
Akademie věd České republiky
Ústav teorie informace a automatizace

Academy of Sciences of the Czech Republic
Institute of Information Theory and Automation

RESEARCH REPORT

Ludv́ık Tesǎr, Miroslav Novák

Support Environment for System Identification and
Controller Design - Jobcontrol

User’s Guide with Examples

No. 2138 November 21, 2005

ÚTIA AV ČR, P.O.Box 18, 182 08 Prague, Czech Republic
Tel: (+420)266052422, Fax: (+420)286890378, Url: http://www.utia.cas.cz,

E-mail: utia@utia.cas.cz

This report constitutes an unrefereed manuscript which is intended to be submitted for publication.
Any opinions and conclusions expressed in this report are those of the author(s) and do not necessarily
represent the views of the institute.

1

Contents

1 Introduction 3

2 Jobcontrol Description 4
2.1 Usage of interactive script jobmain.m . 4
2.2 Using the jobcontrol batch processing . 5
2.3 How to run mixtools/designer repeatedly from the given point? 5
2.4 Using saved m-files . 6
2.5 Where to find results? . 6

2.5.1 Mixture Model Validation Results . 6
2.5.2 Controller Verification Results . 6

2.6 How to start use jobcontrol? . 7

3 Reference - Description of the structure Job 8

4 Examples 13
4.1 Aims of the study . 13
4.2 Description of the study . 13
4.3 Data . 14
4.4 Processing . 14
4.5 Description . 14

4.5.1 Experiment definition . 14
4.5.2 Data description . 14
4.5.3 Channels description . 15
4.5.4 Prior information . 16
4.5.5 Mixture initialization . 16
4.5.6 Mixture estimation . 16
4.5.7 Mixture validation . 16
4.5.8 User ideal . 17
4.5.9 Design . 17
4.5.10 Verification . 17
4.5.11 Original Data Plots . 18

4.6 Results . 18
4.6.1 Results of Mixture Identification and Parameter Estimation (and Model Vali-

dation) . 18
4.6.2 Results of Single Component Identification and Parameter Estimation (and

Model Validation) . 21
4.6.3 User Ideal Mixture . 22
4.6.4 Controller Mixture . 22

4.7 Experimental Controller Verification Results . 24
4.8 Conclusion . 25

5 Summary and Conclusions 26

6 Acknowledgements 27

2

Chapter 1

Introduction

Jobcontrol is a user friendly interface for Mixtools and Designer toolboxes. The Mixtools toolbox is a
powerful set of utilities for system identification employing Gaussian mixture model. It is implemented
as set of M-scripts and MEX-binary executables for the Matlab computing environment. It suits to
the goal of finding suitable structure for given data. The Designer toolbox then serves for finding
optimal controller parameters, constructing ideal controller and testing the controller found.

As an expert tools, Mixtools and Designer fulfills end user’s needs, but are not suited for direct
usage of the end user. In other words, they are not very user-friendly. It is why, we are developing en-
vironment, which integrates all the tasks, that are connected with system identification and controller
design and helps to collect all the user’s knowledge of data and the real-world system where data
come from. After all calculations are finished Jobcontrol creates LATEX-based report that integrates
all the result together with the original user’s settings. The Jobcontrol package, therefore, integrates
endless expertise that is otherwise available only through study of the theoretical books [1, 3], Mixtools
toolbox documentation [2] and experience contained in many experiments.

The Jobcontrol package help to solve user’s problem in terms of the experiment (or job). Every
experiment consists of description of user’s data, and description of the way how the mixture is
estimated and how the control is performed and what tests are to be done. Jobcontrol offers the user
environment for interactive input of the description of experiment as well as lucid way of configuring
experiment using one configuration file. Integral part of Jobcontrol package is the protocol generator,
which automatically creates a very convenient LaTeX document, which shows all the aspects of system
identification, control and user’s data description.

To conclude, the Jobcontrol package performs these tasks:

• Takes user’s data and estimates parameters of the mixture model.

• Verifies the Mixture model.

• Lets user to denote controlled and controlling parameters.

• Constructs the controller.

• Verifies the controller.

3

Chapter 2

Jobcontrol Description

To make things more systematic, Jobcontrol is divided into several steps.

