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Abstract

The elastic coefficients of anisotropic solids are often evaluated from measurements of phase or group velocities of ultrasonic

bulk waves by the usage of inverse optimizing procedures. This paper discusses the effects of various factors on such procedures

results for transversely isotropic solids with considerably strong anisotropy. First, the inverse determination of all elastic coefficients

of unidirectional CFRP composite is briefly outlined. Then the results of the optimization are treated as exact values and the sen-

sitivity of the optimizing process versus main considered sources of inaccuracies is analyzed. Results of extensive simulations are

presented to illustrate the effect of input data distortion, input data incompleteness, and geometrical conversion from experimentally

obtained group velocities into corresponding phase velocities used as input data for the optimizing procedure. The paper takes note

of how information about the elastic coefficients can be extracted from the different segments of the phase velocity surface. The sta-

bility versus input data distortion for inversion from group velocities and phase velocities is compared and the importance of reliable

geometrical converting from group into phase velocities is illustrated. An novel method for geometrical conversion of distorted

group velocity data into corresponding phase velocities based on affine combinations of low-order polynomials is presented and

compared with piecewise or high-order polynomial fitting.

� 2004 Elsevier B.V. All rights reserved.

PACS: 43.35; 62.65
Keywords: Elastic anisotropy; Group velocity; Non-destructive evaluation; Inverse problem; Sensitivity analysis
1. Introduction

Measurement of ultrasonic phase or group velocities

in various directions is one of the most common meth-

ods for examination of material anisotropic properties

[1]. The experiment can be set up variously. Usually

either the velocities of planar waves travelling through
specimen immersed in water or oil are measured [2–6],

or the point-source/point-receiver techniques are applied
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[7–13], where the wave arrivals from a point source are

in situ detected by miniature piezoelectric transducers

or laser interferometry and group velocities in various

direction are thus obtained.

As it results from the completely described theory of

bulk wave propagation [14–17], the phase velocities vu

are related to the elastic coefficients cijkl nonlinearly
via the determinant of the Christoffel equation

Xðx; kÞ ¼ detðnjcijklnl � dikqv2uÞ; ð1Þ

where q is the mass density, k = k Æn is the wave vector

and x the angular frequency of the considered planar

harmonic wave. However, the energy carried by the
wave travels through the anisotropic sample with the

group velocity, which, in general, differs from the phase
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velocity in both the magnitude and the direction and its

relation with the elastic coefficients is even more com-

plex. Although the explicit dependence of the group

velocity vector on the direction n normal to the phase

fronts can be derived in some particular cases

[8,15,18], evaluation of the group velocity magnitude
for given direction is usually more difficult.

Corresponding group and phase velocities of each

mode are geometrically related by polar reciprocity be-

tween the ray surface (plot of group velocity magnitude

versus its direction) and the slowness surface (plot of

reciprocal phase velocity 1/vu versus normal to phase

fronts n), which results in equation

n � vG
vu

¼ 1: ð2Þ

Via this equation, the group velocities can often be con-

verted into corresponding phase velocities (e.g. [8]), and

both the measurements of phase and group velocities
thus lead to similar inverse optimizing problem. The

sought elastic coefficients are to be found by minimiza-

tion of the sum

Q ¼
XN
n¼1

ðvuðcij; nnÞ � vexu ðnnÞÞ
2 ! min

cij
; ð3Þ

where the superscript �ex� denotes the experimentally ob-

tained value. Because each evaluation of such sum con-
sists of an eigenvalue problem solution, the simplex

method seems to be the most suitable optimizing tech-

nique for this problem since this method requires a min-

imum number of sum evaluations [19]. As usual for

similar inverse problems, the numerical procedure

should always tend to converge to some values. The

sum Q, treated as a function of sought elastic coefficients

cij for a given set of experimental velocities vexu , may con-
tain various local minima differing from the correct opti-

mum values. The correctness of numerically obtained

elastic coefficients is most widely controlled by visual

agreement between input experimental data and normal

surfaces (plot of phase velocity magnitude versus n)

evaluated for optimized coefficients. As will be illus-

trated later, such agreement may not guarantee the cor-

rectness of optimized values, especially when the input
data insufficiently cover the corresponding normal

surface.

