry of the examined material, which emathlem to ex-
tend the inverse procedure by involving the orientationhef principal axes as additional
sought unknown variables.

As an illustrative example, we will evaluate the elasticgedies of a polycrystal of
copper processed Bqual channel angular pressif&CAP) [44—47]. ECAP technology
is a method for manufacturing of fully dense nanoscopicgibined materials, based on
subjecting the material to repeated plastic deformatiombying a workpiece several times
through a die containing two intersecting channels of idahtross-sections. During each
processing cycle, the grains become finer. The first passeofvtirkpiece induces the
pattern in grain boundaries, which rotates for a small adgténg every pass.

The specimen used in our experiments was&:87mm rectangular parallelepiped, cut
from the workpiece after the first route through the processdie. The one pass only was
chosen because the material in this state has the weaksstrapy — the microstructure of
the grain boundaries does not play such important role easrafiny passes where the grains
are much smaller (and the volume fraction of the grain botiadathus, much higher). The
density of the specimen was expected to be the same as foraopotycrystalline copper
(8.96 g.cnt!). This specimen was investigated by the common RUS proeedaking
first 100 resonances and the shapes of corresponding eigesrae an input. Similarly as
for the previous case of extremely strong anisotropy, thii+stage inverse algorithm was
applied, and thus, the result was obtained in a form of limeanbinations of the sought
elastic coefficients sorted by accuracy. As the initial gessisotropic elastic coefficients
of polycrystalline copper were taken. These guesses aheaddiable identification most of
the input modes.

Tab.4 includes the first (i.e. the most accurately deterd)itbwo and the last (i.e. the
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least accurately determined) six combinations. In thisetatot the full combinations are
listed (each having 21 terms) but only few dominating termesshown to highlight the
overall character of each combination. Obviously, the fifsthese combinations has a
strong physical meaning. As our material is nearly isotppie can consider for a while
that

Cl11 & €22 R €33, (65)
C12 R €23 R 13, (66)
C11 — C12
andcys ~ c55 & cg ~ T (67)

Then, the combination No.1 is proportionaldg,, which is the the shear modulus of the
isotropic continuum.

The relation between the first combination and the sheaciti&s is clear even when a
full anisotropy is considered. Being written in form

C11 — C12 C22 — C23 €33 — C13

Cf ~
1 ™~ C44 + C55 + Co6 + 5 5 5 )

(68)

this combination can be approximately understood as arageeralue of squares of shear

velocities in various principal directions. Similar dissipn can be done also for the second
combination, where, for the isotropic continuumg(~ cs¢ ~ 0), the dependence remains

ONcy4, c55, cee @aNd 22543 only, which are all equal to the shear modulus again.

The last four combinations (Nos. 481) are extremely inaccurately determined. For
this reason we decided to tune these combinations by palsereeasurement in a similar
way as it was done in the previous subsection for the strorsp@apy. Seven phase veloc-
ities (three quasilongitudinal and four quasitransvengske taken into account. After such
correction, the resultant triclinic elasticity with coefénts

Cij =

199.70 £0.79 111.504+£0.92 102.65+0.80 5.39+1.54 4.64+1.09 —0.68+0.76
196.87 £1.10 109.08+0.67 6.33£1.45 3.40+£1.54 —1.85+0.62

o 200.83+1.46 553£1.39 206+1.43 —3.90£1.20 QP
- 42.29+£042 1.69+0.95 0.194+0.87 a

symm. 42.65+0.42  0.01+0.55
42.62 + 0.42
(69)
approximated all these phase velocities with errors lowan0.05mnus~!. Similarly as
in the case of the martensite of the Cu-Al-Ni, the estimafesxperimental errors were
recalculated from the known linear relations betwégrandc;;