• Data pre-processing

• Prior information utilization

• Initialization of the mixture model (mixinit)

• Mixture model parameter estimation (mixest)

• Mixture model validation

• User ideal calculation

• Controller design

• Controller verification

Both user’s setup and processing follows the above-mentioned steps.
There are two ways to use Jobcontrol, the first is interactive (jobmain script) and the second is

the non-interactive (or batch) usage.
Interactive is the script jobmain.m. It aims at collecting all the necessary information from the

user by asking him for this information and then it proceeds with the the system identification, and
controller design based on user’s input. It colludes by creating protocol in LaTeX.

For non-interactive usage, user needs to understand at least basics of Matlab, but the non-
interactive usage rewards user by many more possibilities, especially in batch processing. It allows
user to use parts of jobcontrol in his scripts, jobcontrol even generates such basic script for him.
Section 2.1 describes the first way to use jobcontrol by the jobmain script, section 2.2 describes the
other non-interactive way.

We strongly recommend to read following sections at least to be able to judge where to use
interactive or non-interactive jobcontrol.

2.1 Usage of interactive script jobmain.m

The script jobmain.m aims at easy and straightforward interactive usage and is ideal for the first-time
user, even if he/she aims at using batch processing later. The interactive interface is launched by
script jobmain. It guides user by printing instructions, so there is no need to describe all the steps in
this text.

Important points are following:

• user has to decide, whether he wants to start the new experiment or to continue (load) the old
one

• user has to provide data, that are relevant to his experiment, at least to give a clue for the
program, what are the channels and what values can the channels have

4

• even if started from scratch, initial mixture can still be loaded from somewhere else. The concept
of initial mixture is important, and user needs to understand what is he doing

• the problem setup is meant as: answer by pressing “Enter”, if you don’t know anything better.
Some items are absolutely only for experts, and need not to be understood by average user.

• see section ?? to understand what steps are done during processing.

The jobmain.m script has a two-step concept: in the firsts one, the setup of the problem is done,
which needs strong user interaction. After that, processing starts and no user interaction whatsoever
is required or even desirable. Hence, importance of the question “Enter the letter that decides what
will happen next” after the setup is completed. User must answer “c” which is labeled as “c - start
the evaluation” in order to get any results at all. Otherwise he is stuck in setting up the problem again
and again.

The processing step consists of several (seven) steps. After each step, the complete status of the
experiment is saved, so that it can be started again from the same step.

Drawback of the script jobmain is that it asks user for every detail of the problem, and it is
going through every step of the setup. If user makes any mistake, it is possible to change it but only
after repeating the setup once more and after going through the setup once more. This may lead to
aggressive behavior for some user, therefore authors strongly recommend to switch to non-interactive
processing as soon as possible. While for first-time user, asking for every detail might be user-friendly,
for only slightly more experienced user it is very boring process and in our opinion, excessive usage of
jobmain may challenge user’s mental health.

2.2 Using the jobcontrol batch processing

To utilize the batch interface means to create own m-file where particular job parameters are set by
hand with help of prepared assisting functions. The template of the batch file can be obtained by
running jobmain once. It is automatically saved under the name of the experiment with the suffix .m
(e.g. exp1.m).

The main feature of jobcontrol package is the Job structure. All information concerning task
processed is in this structure in a straightforward way. This structure serves as centralizing point of
the jobcontrol package. All parts of jobcontrol as well as the script jobmain described in 2.1, works
entirely with this structure and uses it to store all the information necessary. It is constructed by
the constructor jobconst, where it gets filled with default values. The lengthly process of setting up
the experiment is performed by function jobsetup, which has the structure Job as both input and
output, effectively it is updating it. After that, function jobproceed does all the processing both in
interactive and you can use it also if you use jobcontrol in non-interactive way.

The template setup m-file created by jobmain can be used as starting point for your own setup.
This m-file has the form of function, returning Job structure prepared for processing. For example
if you name your setup m-file like exp1.m, than the better way to use it would be by invoking these
commands:

prodini;
Job = exp1; % function exp1 is called and has no parameters
Job = jobproceed(Job);

The Jobcontrol settings are stored in the structure Job. For reference on contents of the Job
structure, you can type help jobcontrol at Matlab command prompt or you can use even better
description in section 3.