In this paper, the stability and accuracy of such sim-

plex optimizing algorithm is demonstrated for trans-

versely isotropic materials. Among the materials with

this type of symmetry is belong the unidirectional fibre-

ous composite materials, many biological materials such

as bones [20] and some single crystals, e.g. zinc. Such
materials exhibit rotational invariance in all mechanical

properties about one symmetry axis, usually denoted x3.

Anisotropic elastic behavior of transversely isotropic

media is characterized by five independent elastic

coefficients
c ¼

c11 c12 c13 0 0 0

c12 c11 c13 0 0 0

c13 c13 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c11�c12
2

0
BBBBBBBB@

1
CCCCCCCCA
:

The plane normal to the x3 axis is the isotropic sym-

metry plane x1x2. All directions including the same
angle with the plane x1x2 are thus equivalent, and each

set of such crystallographically equivalent directions can

be represented only by one angle––the angle # contained

with the principal isotropic plane x1x2. The symmetry

axis x3 corresponds, thus, to # = 90� and each direction

in principal plane x1x2 to # = 0�. To distinguish the

group velocity directions, the angle of similar meaning

as # but belonging to group velocities will be denoted
n instead of #. The angles # and n of corresponding

phase and group velocities coincide in the principal iso-

tropic plane and in the rotational axis x3.

Ultrasonic waves in transversely isotropic media can

generally propagate in three modes. The mode with

polarization vector closest to the direction of propaga-

tion is called quasi-longitudinal and will be denoted by

qL. The slower modes are the quasi-transverse mode
(qT) with polarization vector lying in the same symme-

try plane as of the qL mode and the pure-transverse

mode with polarization vector normal to the direction

of propagation, which will be denoted by PT.

The transversal isotropy enables velocity measure-

ments in all directions to be treated as located in one

plane containing the symmetry axis. The five-dimen-

sional optimization problem (3) for such materials can
be recast as

Q ¼
XN
n¼1

ðvuðcij; #nÞ � #ex
u ð#nÞÞ2 ! min

cij
; ð4Þ

where the indexes ij are taken from the set ij 2 {11,12,

13,33,44}.

Let us now describe such optimizing process for a

unidirectional CFRP composite. First, the elastic coeffi-

cients will be determined from group velocities obtained

by point-source/point-receiver technique. Then, the re-

sults will be thoroughly discussed in order to estimate
the reliability of optimized results. As it follows from

findings of Every and Sachse [21] or Chu and Rokhlin

[22], the procedure�s sensitivity to various constants is

significantly dependent not only on accuracy and com-

pleteness of the input data but also on class and propor-

tion of considered material�s anisotropy. In addition,

this paper statistically analyzes, how are the results

influenced by a geometrical conversion of group veloci-
ties into corresponding phase velocities, which is one of

the most important passages of the whole inverse

process.



Fig. 1. Experimental setup for measurement of group velocities in

thick CFRP composite plate.
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2. Determination of elastic coefficients of unidirectional

CFRP composite

The elastic coefficients used for further simulations

were obtained on a plate-shaped specimen (120

mm · 120 mm · 7.514 mm) made of unidirectional
CFRP 1 composite with mass density q = 1.514 gcm�3.

The fiber direction has been considered to be parallel

to the specimens surfaces.

The experimental apparatus (for more details, see

[12,13]) consisted of two miniature piezoelectric trans-

ducers fixed on opposite sides of the specimen and of

one moving point-like source, implemented by impacts

of focused laser beam, as outlined in Fig. 1.
Due to transversal isotropy, the waves propagating

from the source to both transducers can be treated as

lying in one symmetry plane containing the rotational

axis. For the source moving on the circle with radius

r = 20 mm equidistantly by an angular step 1�, 91 vari-

ous waveforms were obtained on each of transducers

in each quadrant of such principal plane.