Let us now try to identify the class and orientation of thesatriopy to lower the number
of independent coefficients to the essential minimum. Astlagerial is nearly isotropic,
the surfaces of the phase velocity (gL, g HT?) are close to spheres. On contrary, the
difference between the quasishear velocity surfacés-qT? (which is identically equal to
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Figure 6: Surfaces of difference between qT velocitiesfHy triclinic anisotropy deter-
mined by RUS method in combination with pulse-echo measentsrof gL phase veloci-
ties; (b) orthorhombic approximation of the material.

zero in the isotropic material) copies sensitively the syatignof the material, and can be,
thus, used for its identification.
In Fig.6(a), the surface of the difference

Av(n) = i (n) — paT? (n) (70)

is plotted in the axes given by the edges of the specimen. dDblj, this surface has
higher class of symmetry than fully triclinic. Three mutyadrthogonal axes can be easily
identified, having a general orientation to the edges of gexisnen. After rotating the

matrix (69) onto these orthogonal axes and setting the caeits

Cl4 = C15 = C1p = C24 = Cg5 = C26 = C34 = C35 = C36 = C45 = C46 = C56 = 0,  (71)

we obtain an orthorhombic system with the elastic coeffisi€im the rotated axes)

cij =

203.74+£1.64 106.23 £0.67 116.79 +1.63 0 0 0

106.23 18297 £1.35 105.64 £0.90 0 0 0
_ 116.79 105.64 199.82 £0.29 0 0 0 GPa
41.26 £0.40 0 0 ’

Symin. 42.31 £0.26 0

49.42 £ 0.17
(72)

where the experimental errors were determined by simphtiray the matrix of accura-
cies from (69) into the coordinates of the orthorhombic sytrgn TheAw(n) surface for
this system is plotted in Fig.6(b). Fig.7 shows how accuyatas orthorhombic system
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Figure 7: Principal cuts (by;x2 andz;z3 planes) of slowness surfaces for the examined
material. The circles correspond to fully triclinic anismiy determined by RUS method
in combination with pulse-echo measurements of gL phaseitis, the solid lines to the
orthorhombic approximation of the material.

approximates the properties of the original triclinic gst The compared quantities here
are theslowness vector componenit®. the reciprocals of the phase velocities. Similarly
good agreement can be seen between the resonant spectna ahdpes of the correspond-
ing eigenmodes for the originally considered full trictranisotropy and the identified or-
thorhombic system. In Fig.8, such comparison is shown. @rlyew modes (e.g. mode
No0.30 in Fig.8) some difference between the shapes of maddisated for the triclinic and
the orthorhombic symmetry can be seen. The values of resesate, however, matched
with an excellent agreement.

We can conclude that the RUS method (in combination withgzelsho measurements)
is able to identify the class and orientation of anisotrapyveakly anisotropic materials.
However, the above outlined procedure can be applied onlgdarly isotropic materials,
where the isotropy can be used as the initial guess for tlesewvalgorithm, which enables
the mode association.

There is one more remark to be done here concerning the RlgStigation of weak
averaged anisotropies, i.e. anisotropies induced not éycitystal lattice but by an ori-
ented microstructure. In the above investigated case gtpgaitalline copper processed by
ECAP, the texture is nanoscopic, which means that all itsacheristic dimensions can be
considered as incomparably smaller than the dimensioteadecimen as well as than the
wavelengths of the all modes involved in the inverse prooedtiowever, it is important
to understand what the expressiocomparably smalleexactly means, i.e. how coarse
microstructuring will not limit the applicability of RUS.