2.3 How to run mixtools/designer repeatedly from the given point?

The whole concept of jobcontrol package aims to ease the batch processing. Status of all calculation
is saved after every step into the mat file of the form: exp1_n.mat, where exp1 is experiment name
and number n is step after which it was saved. It can be loaded by:

5

Job = jobload("exp1_n"); % loads experiment exp1 from exp1_n.mat file

Or alternatively you can use equivalent way: Job = jobload1("exp1",n). You can directly pipe this
into jobproceed by:

Job = jobproceed(Job);

Before processing, you can run through the interactive setup and change something here and there:

Job = jobsetup(Job);
Job = jobproceed(Job);

Also, an attractive way to change part of setup is to use m-file generated by jobmain and put Job =
jobload("exp1_n"); into appropriate part of the m-file. (You should delete parts which correspond
to steps already processed).

2.4 Using saved m-files

The structure of saved m-files is following. The whole file is cut into the sections, that correspond to
sections of the interactive setup.

This is an example of one section of saved m-files:

begin_init;
SingleOnly = 0; % boolean flag whether to skip mixinit and calculate

just MixSingle
opt = ’p’; % iterative estimation method (p | q | b | f | Q | P)
niter = 10; % maximum number of iterations
frg = 0.999999; % forgetting factor
end_init;

You can see that this section starts with begin_init and ends by end_init. It is similar as all other
sections.

2.5 Where to find results?

There are two important moment in Mixtools processing where results are shown and especially
carefully prepared for user. It is step 5, validation step where results of mixture model estimation
and validation are created. Also, it is step 8, where controller verification is done, therefore much of
interesting information is given to user.

2.5.1 Mixture Model Validation Results

Results of mixture-model validation are created after step 5 and are saved into the file with .tex suffix
and with the some prefix as user have given to the experiment (so, by default it is exp1.tex). Results
can also be found in Job.Val sub-structure of the Job structure. Also results of validation are printed
as text to the console, for user’s convenience. During validation, various graphs are made.

During the setup, you can greatly influence the information which is plotted. Variable plots from
the validation section or Job.Valid.plots controls which types graphs are made. Variable pchns from
the same section or Job.Valid.pchns, controls what channels are validated. This, also influences, for
what variables, graphs are created. All details can be seen below.

2.5.2 Controller Verification Results

Results of controller design using Designer method are resulting in tuning knob values, predicted ranges
of signals, which are written into the file with .tex suffix. The resulting tex file is very comprehensive
and even some graphs in form of eps files are included. For expert usage, Job.DataDesc.Chns, has the

6

same information. The graph generated are sample of predicted closed loop behavior and predicted
histogram of signals in the loop.

In Job.DataDesc.Chns variable, results of controller verification are in the same form as the result
of controller design, except the word “predicted” is replaced by the word “verified”.

2.6 How to start use jobcontrol?

If you have access to the local ÚTIA network, you can start to experiment with our Jobcontrol package
straight away. The necessary steps follow.

• You will need Matlab and svn client software.

• Perform “svn checkout” of the Mixtools directory svn://marabu.utia.cas.cz:1800/svn/mixtools,
user/password is guest/guest. You have read-only access to files in the repository.

• In Windows copy dlls from dll subdirectory to Mixtools directory.

• Run Matlab (version 6.5.1 is tested to work with current dll-files).

• Add path to the Mixtools directory into Matlab-path.

• In Matlab go to mixtools/jobcontrol/examples/simple subdirectory.

• Running this script: run˙siso1t.

• If some graphs were shown and the script ended normally, then your system is prepared to do
your own experiments.

User will certainly be interested to experiment with their own data. Instructions for experimenting
with user’s data follows.

• Make your data ready for use in Matlab (save them as mat file).

• Run jobmain to prepare your experiment (myexp), you will be asked for the experiment name
(let’s say that you answered (myexp), and for the file name of mat file with your own data.

• Few files were created as side-effect:

– m-file with editable experiment setup (myexp.m).

– Saved status after every step of experiment: myexp n.mat.

– Protocol (myexp.tex). If your LATEX is correctly installed postscript file is ready as well
myexp.ps.

• Experiment can be repeated from any intermediate step (using myexp n.mat files).

• Parameters of experiment can be adjusted (using myexp.m) and run again.

7

Chapter 3

Reference - Description of the
structure Job

The pivot point of the Jobcontrol environment is the structure, which holds the information about the
status of the current experiment undertaken. Normallly user does not need to access this structure
directly, however, if some special task needs to be performed, then it might be useful to have descriotion
of this structure for reference. The name of this structure is Job and its description follows.