On the same specimen, the pulse-echo measurements
in direction normal to the fibers were performed, which

resulted in getting of accurate values of velocities of all

three modes. From these velocities, the coefficients c11,

c12 and c44 can be conveniently evaluated, using the well

known explicit formulae [9]. The knowledge of these

coefficients enables the dimension of the solved optimiz-

ing problem (4) to be reduced from five to two,

(e.g. [23]). The coefficients c13 and c33 remained to be
determined by solving a two-dimensional optimizing

problem

Q ¼
XN
n¼1

ðvuðcij; #nÞ � #ex
u ð#nÞÞ2 ! min

c13;c33
: ð5Þ

Because of the complicated shape of the signals meas-

ured on the transducers, which hindered the identifica-

tion of wave arrivals corresponding to particular
modes, except the fastest qL-mode, the following succes-

sive procedure was employed:

1. From the first wave arrival on the detectors, the

velocities of the fastest (qL) mode were obtained.

2. The obtained group velocities were geometrically

converted into phase velocities.

3. The obtained qL phase velocities were used as an
input for the two-dimensional optimizing procedure.

This issue consisting in optimal determination of elas-

tic coefficients form the quasi-longitudinal phase

velocities was exhaustively analyzed by Every and
1 Unidirectional Carbon Fiber Reinforced Composite, prepreg

Fibredux S913C-HTA-(12k)-5-40%, produced by La-Composite Letov

ATG, 56 layers.
Sachse in [21] for weak anisotropy (jcAB � c0ABj 6
ec011 for all A,B 2 {1, . . . , 6}, where e 	 1 is a small

positive number and c0AB a matrix of isotropic elastic

coefficients) employing the perturbation method.

For such materials, the phase velocities of qL waves

can be approximately evaluated as [8]

vqLu ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc11n4

1 þ c33n4
3 þ 2ðc13 þ 2c44Þn2

1n
2
3Þ=q

q
ð6Þ

and these velocities are, thus, obviously dependent on

c11, c33 and c13 + 2c44. So for c11 taken as known from

the pulse-echo measurements in direction x1, the min-

imum (4) should be sought with respect to c33 and

c13 + 2c44. One of the necessary conditions for weak

anisotropy is that c11 � c22 � c33, which obviously

not valid for CFRP composite materials. However,

some sensitivity of qL velocities to the combination
c13 + 2c44 remains even for moderate anisotropy (sin-

gle crystal of zinc, c11 � 2.5c33, [21]) and for strong

anisotropy (graphite/epoxy composite, c33 � 9.5c11,

[22]). The sensitivity of qL velocities to individual coef-

ficient c13 is amplified by increasing anisotropy, [7,22],

so for the strong anisotropy, the coefficient c13 can be

determined individually, especially when c44 is known

(graphite/epoxy composite, c33 � 9.1c11, [23]). For
such materials, the evaluation of c13 by subtracting

the known value of c44 (measured by a pulse-echo

method in direction x1) from the optimal value of com-

bination c13 + 2c44 is significantly less accurate than

the two dimensional optimization with respect to c13
and c33.

4. The ray surface of the qT-mode was constructed for

the coefficients cij evaluated from the qL mode, and
then the arrivals of the qT-mode were determined in

some regions as the wave arrivals closest to this ray

surface.

5. The obtained regions of qT-mode were geometrically

converted into corresponding phase velocities used as

the input for a new optimizing procedure, together

with the previously used qL-velocities. This optimiz-

ing procedure was four-dimensional (ij were taken
from the set {11,13,33,44}) in order to compare the

results from the direct pulse-echo method with those

obtained by the point-source/point-receiver tech-

nique. This approach revealed a small deviation of

the material properties from the rotational invariance

about the fiber direction (in fact, the examined unidi-

rectional composite seems to be insignificantly

orthotropic).



Fig. 2. Agreement between experimentally obtained group velocities (denoted by crosses) and ray surfaces evaluated for resultant elastic coefficients

(solid lines) of the qL and qT modes.