For simplicity, let us return to our well-tried example of B $pecimen. The follow-
ing numerical example gives an illustration of how the ceamsg of the microstructure
can significantly affect the measurements: A one-dimemgistiing of 7.2mm in length
was considered, consisting of 48, 24, and 12 elements ofnass density and alternating
bending wave veIocities;‘ = 1mmius andvf = 3mm/us. The volume fraction of the
componentB was chosen ag = 2/3. The eigenfrequencies of bending modes of such
spring were determined using the COMSOL Multiphy3$i¢seigenvalue solver with the
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Mode Experimental Evaluated for Evaluated for
information pattern triclinic orthorhombic
mode No.69

foo= 671.2kHz

fu.= 670.9kHz

tric

f,.= 669.0kHz

mode No.77
fop= 708.4kHz
f..= 709.6kHz

f .= 708.6kHz

mode No.30

foo= 495.3kHz
f..= 496.6kHz
f,.= 496.7kHz

Figure 8: Examples of comparison between measured andaggdldisplacement patterns
for particular eigenmodesf.,,, denotes the experimentally determined eigenfrequency,
firic the corresponding frequency evaluated for the full triclimatrix (69), f..+ for the
orthorhombic approximation (72).

spring meshed by 1152 Lagrangian-quadratic finite elemdrts stability of the solution
was checked by decreasing the FEM mesh density down to 2&8este on the string.
The results are shown in Fig.9. For a homogeneous springgpdetrum should linearly

48 elements 24 elements 12 elements
40 40 40
interf interference
interference i
30 30 region 30 regions —
N N N
<20 Z 20 < 20
10 10 10
NANNNNNENRNEN NN p i il] (.
0 0 0
5 10 15 20 5 10 15 20 5 10 15 20
Frequency No. Frequency No. Frequency No.

Figure 9: Effect of texture coarsening on eigenfrequenfoes 1D string composed of
decreasing number of elements.

increase, as the equation of the steady waves (11) herermas fo
d*u
dx?

whereS 4 g is a bending stiffness obtained by homogenization of theliognproperties

pw?u+ Sarp——s =0, (73)
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of elements of material and B. However, the results of the numeric simulation show
something quite different. Even for the spring consistifgl® elements, the evaluated
spectrum deviates from a linear trend (but remains, for thglayed first 20 eigenfrequen-
cies, increasing smoothly). For 24 elements, a signifiaamipj in a spectrum appears at
about 15kHz. Further coarsening (to 12 elements) reveatsstith jumps form a periodic
serration on the increase of the spectrum, appearing inetfiens where the eigenmodes
and the structure interfere. We can conclude that even érdtio between the dimension
of the specimen and the characteristic length of the miarostre being equal to 50, the
application of RUS for the determination of homogenizedeaged) elastic coefficients
may be questionable.

In the more general 3D case, where the eigenmodes, everyihthe eigenfrequen-
cies close to each other, may geometrically differ in suck W@t one of them strongly
interferes with the microstructure and the second in naténfted at all, the effect of coars-
ening on the resultant frequency spectrum becomes morelerntp [49], the effect of the
interference between the eigenmodes of vibrations and ibstructure is illustrated for
martensitic microstructures of Cu-Al-Ni, i.e. for geomeaily ordered mixtures of vari-
ously oriented single variants of martensite analyzedemiievious section. For evaluation
of the homogenized elastic coefficients of such orderedurest an energetic algorithm
described in [48] is used. The conclusion in [49] is that a®s#s the thicknesses of partic-
ular laminas in the microstructure start to be higher thabut® the resonant spectra of a
parallelepiped having few millimeters in each dimensiohikit similar interference effects
as the above discussed 1D spring.

3.3 Thermal dependencies of elastic coefficients in media ti strong
magneto-acoustic attenuation: Single crystal of Ni-Mn-Ga

Whereas the above two discussed applications of RUS wdrerrglustrative (chosen to
have extremely strong or extremely weak anisotropy), wieicabled their findings to be
formulated in clear conclusions, the last case describédirwthis section will concern
an application of this method to an extremely complex makecoupling more physical
phenomena together. The main aim here will be to show how the &pplicability can be
limited by ultrasound attenuation in the material. Howetee findings from the first two
subsections will be also utilized.

The internal friction in materials and resulting ultrasduattenuation belong among
the most natural limiting factors for RUS measurementshéugh the theoretical works
dedicated to how the effect of attenuation can be avoide®](48d the list of references
therein) or even exploited for determination of dampingapagters [26] are numerous,
the essential question is always the same: How to identéyirttividual resonance peaks
within the attenuated spectrum?