Job.Main ... main information

jobname ... name of the experiment (a very short string without spaces) - will be used to make
some filenames

authorname ... author’s name for documentation purposes

email ... author’s e-mail address

references ... references of the experiment to literature

project ... name of the project

consttime ... time of creating the setup in Matlab format, use datestr(Job.Main.consttime).

debug ... debug level to be used

desc ... a short description given by user (string)

seed ... random seed of the experiment (empty=leave the seed from calling process, -1=randomize
by timer)

doinit ... used internally to signal whether certain initialization should be done (do not change!)

steps ... which steps are to be done

finished ... which steps were already finished

Job.DataDesc ... description of data:

datafile ... data file filename

varname ... variable name

transpose ... if 1 than transposition should be done

rescale data ... rescale new data (normaly this is necesary every time the new data is given,
but it does no harm to do it every time)

reset chns ... reset channels description (normally this is needed only once, in the beginning,
and if new data have vary different channels than the old one)

pr chns ... channels to be printed in protocol

pr merge ... whether printed channels are to be merged

used data ... this indicates how much of data user wants to use (-1 means all, number means
maximal index)

8

reset val min max ... this is internal variable that ensures that validation min and max is
reset only once

new pre ... internal scaling parameter to be used with actual data described here (it is reset
in order to avoid doing it repeatedly)

ndat ... internal variable holding number of data vectors

Chns ... channel description structure vector (every vector item corrsponds to one channel).
description of the structure follos:

chn name ... short name of the channel
chn oitem ... visibility by operator
chn raction ... available for control (input has 1 here)
chn prty ... presentation priority
chn type ... 1=continuous, 0=discrete
chn prange ... range used for scaling [min,max]
chn drange ... desired range used for control [min,max]
chn irange ... desired range used for control - increments
chn preinfo ... preprocessing information
chn gain ... static gain [uchannel, min, max]
chn stime ... sampling time (unit=seconds), needed for frequency-based priors
chn ampl ... frequency response [input channel, frequency, ampl low, ampl high, phase in degrees]
chn cut ... cut-off frequency [input channel, frequency]
chn tc ... time constant [input channel, low, high]

Job.Prior ... prior information

doflattening ... forces flattening

Mix ... prior mixture generated by genmixe

MixSingle ... prior single-component mixture generated by genmixe

Job.IniMix ... initial mixture:

ncom ... number of components

ord ... order

diaCth ... diagonal of Cth

diacove ... diagonal of cov(Eth)

mult dfm ... multiplicator of degrees of freedom

mult dfcs ... multiplicator of degrees of freedom of components

dfm ... degrees of freedom

dfcs ... degrees of freedom of components

Mix0 ... mixture generated by genmixe

Mix0Single ... single-component mixture generated by genmixe

Job.Init ... initialization of the mixture:

SingleOnly ... boolean flag whether to skip mixinit and calculate just MixSingle

opt ... options for mixinit - method,etc.

niter ... number of iterations

frg ... forgetting

Mix ... result: identified mixture

MixSingle ... result: identified single-component mixture

9

time ... time needed for mixinit

Job.Estim ... mixture estimation parameters:

opt ... options - method,etc.

niter ... number of iterations

frg ... forgetting

Mix ... result: estimated mixture

frgSingle ... single-component forgetting

MixSingle ... result: estimated single-component mixture

time ... time needed for mixest

Job.Batch ... mixture initialization/estimation made by batch processing:

do batch ... 1 if batch processing should be done, 0 otherwise

batchlen ... length of batch

Job.Valid ... validation of the mixture:

nsteps ... number of steps for prediction

pchns ... predicted channels

cchns ... channels in condition

tstart ... starting time for validation

tend ... ending time for validation

epss ... print epss

pauses ... number of seconds to pause

plots ... which plots to make (this is vector with four 0/1)

segments ... number of segments fo segmentation-type validation

alt ... preform validation with alternative forgetting

Job.Val ... results of mixture validation tests:

mixll ... mixture log-likelihood

testSE ... ratio of average square of ep and sds of data

sumCep ... whiteness test result (sum of 10 delayed correlations of ep)

ChnStat ... vector structure of channel statistics (min, max, mean, median, std)

DiffStat ... vector structure of time differences statistics (min, max, mean, median, std)

YpStat ... vector structure of prediction statistics (min, max, mean, median, std)