256 H. Seiner, M. Landa / Ultrasonics 43 (2005) 253–263
The resultant elastic coefficients for considered trans-

versal isotropy were evaluated by averaging those ob-

tained from pulse echo measurements in direction

normal to the specimen and those corresponding to

propagation in the plane of the specimen obtained by

inverse procedure from the point-source/point-receiver
measurements, which resulted in c11 = 14.4 GPa, c12 =

7.8 GPa, c13 = 6.7 GPa, c33 = 119.5 GPa, c11 = 5.3

GPa [12,13]. The agreement between experimental

input group velocity data and group velocity curves

evaluated for the above listed coefficients is shown in

Fig. 2.
Figure 3:
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Fig. 3. Chosen contour plots of sought five-dimensional minimum of functio

equidistantly all modes.
3. Numerical analysis of the optimizing process

For following analysis, the above determined elastic

coefficients will be treated as exact values ðcexactij Þ. The

stability of the whole optimizing process will be exam-

ined with respect to various possible sources of

inaccuracies.

The sought minimum of the five-dimensional func-

tion (4) may be of various shapes, depending on
how strongly the input set of velocities determines

the particular elastic coefficient, as it is obvious in

Fig. 3.
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n Qu, as it is defined by 10 exact values of vu for each mode, covering
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To discuss the correctness of the optimizing proce-

dure, appropriate measures for agreement must be de-

fined between exact elastic coefficients ðcexactij Þ and

elastic coefficients ðcoutputij Þ obtained as an output of some

inverse algorithm. For the results of a single optimizing

process (4) or (5), the measure

dcij ¼def : coutputij � cexactij


 ���� .
cexactij

��� ð7Þ

will be used. Within the sensitivity analyses, the inverse

algorithms are applied several times on e.g. vari-

ously distorted experimental data and sets of output

elastic coefficients ðcoutputij Þ1;...;n are obtained. Then

the result should be treated statistically, represented

by the differences between the mean and resultant

values

dij ¼
�cij � cexactij

cexactij
; where �cij ¼

1

n

Xn
k¼1

ðcoutputij ÞðkÞ ð8Þ

and by the relative standard deviations SDij/cij, where

SDij ¼
1

n� 1

Xn
k¼1

ðcðkÞij � �cijÞ2
 !1=2

: ð9Þ

Let us now discuss the influence of input data distortion,

input data incompleteness and group velocity conver-

sion on results of the optimizing process.
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Fig. 4. Minimal (r = 1% of vu) and significant (r = 3% of vu) distorti
4. Input data distortion

As it is natural to any experimental data, the input

velocities may be accidentally distorted about correct

values. Such distortion will probably result in some loss

of accuracy of an optimizing process [4,22,24]. To ana-
lyze, whether the input data distortion may significantly

influence the optimization results, extensive simulations

were performed.

The experimental data were expected to be normally

distributed about correct values. For various data dis-

tortion ranging from distortion rate r = 1% of vu (min-

imum distortion) to r = 3% of vu (quite significant

distortion, see Fig. 4), sets of distorted velocities were
generated and those sets were then used as input data

for optimization procedure (4). The optimization was re-

peated 30 times (n = 30 in Eqs. (8) and (9)). The input

data for each repetition consisted of 10 values of each

mode, covering the normal surfaces equidistantly by

10� step. It may serve as a basis for another more

exhaustive statistical analysis whether the output values

cij are normally distributed or have at least symmetrical
distribution about correct values, but they will be trea-

ted so anyway. The relative standard deviations of out-

put values are listed in Table 1.

Comparing the columns of this table, we can con-

clude that whereas the diagonal coefficients c11, c33,

and c44 are of deviations comparable with input data
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on of input velocities. Solid lines denote exact normal surfaces.