Consider now a part of a spectrum containisigesonant frequencies. F¢ being the
resonant frequency of the—th mode ¢ betweenl and V) with amplitudeA,, and phase
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on, the amplitude of a spectrum can be approximated by function
Nooog FWI;MH cibn

F(fn; Ay, ¢mFWHMn) nz:l l(f - fn) + FWI;IMn )
whereFWHM,, meandull width at half maximunof the n—th mode, which is one of the
possible parameters to measure the attenuation. In Fignd@yays how the spectrum can
be biased by an increase of FWHM parameters are shown otraliive synthetic spectra
(FWHM here is considered as the same for all plotted peakisg I&ft—hand—side of the
figure shows how a peak of lower amplitude can get completedylapped by a near peak
of higher amplitude. On the right, a junction of two peaksaliec! close to each other is
shown, providing that the amplitudes of the peaks are coafyber Obviously, it is nearly
impossible to decompose the attenuated spectrum intoiéhudilypeaks without at least an
approximative knowledge about the number and the locatibtise resonant frequencies
contained in it.

(74)
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FWHM=0.1
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Figure 10: The effect of increasing attenuation on the spattDisappearance of smaller
peaks (on the left) and junction of neighboring peaks witmparable amplitudes (on the
right).

In the following example, the attenuation combines with atresmely strong cubic
anisotropy (comparable to that investigated in sectiol 8vfiich makes the application of
RUS even more complicated. On the other hand, the findings fr@ section 3.1 will be
shown as very helpful in this case, and will enable us to dater quite accurately thé co-
efficient, although only few peaks from the spectrum will teritified. The examined spec-
imen is a 7.%5.6x4.4mm rectangular parallelepiped (cut approximately glinve princi-
pal {100} planes) of a near stoichiometric Ni-Mn-Ga alloy, which éits extremely strong
magneto-elastic attenuation in the temperature intergliben the premartensitic transi-
tion temperatured(,\ ~ 257K) and the Curie point{c ~ 385K). In [S0], this attenuation
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has been investigated by combination of ultrasonic metljodse—echo measurements of
longitudinal waves in [100] and [110] directions and the RUhe results have shown that
this attenuation is strongly anisotropic (see Fig.11 fooattine):

e The attenuation of longitudinal waves in the [100] direnti® completely unaffected
by theT,n temperature. It increases towards some maximal attemyatnal then it
falls down till the Curie point is reached, where it changgsificantly its slope.

e The attenuation of longitudinal waves in the [110] direatjamps discontinuously
at theT},\; temperature and increases steeply to the maximum (whichsisgatly
higher temperature than for the [100] direction). With fetincrease of the temper-
ature, the attenuation slowly decreases, but seems to lgauhdffected by thel-
temperature.

e The attenuation of the first mode detected within the spettibtained by RUS mea-
surements exhibits a significant change of the slofe-and steeply increases with
further decrease of the temperature. However, at about280K, further measure-
ments (in the fully non-contact regime) were disabled byewaapor condensation
at the faces of the specimen.

Longitudinal waves Longitudinal waves First peak
in [100] direction (c,,) in [110] direction (c,) of the RUS spectrum (c')

Attenuation coefficient
Attenuation coefficient
FWHM over frequency

~

TpM TC TpM 7-C TpM TC

water vapor condensation

Figure 11: Anisotropic character of the attenuation in tidM-Ga single crystal; sketched
after the results of [50].