EpStat ... vector structure of error prediction statistics (min, max, mean, median, std)

testNois ... noise standard deviations

dfcs ... dfcs

Job.UserIdeal ... User ideal description

method ... method to create user ideal (d - Designer toolbox, t - Target)

userSetpointEths ... setpoint Eths

userSetpointCoves ... setpoint Coves

Job.Design ... controller design parameters

typloss ... type of evaluating the constraints violation, possible values:

10

’prob’ ... evaluating maximum overshoot
’max’ ... evaluating probability of constrains violation

constrtol ... when constraints are evaluated as probability (typloss = ’prob’) this value
contains maximum allowed probability of constraints violation

simlength ... simulation length of the evaluation algorithm, it should be long enough to contain
all the reference changes

adaptive ... type of adaptivity, possible values:

0 controller is non-adaptive. The calculation is fast in this situation and so it is useful for
first experiments with new system.

1 controller is adaptive with exponential forgetting.
2 controller is adaptive with alternative forgetting. Alternative forgetting is more stable

than the exponential one.

horizon ... LQG horizon is specified by tuple. The first element is the horizon length at the
start of simulation and the second one is the horizon in following steps. If it is negative,
the previously calculated Riccatti matrix is used, so small number can be used such as one.
This improves the simulation speed.

initialData ... initial data for ARX model It has same structure as DATA matrix, but it is
short. The length must be at least as long as the ord variable to initialize ARX model.
Empty matrix defaults to all zero initial conditions.

penal ... initial and final penalization (tuning knob) vector. Possible values are.

-1 automatically guess using the FPD design. This choice is equivalent to empty matrix.
-2 automatically guess using the Riccatti matrix
positive value all elements of penalization vector will be initialized to this value
initial penalization vector specified directly

penalY ... fixed penalization of outputs vector. If empty matrix is specified, all outputs
channels has same wight equal to one. This is a default behavior. If a vector of length
equal to number of output channels is assigned, the outputs will have different relative
variances equal to inverse of respective elements of penalY. The rate holds for the scaled
signals.

designtype ... procedure to create a controller

’t’ ”target”, non-adaptive, non-tuned controller, for mixtures
’d’ ”designer”, adaptive, tuned controller, single component models

aMix ... controller mixture, result of ”target” procedure

CtlT ... controller object, result of ”designer” procedure

Job.Verify ... controller verification parameters

verifyopt ... verification is determined by this cell-vector which can have following structure:

{’none’} no verification is performed
{’simulink’,Simulink model name} verification using Simulink model. Simulink scheme

must have a particular structure see XXX.
{’mixture’,mixture} verification using Mixtools mixture. If mixture is empty matrix the

estimated Job.Mix is used instead, taking into account Job.Mix is already scaled.
{’matlabfunction’,function} verification using Matlab function. Simulated result is ob-

tained from global matrix DATA, which is filled by used controller.
Example verification function:
function verifyfun(Job,maxtd)
global TIME
[uchns,ychns] = getuychns(Job.DataDesc.Chns);

11

Ctl = Job.Verify.CtlUnscaled;
d = [];
for TIME=maxtd+1:Job.Verify.smlsimlength

[Ctl,d] = ctlunscaledstep(Ctl,d);
u = d(uchns); % vector d contains valid elements only for uchns
[y,u] = vlastni_simulace(u);
d(ychns)=y; % system output is written to d
d(uchns)=u; % measured realization of proposed inputs

% can be fed back to the controller
end

Ordering of y and u can be obtained by function [uchns,ychns] = getuychns(Job.DataDesc.Chns)

smlsimlength ... length of simulation for verification purposes

smlperiode ... sampling period when using Simulink for verification

CtlScaled ... scaled optimal controller for purpose of verifyopt=’matlabfunction’

CtlUnscaled ... un-scaled optimal controller for purpose of verifyopt=’matlabfunction’

Job.Mix ... actual processed mixture

Job.MixSingle ... actual processed single-component mixture

12

Chapter 4

Examples

Examples showing abilities of jobcontrol, are in the directory mixtools/jobcontrol/examples.
All experiments are run by the script run xxxx, where xxxx is the name of particular experiment.
To document the Jobcontrol package usage, we are giving an example of the LATEX report, that is

created as the result of one experiment run. There are many illustrative experiments together with the
Jobcontrol package, we have selected one of them only, the other are present and described in another
publication, we are. In these reports, that are automatically created as the result of Jobcontrol run,
user can find all the important information concerning the experiment performed.