Table 1

Dependence of relative standard deviations of output elastic coeffi-

cients on input data distortion

Distortion

(%)

SD11/c11
(%)

SD12/c12
(%)

SD13/c13
(%)

SD33/c33
(%)

SD44/c44
(%)

1 1.29 2.88 10.61 0.90 0.75

2 2.40 4.84 27.14 1.89 1.75

3 3.84 7.35 31.01 2.78 2.49

Table 2

Effect of mode omittance on output values of elastic coefficients

Mode omitted dc11 (%) dc12 (%) dc13 (%) dc33 (%) dc44 (%)

PT 0.02 51.71 0.14 0.01 0.00

qT 0.02 0.01 0.08 0.01 0.03

qL 8.06 14.70 >100 26.49 0.68

Table 3
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distortions, the remaining coefficients c12 and c13, espe-

cially the second one, are much more sensitive to input

data distortion. This effect can be explained by starting

the simulation for accurate input data once again with

omitting one of the propagation modes, see Table 2.

This table implies that the coefficient c13 is signifi-

cantly related to velocities of the quasi-longitudinal

mode. Its value is thus optimized to fit preferentially
one third of all input data, which multiplies the effect

of data distortion. Such conclusion cannot be estimated

from explicit formulae for phase velocities in trans-

versely isotropic solids as derived e.g. in [1], from which

the qT and qL modes seem to be equivalent to each

other. However, only the values of the qL mode are

insufficient for stable determination of coefficient c13 as

well, as will be illustrated in next section.
As far as the coefficient c12 is concerned, it has been

taken into account that both the qL and qT velocities

are independent on this coefficient [1] and its determina-

tion is thus related only with values of the PT mode. The

loss of accuracy for this coefficient when the qL mode is

omitted may be explained from the explicit relation for

PT phase velocities

qvPTu ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c66cos2#þ c44sin

2#

q
; where c66 ¼

c11 � c12
2

:

ð10Þ
We can conclude, that every inaccuracy in determina-

tion of coefficients c11 and/or c44 may influence the accu-

racy of resultant coefficient c12.

Naturally, it can be supposed that the effect of input

data distortion is strongly dependent on the number of
input data and may be very specific for each particular

case of symmetry and for every particular material.

Dependence of relative standard deviations of output elastic coeffi-

cients on distortion of input qL data

Distortion SD13/c13 (%) SD33/c33 (%)

1 10.04 0.50

2 25.48 1.01

3 33.27 1.52
5. Input data incompleteness

The described simulation with mode omission leads

us to an other possible source of the inverse algorithms
failure. The omission of some normal surface regions

may lead to a total loss of stability for some elastic

coefficients.

When all three modes are covered, the algorithm re-

mains stable, even though some range of directions is

omitted. The simulation was performed for omission
of regions # 2 h60�;90�i, # 2 h30�; 60�i and # 2 h0�; 30�i,
resulting in no significant loss of stability or accuracy of

the optimizing process.

Unfortunately, the arrivals of transversal modes (qT

and PT) may be very difficult to detect, and the loss of

stability due to mode omission (as outlined in Table 2)

becomes crucial.

However, as utilized in the first section, this problem
can be conveniently circumvented, when accurate meas-

urements of all modes in any direction lying in the

principal plane are available. From such pulse-echo

measurements [12,23], that enable one to distinguish

between qT and PT modes form their polarization direc-

tions, the elastic coefficients c11, c12 and c44 can be di-

rectly determined, which reduces the dimension of

optimizing procedure (4) from five to two. Then the
most easily identifiable qL-mode is sufficient for inverse

evaluation of remaining coefficients c13 and c33.

Let us now examine, how such simplification influ-

ences the stability of the inverse algorithm. Similar sim-

ulation as for the all three modes in previous sections

were performed, again repeating the optimizing process

30 times for each level of data distortion. To make the

results comparable with those of Table 1, the same num-
ber of input data (30 values) has been used. Relative

standard deviations resulting from this simulation are

listed in Table 3. The results in Tables 1 and 3 are very

close to each other, the stability of inversion process is,

thus, due to considered simplification neither impaired

nor improved. The coefficient c13 still remains to be

significantly influenced by input data distortion.

In Fig. 5, another kind of input data incompleteness
is examined. As demonstrated above, different modes of

propagation are differently suitable for inverse determi-

nation of a given elastic coefficient. In a similar way,

various regions of the normal surface contain various

information about the elastic coefficients.