Here, we will focus on the RUS measurements only. The efféuthvthe magneto-
elastic attenuation has on the spectrum is illustrated bylBj where the spectra in fre-
guency band 50-170kHz are plotted for three different teatpees: Above the Curie point
(i.e. at 389K), the spectrum has a good quality and all therrast frequencies can be re-
liably determined. Below the Curie point (353K), the quabf the spectrum significantly
decreases. Individual peaks start overlapping and mergimg effect is even more evident
at 317K, where the spectrum is such strongly attenuatedtbadentification of individual
resonances with acceptable accuracy is close to imposdmether effect illustrated by
Fig.12 is the drift of the whole spectrum with the temperatiwpon cooling, the first reso-
nant frequency moves from 76.1kHz above the Curie point dowdD.1kHz at 317K. The
rest of the spectrum (or at least the part of the spectrummsihiowig.12) drifts in a similar
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way. Such dramatic changes of the resonances with the tatapeicannot be ascribed to
the thermal expansion of the specimen, which is about I8! [51] (which means
that the shifts in the resonances should be also at aboutl&0el). The resonant spectra

T =389K

i
I T

T=317K

Response (FFT Amplitude)

M

1 T 1 I 1 1

60 80 100 120 140 160
Frequency [kHz]

Figure 12: lllustration of the attenuation increase belogv€urie point (outputs of the RUS
measurements at different temperatures).

of the specimen were recorded during cooling from above tiée@oint down to thd
temperature. The strategy was following:

e At 393K (i.e. safely above the Curie point), the specimen s@enned in the full
20x 20 grid to identify accurately the resonant frequencies el$ &s the shapes of
37 vibrational modes. Such information was sufficient fdedaination of the’ and
c44 coefficients.

e Then, the specimen was heated up to 398K, from where the tatope was de-
creased in successive steps of approximateBK till a 280K temperature was
reached, where further measurements were disabled by wegber condensation
at the faces of the specimen. At each temperature, the suwfabe specimen was
scanned by a sparsex3 grid, which was not sufficient for the identification of the
shapes of the vibrational modes, but enabled reliable m@tation of the spectra.
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At 393K, the full scan data were used for determination ofdlastic coefficients by the
same inverse procedure as applied in section 3.1 to awst@@u-Al-Ni, so the results
were, again, obtained in a form of linear combinations obttacoefficients sorted by
accuracy. These are listed in Tab.5. Similarly to the cagewAl-Ni (see Tab.1 for com-
parison), the first combination has nearly exactly the mmegof ¢/, the second of,4 and
the third ofcqq + c1o.

After transforming back from these linear combinationg thliable results are =
(6.9 £ 0.1)GPa and:y4 = (97.7 + 4.7)GPa, individual values af;1, c12 or ¢1, cannot be,
naturally, determined. Our aim, however, was the deteriginaf the elastic coefficients

below the Curie point, namely in the vicinity of the premastiic transitions. As the spectra
there were extremely attenuated, only the first few peakg wWeterminable by fitting the
chosen interval of the spectrum by function of form (74), vehthe parameterd,,, ¢,

frn andFWHM,, were determined by numeric optimization (simplex searcthoed. The
analysis was performed in successive steps, starting dighest temperature (above the
Cure point), and then fitting the spectra at lower and lowepieratures. As initial guesses
for the search at each temperature, the values obtaineciprévious step (i.e. at the
previous, higher temperature) were used. This enabledr8id\iio peaks in the spectrum
to be accurately traced down through the whole temperatigeval (down tal’ = 280K),
and four more peaks to be traced dowte= 353K (below this temperature, the algorithm
was able to localize the peaks and fit the amplitude of thetepacbut the evaluated phases
¢n Were not agreeing sufficiently with the experimental resafid the FWHMs were not
obtainable with sufficient accuracy).

In comparison to the number of resonant frequencies indalvéhe inverse procedure
in the previous cases (up to 100 peaks), such data (two oesixs) seem to be completely
insufficient for the determination of any of the elastic dwé&fnts. However, we can remind
us our previous findings about the sensitivity of individaklstic coefficients to individual
modes of vibrations for extremely strong cubic anisotrgggording which should the first
peaks in the spectrum be nearly explicitly dependent on’tbeefficient only. But how can
be such assumption utilized in this case?