In the beginning, the experiment setting is given, the result is included in form of tables and figures
showing the output of different steps of processing.

The experiment described here is called siso1t. It is the simple single component SISO system
example identified and controlled using the mixture approach.

The siso1t experiment protofcol follows.

Experiment: siso1t - Simple SISO system experiment with Mixtools
Target

Author : Miroslav Novak
Contact : mira@utia.cas.cz

Address : AS, UTIA, AV CR, POBox 18, 182 08 Prague, Czech Republic
Basic references :
Source texts : siso1t

Project : Designer

4.1 Aims of the study

Experiment ”siso1t” is a simple testing system for the Mixtools toolbox using Target function for
creating a controller.

4.2 Description of the study

System used for generating identification data and for verification is:

yt = 1.81yt−1 − 0.8187yt−2 + 0.00468ut + 0.00438ut−1 +
√

0.001et, et ∼ N(0, 1)

13

4.3 Data

For generating identification data the inputs are

ut ∼ N(0, 1)

4.4 Processing

Whole experiment files are kept under svn in mixtools/jobcontrol/examples/simple. Data used
for identification are generated by the script dv_genrawdata_siso1. To run the experiment:
1) generate the identification data by the dv_genrawdata_siso1 script, unless it was done before.
2) call ”prodini” to initialize mixtools
3) call jobproceed(siso1t), where siso1t.m is a function generating the Job description.
4) to generate a nice latex report do latex siso1t

4.5 Description

4.5.1 Experiment definition

jobname = ’siso1t’; % name of experiment ... no spaces!
% choose short ’jobname’ that serves as name root for temporary and saved files
authorname = ’Miroslav Novak’; % author of experiment
email = ’mira@utia.cas.cz’; % E-mail of author of experiment
address = ’AS, UTIA, AV CR, POBox 18, 182 08 Prague, Czech Republic’; %

author’s address
references = ’’; % references to literature
project = ’ProDaCTool’; % project name
desc = ’Simple SISO system experiment with Mixtools Target’; % description

of experiment printed in protocol
debug = 0; % debug level determining information during evaluations

steps = [1, 1, 1, 1, 1, 1, 1, 1]; % % Steps to be performed (1/0)
= (yes/no)

4.5.2 Data description

datafile = ’dv_genrawdata_siso1’; % filename with full path specifying
the mat file with data

varname = ’rawdata’; % variable name of data in ’datafile’
transpose = 0; % transpose data matrix to have channels to rows (1=yes

0=no)
rescale_data = 1; % rescale new data (normaly this is necesary every time

the new data is given, but it does no harm to do it every time) (1=yes 0=no)
reset_chns = 0; % reset selected channels (normally this is needed only

once, in the beginning, and if new data does not have anything to do with
the old data) (1=yes 0=no)

chns = [1, 2]; % modelled channels
pr_chns = [1, 2]; % vector of numbers of channels from which original

data plots are printed to protocol (-1 means all channels)
pr_merge = 1; % whether original data plots in protocol are merged or not

(0=separated, 1=merged, 2=tiled).
used_data = -1; % % At the moment, there are 10000 data samples

14

4.5.3 Channels description

% Description of the channel 1
chn_name = ’y’; % name of the channel
chn_oitem = 1; % visibility by operator
chn_raction = 0; % available for control
chn_prty = 0.5; % presentation priority
chn_type = 1; % (1/0) = (continuous/discrete) channel
chn_prange = [-0.0121804, 1.11326]; % expected physical range [min,max]
chn_drange = [-1000;
1000]; % desired range [min,max]
chn_irange = []; % desired range of increments [min,max]
chn_preinfo = ’olymedian’, ’c’, 1; % pre-processing information (see help

preinit)
% Prior informations follow. You won’t get very good documentation for this,
% the best is what you see here or you can find the file guidex.pdf in svn.
% In all cases prior information stacks under each other forming matrices.
chn_gain = []; % [uchn, mingain, maxgain] static gain first column is

index of input channel and then minimum and maximum
chn_stime = []; % sampling time is the scalar variable (unit=seconds)
% It provides the time-scale for different prior informations.
% All prior informations that follow need to have sampling time (chn_stime)