This figure presents results of two-dimensional in-

verse procedures (c13 and c33 determined for remaining

coefficients taken as known) applied to various segments
of the qL phase velocity curve. The same number of ex-



Fig. 5. Accuracy of coefficients c13 and c33 resulting from the same number of theoretically calculated qL phase velocities covering different segments

of the normal surface.

H. Seiner, M. Landa / Ultrasonics 43 (2005) 253–263 259
actly evaluated input phase velocities (i.e. input data

with no distortion) covering the same range of angles

(10�) results in different accuracy of the output values.

The results might suggest in which directions the phase

velocities should be measured to obtain the most accu-

rate output of the optimizing procedure.
Unsurprisingly, the velocities in directions close to

the isotropic plane x1x2 contain weaker information

about the coefficient c33.

To observe the accuracy of c13 along the curve ap-

pears to be more important. Best results are obtained

close to the isotropic plane, especially for # 2 h20�; 30�i.
That might be the region where the curve is most sensi-

tively dependent on the individual coefficient c13.
Such conclusion is somehow in agreement with find-

ings of Minachi et al. in [23], where the inversion was

done from group velocities corresponding to phase

velocities lying mostly straight in this interval. That re-

sulted in very accurate determination of the coefficient

c13 (compare with [22]).

Generally, the effect of input data incompleteness

may vary from insignificant distortion of output values
to a crucial loss of stability. For each kind of material,

similar simulation must be done to predict possible

sources of inversion failure.
6. Group velocity conversion

As mentioned in the introduction and employed in
the first section, the ray surface vG(n) and the slowness

surface 1
vu
ðnÞ are polar reciprocal to each other. The nor-

mal surface vu (n) can be thus proved to be the tangent
plane to the ray surface, whereas the ray surface is the

foot-point (or pedal) surface to the normal surface

[16]. Consequently, from the knowledge or approximate

guess of direction normal to the ray surface, the corre-

sponding point of the normal surface can be geo-

metrically constructed, as described in [14–17]. The
determination of normal direction becomes the most

important stage of whole velocity conversion, especially

when the input experimental ray surface is too distorted

or otherwise unsuitable for direct numerical treatment.

Then the ray surface must be fitted first by appropriate

smooth (or piecewise smooth) function of known ana-

lytical form, which allows an analytical expression of

normal direction in considered points.
The simplest and most widely used fitting functions

are naturally the polynomials, usually approximating

the magnitude of group velocity by the polynomial in

direction components, or one component of group

velocity vector by polynomial in the remaining compo-

nents; for example in the x1x3-plane
vGðnÞ ¼
Xm
j¼1

ajn
j; respectively; ðvGÞ3½ðvGÞ1� ¼

Xm
j¼1

bjðvGÞj1

ð11Þ
depending on the particular case.

Obviously, fitting the whole ray surface (or curve) by

one polynomial cannot result in reliably reconstructed

normal surface, especially when the fitted ray surface

contains cuspidal regions. Hence the polynomial approx-

imation has to be applied piecewise, fitting smooth re-

gions separately by suitably connected local fits.



260 H. Seiner, M. Landa / Ultrasonics 43 (2005) 253–263
However, any other kind of analytical fitting can be

employed, provided that the following conditions are

satisfied:

1. In the principal crystallographic directions, where the

group and phase velocity coincide, the fitting func-
tion has to be of zero derivative in all direction

components.

2. The fitting function should not contain any in-

flections.

The idea of the first condition is obvious. By demand-

ing the derivatives to be zero, the coincidence of input

group velocity with reconstructed phase velocity is
assured.