If we assume that the shapes of the first few eigenmodes ddange with the temper-
ature ¢; # «;(7)), we can express the thermal dependencies of corresporesngant

| k| Combination | C; [GPa] | ki [GPa] |
0.71c1; — 0.71c12 4+ 0.02¢44 12.35 0.01
—0.01c11 + 0.02¢12 4 0.99¢44 98.104 4.72

0.71ci1 +0.71ei2 232.32 193.32

W N | =

Table 5: Combinations of elastic coefficients for the sirgylestal of austenitic Ni-Mn-Ga
above the Curie point.
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frequencies as

or
af; _ JTg;O‘J _ O‘gTac a; 9C}, (75)
or — 8rif; 8r2f; 0T’

where the effect of the thermal expansivity is fully negéettAs we have already discussed,
the partial derivative®I'/0C); are independent oft}.. For this reason, we can understand
(75) as a linear relation betweg’n (no Einstein’s summation law applied) and the ther-
mal derivatives of elastic coeff|C|ents. Looking back in Ealwe can indubitably assume
that the dominant dependence isdwonly* and write

af 36’

f] j = ] 8T (76)
whereK; are constants. Then, with the exact knowledge’ @it someT, (the full scan at
the temperature above the Curie point) and with thermal nidgecies off; approximated
by differences

afj s f ( z+1) f]( ) (77)
or T=T; Tz-&-l Tz
we can get an estimate of the change’ofith decreasing temperature
L H—l) f]( )
Z Pt e (78)

for every mode (i.e. for every). In Fig.13, the thermal dependenciesfgfand the cor-
responding values of\¢’ are plotted. Near the Curie point, thkc’s evaluated for all
modes are in an excellent agreement, small divergence &ppeaveenA¢’ determined
from mode No.1 and mode No.2 at lower temperatures, whichbeaascribed to slight
changes of the shapes od the first two modes (i.e. of veafoasdas) with the decreasing
temperature. However, the difference is still incomparahaller than the theoretically
estimated experimental error of this coefficient (59) far pulse-echo measurements, so
we can suppose that the RUS method here is still more suitablietermination of this
coefficient than the pulse-echo methods are.

It is rather complicated to summarize the findings of thisssalion into any general
conclusion. There is still a lot to be improved within the Reigalysis of Ni-Mn-Ga (or
similar) single crystals. Especially the better knowled§ére micromagnetic mechanism
of the attenuation is lacking, which might enable us to z#ilihe RUS results for deeper
analysis of this magneto-elastic phenomenon. From the pbiiew of applicability lim-
its of RUS, we have shown the way how the magneto-elastiowtéeon complicates the

4Indeed, when expressed numerically, the ratios are

o+ O
a] aC*

or T O
a]~50aj 80*% ~ 5.10% ] 80*
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Figure 13: Thermal dependencies of locations of the firspsaks in the spectrum (on the
left) and the changes af evaluated from them.

determination of elastic coefficients by RUS measuremantbe sense that only first few
peaks can be identified far below the Curie point, which prées$ reliable determination
of all elastic coefficients, especially if the material issaiongly anisotropic as Ni-Mn-Ga.

Hereto, it is necessary to point out that no enormous effad made to analyze thoroughly
the spectra (maybe more peaks and their thermal dependermitl have been identified
throughout the spectrum) — the aim was to show that the krimelef the theoretical back-

ground of RUS enables us to obtain at least some informatiothe elastic coefficients,

even though the input information is minimal. We have, tleimwn that the knowledge of
thermal dependencies of first few resonant frequencies eauftficient for determination

of the one elastic coefficient which is closely related todbeesponding modes.