set,
% because they operate on Hertz (you must give the time-scale)
chn_ampl = []; % frequency response [uchn, frequency_in_hertz, amplitude_low,

amplitude_high, phase_in_degrees]
chn_cut = []; % cut-off frequency [uchn, frequency_in_hertz]
chn_tc = []; % time constant [uchn, tclow, tchigh]
type = ’’;
% Description of the channel 2
chn_name = ’u’; % name of the channel
chn_oitem = 1; % visibility by operator
chn_raction = 1; % available for control
chn_prty = 0.5; % presentation priority
chn_type = 1; % (1/0) = (continuous/discrete) channel
chn_prange = [0.207821, 0.784081]; % expected physical range [min,max]
chn_drange = [-1;
1]; % desired range [min,max]
chn_irange = []; % desired range of increments [min,max]
chn_preinfo = ’olymedian’, ’c’, 2; % pre-processing information (see help

preinit)
% Prior informations follow. You won’t get very good documentation for this,
% the best is what you see here or you can find the file guidex.pdf in svn.
% In all cases prior information stacks under each other forming matrices.
chn_gain = []; % [uchn, mingain, maxgain] static gain first column is

index of input channel and then minimum and maximum
chn_stime = []; % sampling time is the scalar variable (unit=seconds)
% It provides the time-scale for different prior informations.
% All prior informations that follow need to have sampling time (chn_stime)

set,
% because they operate on Hertz (you must give the time-scale)
chn_ampl = []; % frequency response [uchn, frequency_in_hertz, amplitude_low,

15

amplitude_high, phase_in_degrees]
chn_cut = []; % cut-off frequency [uchn, frequency_in_hertz]
chn_tc = []; % time constant [uchn, tclow, tchigh]
type = ’’;

4.5.4 Prior information

ncom = 1; % the number of components
ord = 2; % order of the richest regressor
diacove = 0.0001; % diagonal of noise covariancecove
diaCth = 10000; % diagonal of par. covariance
dfm = 1000; % degrees of freedom of factors
dfcs = 1000; % degrees of freedom of components

doflattening = 0; % indicates whether the initial mixture should be flattened

4.5.5 Mixture initialization

SingleOnly = 0; % boolean flag whether to skip mixinit and calculate
just MixSingle

opt = ’p’; % iterative estimation method (p | q | b | f | Q | P)
niter = 10; % maximum number of iterations
frg = 0.999999; % forgetting factor

4.5.6 Mixture estimation

opt = ’p’; % iterative estimation method (p | q | b | f | Q |
P)

niter = 40; % maximum number of iterations
frg = 0.999999; % forgetting factor
frgEstType = 0; % estimation type of forgetting factor (0-none, 1-zero

alt, 2-prev estimate)
frgEstGrid = [1, 0.99, 0.983362, 0.972317, 0.953941, 0.923366, 0.872495,

0.787855, 0.647029, 0.412721, 0.022876]; %
% estimation grid of forgetting factor

4.5.7 Mixture validation

nsteps = 1; % the prediction is made nsteps ahead
pchns = [1, 2]; % channels to be predicted
cchns = []; % channels in condition
tstart = 1; % starting time determining the part of data used in validation
tend = 10000; % ending time determining the part of data used in validation
epss = 1; % (1/0) = (produce/do not produce) encapsulated postscript plots
pauses = 0; % pause in seconds after each plot set
plots = [0, 0, 0, 0]; % [show cluster plot , show time plot, mixture plot,

histogram], where (1/0)=(y/n)
segments = 0; % number of segments for segmentation test (0 means perform

no segm. test). These tests take a very long time.
alt = 1; % perform validation using alternative forgetting estimation

test (takes very long time, 0=do not run, 1=run this test).

16

4.5.8 User ideal

method = ’t’; % method determining the user target (t | d | z)
% t ... User defined (initialized by target.m) - this is default option
% d ... Designer is used
% z ... User defined (initialized by zeros)
userSetpointEths = [0, 0]; % user target component Eths
userSetpointCoves = [1e+06, 1]; % user target component Coves
userSetpointCorrect = 1; % do the user target component Correction ? (0=no,1=yes)
incremental = 0; % use incremental penalization controller ? (0=no,1=yes)

4.5.9 Design

designtype = ’i’; % design type (a | i | s)
% a ... academic design
% i ... industrial design
% s ... simultaneous design
horizon = [50, -1]; % horizon for evaluation of KLD
ufc = []; % ufcgen(aMix, aMixu) is used if ufc=[]