The second condition follows from the fact that the

principle curvatures of the ray surfaces are naturally

positive except of those surfaces containing cuspidal re-

gions, where the sign of one of the second derivatives

changes discontinually at the edges of the cusp (the lat-

ter principle curvature must remains positive due to the

rotational invariance about the x3-axis). When the cuts
of these surfaces are to be geometrically converted into

corresponding phase velocities, the fitted regions are,

thus, always pure convex or concave. Possible inflections

on fitting functions might result in an appearance of

similar cuspidal regions on the reconstructed phase

velocity surface, contrary to the nature of normal

surfaces.
Fig. 6. Importance of a choic
As it follows from the above proposed conditions, the

high-order polynomials are unsuitable for ray surface

fitting because of possible inflections contained. In

Fig. 6, the importance of a choice of the fitting function

is demonstrated by fitting the same group velocities by

polynomials of different degrees m. All polynomial fits
are in a similar good agreement with approximated

data but the geometrically recovered normal surfaces

significantly differ from each other. For m = 4, the fitting

polynomial contains an inflection corresponding to cus-

pidal region on the normal surface.

The high-order polynomials might be useful only for

piecewise fitting of evidently concave or convex ray sur-

face regions, in which the data distortion cannot influ-
ence the character of the fit.

However, the piecewise fitting may have a conse-

quence of discontinuities in the ray surface first deriva-

tives and resultant discontinuities on recovered normal

surfaces, especially when the input data are significantly

distorted. Then the local fits must be smoothly con-

nected to each other using e.g. a linear affine combina-

tion. For the fitted region divided equidistantly into
intervals hnn; nn+1i the combined fitting function takes

the form

½vGðnÞ�n2hn;nnþ1i ¼ mn
Xma

i¼0

ain
i þ ð1� mnÞ

Xmb

i¼0

bin
i; ð12Þ

where the monotone linear sequences fmngN1 ¼
1
N ;

2
N ; . . . ;

N�1
N ; 1

� �
represent the share of the first polyno-
e of the fitting function.
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mial
Pma

i¼0ain
i to the whole fitting function. The share of

the second polynomial
Pmb

i¼0bin
i is equal the the affine

complement series 1 � mn. In each interval, the value of

mn is treated as constant.

When the connected polynomials differ significantly

in their magnitudes or derivatives, �smoother� forms of
affine combinations can be utilized, such as

½vGðnÞ�n2hn;nnþ1i ¼ sin2 p
2

mn

 �Xma

i¼0

ain
i þ cos2

p
2

mn

 �Xmb

i¼0

bin
i;

ð13Þ
which reduces the share of the second polynomial in the

first interval hn1;n2i from 1
N to sin2ð1NÞ, and the share of

the first polynomial in the last interval similarly.
Due to the linearity of derivatives, the tangents and

normals to this function in each interval can be evalu-

ated from similar affine combinations of first-order

derivatives. Resulting fits are then smoother and the

probability of discontinuity occurrence on recovered

normal surface is minimized, see Fig. 7. In the Fig. 7a,

a quadrant of group velocities (triangles) is fitted by

two second-order polynomials (dashed line), each satis-
fying one of the extremal conditions in principal direc-

tions x1 and x3. The fit is continuous and close to

smooth but an imperceptible jump in the first derivative

(see the arrow) results in significant discontinuity on the

recovered normal surface. When connecting both poly-

nomials together via affine combinations (12) or (13),

respectively, the discontinuity disappears, as demon-

strated for the affine combination (13) in Fig. 7b, where
(a) (b

Fig. 7. Difference between the usage of: (a) piecewise polynomial fitting an
the thick lines denote the regions both on the ray and on

the normal surface where the affine combination has

been applied. For affine combination (12), the result will

be very similar.

Stability of the optimization process versus type and

reliability of group velocity fitting is a complex problem,
that cannot be illustratively simulated as it was done for

distortion and incompleteness of phase velocities.

The distortion of input group velocity data may

either be eliminated by smooth fitting or result in normal

surface completely unapplicable for ensuing inverse

computation.

Similar extensive simulation as for phase velocities

was performed to outline the dependence of output elas-
tic coefficients on input group velocity distortion. Thirty

sets of randomly distorted group velocities (normal dis-

tribution considered) were piecewise fitted using both

the affine combinations (12) and (13) of 4th order

polynomials.