The RUS analysis of Ni-Mn-Ga single crystals represents tier case when the the ap-
plicability of this method is complicated by combinationrofiny different factors (strong
anisotropy, significant thermal dependencies of elas&ffioients, temperature-dependent
attenuation). Such case illustrates at the same time the desmerit and the strength of
the RUS method: Although the nature of the method itself iregsophisticated postpro-
cessing of the experimental data (which must be, moreovedifiad for each particular
material, etc.), the sought elastic coefficients can beddavith high accuracy, providing
that the resonant spectra contain sufficient informaticouaithem.

4 Conclusion

This chapter brings a survey through main ideas of the RUSaodetor determination
of elastic coefficients of anisotropic solids, with a focurstbe limitations of this method
given by the properties of the examined materials. Througtie text, at least five essential
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guestions were open, regarding the applicability a rdliguif this method. By formulating
these questions explicitly and answering them based onrttimfjs outlined in the chapter,
we can summarize the whole content of the text as follows:

Q1. Does the resonant spectrum of free elastic vibrations o small specimen of
known geometry always contain sufficient information on theelasticity of the
material? The answer is, surprisingly, not. Some additional infoliorais always re-
guired to associate the values of resonant frequencieditddnal vibrational modes
(see Fig.3 and the discussion around there). This infoonatiay have a form of the
shapes of the eigenmodes determined by a scanning laséeiateeter, or it may by
simply brought by very accurate initial guesses of the lastefficients, for which
the shapes are very similar to the real ones.

Q2. Is there any well-founded way how to estimate the accurgcof the results of
RUS? If yes, can this accuracy be improved by increasing theumber of fre-
qguencies involved in the inverse procedure¥es, the accuracy can be estimated by
formulas like (44), which are following fully from the natiof the method. On the
other hand, the increase of the accuracy by involving modemaore frequencies in
the inverse procedure is not axiomatic. In the example oibeden rod (see the be-
ginning of subsection 2.3), the ratio between number ofdeegies in the spectrum
corresponding to the longitudinal and to the torsional nsatver exceeds the value
/G /FE as the all the higher modes are given only by multiplicatsee(Fig.2 and
the discussion above it) of the lower ones.

Q3. Is the applicability of RUS anyhow limited by the strengh of the anisotropy of
the examined material? Yes, in some sense. As we have seen both for the sin-
gle crystals of Cu-Al-Ni (subsection 3.1) and for Ni-Mn-Gsubsection 3.3), the
RUS method is not able to determine accurately the coefficieorresponding to
the hardest vibrational modes, if the anisotropy is suffityestrong. However, as
it was shown for both the austenitic phase and the marterssitgle variant of Cu-
Al-Ni, the RUS measurement can be properly complementeld putse-echo mea-
surements, which are most suitable for determination ohttrdest modes related to
the quasi-longitudinal velocities. For extremely weaksalriopy (subsection 3.2), no
limitations were found, especially after the RUS measurgewere, again, comple-
mented by pulse-echo measurements.

Q4. Is the applicability of RUS anyhow limited by the number d soughtindependent
elastic coefficients™Here, the answer is definitely not (providing that reasomait
tial guesses are available). The example of the nanoclipstabpper manufactured
by the ECAP method (subsection 3.2) showed that the RUS miethio be reliably
applied for determination of all 21 elastic coefficientsewen for the detection of the
symmetry class of the material. The only problems can belerteced when the ma-
terial is periodically microstructured (Fig.9), where th&rostructure can, at certain
frequencies, interfere with the vibrational modes.
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Q5. Can the RUS method be easily modified for particular mateials with special,
more complex properties?Although this question is quite general, we can say that
the answer might be yes. The adaptability of RUS was illtstiéin subsection 3.2
for the magneto-elastically attenuated single crystahefi-Mn-Ga alloy. The pos-
itive answer can be also supported by many of the refereinstes lbelow. On the
other hand, there are many challenging issues for the RUBaueatot solved yet.
Continuously graded material, metallic foams, metamal®ior nanoscale objects
are few topic of those to which the RUS community turns nowwhith will check
the real adaptability of this method. The limitations whighl be found for such
highly advanced applications of RUS cannot be foretold yet.
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