In contrast to previous simulations, the geometrical

conversion influences the optimization results systemat-

ically. As listed in Table 4, the average values of coeffi-
cients c13 and c33 differ more than negligibly from

correct values. Whereas the coefficients c33 are of com-

parable inaccuracies, for the coefficient c13 the affine

combination (13) seems to be more suitable.

The corresponding relative standard deviations are

listed in Table 5.

Surprisingly, the resultant distortion of optimized

coefficients cij is very close to standard deviations
)

d (b) the connection of fitting functions by affine combination (13).



Table 4

Differences dij between average output and correct values cij of elastic coefficients after geometrical conversion of group velocities

Distortion Affine combination (12) Affine combination (13)

d13 (%) d33 (%) d13 (%) d33 (%)

1 4.85 0.01 4.56 0.08

2 2.65 0.37 3.01 0.31

3 17.23 0.07 6.90 0.30

Table 5

Relative standard deviations of output values of cij after geometrical conversion of group velocities

Distortion (%) Affine combination (12) (%) Affine combination (13) (%)

SD13/c13 (%) SD33/c33 (%) SD13/c13 (%) SD33/c33 (%)

1 9.14 0.82 7.27 0.67

2 16.62 1.59 15.34 1.80

3 38.20 2.45 28.10 2.16
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obtained from simulating the stability of inversion from

phase velocities. It can be thus concluded, that the geo-

metrical conversion into phase velocities does not, in

general, amplify the effect of input data distortion. Sim-

ilar conclusions have recently been published by Detg-

yar and Rokhlin [24] for inverse determination of

anisotropic elastic coefficients by two-step iterative

method [2,7,25].
Concisely, the values of cij optimized from the set of

group velocities can be expressed as

coutputij ¼ cexactij ð1þ dijÞ � SDij; ð14Þ

where the systematic deviation of the average value dij
results from the geometrical conversion and the source

of accidental inaccuracies SDij should be sought in input

data distortion.

The group velocity data incompleteness is expected to
influence the optimization results similarly as the incom-

pleteness of phase velocities. Although it must be taken

into account that the corresponding regions on the nor-

mal and ray surface can be disproportional to each

other. Large segments of normal surface can correspond

to inconsiderable segments of ray surface and vice versa.

The conclusion on the effect of data incompleteness

must always be applied to converted phase velocities.
7. Concluding remarks

In this paper, the inverse algorithm for the determina-

tion of elastic coefficients of transversely isotropic solids

based on simplex minimization of the difference between

experimental and computed values was analyzed. Main
possible sources of algorithm instabilities were briefly

outlined a their effect on resultant optimized elastic

properties was demonstrated by extensive simulations.

From these simulations it was concluded that the input

data distortion did not in general significantly destabi-

lize the discussed inverse process, whereas the omission
of one of propagation modes might result in quite incor-

rect optimized values. It remains to be discussed how are

the optimization results systematically influenced by the

technique used for the determination of the wave arriv-

als on the detectors.

The information about particular elastic coefficients

was revealed as inhomogenously distributed along the

normal surface. The precisely accurate measurements
of phase or group velocities may thus be not sufficient

for stable optimization if they do not cover appropriate

segments of normal or ray surfaces.

The conditions on reliable geometrical conversion of

group velocities into corresponding phase velocities was

discussed, especially with respect to the choice of the fit-

ting function. Principal conditions for such fitting func-

tions were postulated, as they followed from the natural
symmetry and pure convexity/concavity of ray surfaces.

Additional simulations were performed to illustrate that

the geometrical conversion did not need to result in sig-

nificant loss of optimized data correctness, provided that

the fitting function was chosen sensitively.

The disadvantages of high-order polynomial fitting of

group velocities for the geometrical conversion was

pointed out, compared to more suitable lower-order
piecewise polynomial fitting, employing affine combina-

tions to smoothly connect the fitting polynomials to

each other.

Numerical results of all simulations in this study are

naturally relevant only to the particular examined mate-

rial or for materials with very close mechanical proper-

ties. However, the approach of the above analysis and

general conclusions are applicable to any other kind of
materials.
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