4.5.10 Verification

method = ’t’; % verification method (t | d)
% t ... verification of controller designed by step 7
% d ... verification of controller designed by UserIdeal with Designer in step

6
type = ’mixture’; % simulation type (none,simulink,mixture)
MixVer = varload(’siso1t_mixver’,’MixVer’); % verification mixture, enter empty

matrix to use the identification result
smlsimlength = 1000; % simulation length for verification

17

4.5.11 Original Data Plots

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

time

da
ta

 c
ha

nn
el

s

Original data

y
u

4.6 Results

4.6.1 Results of Mixture Identification and Parameter Estimation (and Model
Validation)

Comprehensive tests of the model validity:

Value of mixll: 1.959e+03 (the bigger the better)
Test of validity of the model: 1 (1=O.K.,0=bad)
Relative SE of pred.err: [0.000563259, 0.0100006](standard error of ep relative to std of data)
Test of whiteness: [0.0569913, 0.0524522]

(sum of correlations with delayed predictions)

Elementary statistics for the channel y:
MIN MAX MEAN MEDIAN STD

data -1.17939 2.21166 0.550652 0.559995 0.562724
differences -0.198751 0.228216 1.91239e-05 -0.000612289 0.0557418
predictions -1.22481 2.24095 0.550465 0.559804 0.561802
errors of prediction -0.123575 0.116885 0.000186817 0.00047614 0.0316938

Elementary statistics for the channel u:

18

MIN MAX MEAN MEDIAN STD
data 9.01343e-05 0.999918 0.496014 0.495356 0.288124
differences -0.98473 0.988182 -7.35039e-05 0.00352103 0.406616
predictions 0.48947 0.503043 0.496339 0.496339 0.00269178
errors of prediction -0.499192 0.508115 -0.000324842 -0.000919476 0.288127

Noise noise-variance estimates for individual factors:
1 2 dfcs

component 1 0.00332 0.0908 0.184
component 2 0.00295 0.0481 0.139
component 3 0.00288 0.0105 0.0809
component 4 0.0031 0.133 0.136
component 5 0.00304 0.113 0.169
component 6 0.0029 0.0113 0.0769
component 7 0.0027 0.0296 0.0816
component 8 0.00273 0.161 0.132

Mixture Factors

This mixture has 8 components with 2 factors each. Mixture consists of ARX factors. Interpretation
of tables below: Each column correspond to one delay. Each row corresponds to the channel, and the
first row employs the offset.

1. component, dfcs=1992.764705, factors:
Factor 1, modelled channnel: 1, called ’y’, cove=0.00332444, dfm=1396.443574
delays → 0 1 2

offset 0.0254656
1 y 1.81056 -0.818404
2 u 0.0386102 0.00306867 0.00264698

Factor 2, modelled channnel: 2, called ’u’, cove=0.0908168, dfm=643.449676
delays → 0 1 2

offset -0.84018
1 y -0.0248394
2 u 0.0214779 -0.0253872

2. component, dfcs=1507.208982, factors:
Factor 3, modelled channnel: 1, called ’y’, cove=0.00295473, dfm=1042.004114
delays → 0 1 2

offset
1 y 1.81278 -0.825892
2 u 0.00549226

Factor 4, modelled channnel: 2, called ’u’, cove=0.0480899, dfm=538.067667
delays → 0 1

offset 1.17689
1 y

2 u

3. component, dfcs=877.848773, factors:
Factor 5, modelled channnel: 1, called ’y’, cove=0.002882, dfm=759.558895
delays → 0 1 2

offset
1 y 1.82671 -0.835076
2 u 0.00357796 0.00239426

Factor 6, modelled channnel: 2, called ’u’, cove=0.0105385, dfm=588.537443

19

delays → 0 1
offset -1.55992

1 y

2 u 0.00852314

4. component, dfcs=1477.492899, factors:
Factor 7, modelled channnel: 1, called ’y’, cove=0.003096, dfm=730.192481
delays → 0 1 2

offset -0.0094869
1 y 1.73629 -0.733612
2 u -0.00625134

Factor 8, modelled channnel: 2, called ’u’, cove=0.132959, dfm=296.212771
delays → 0 1

offset 0.575572
1 y

2 u 0.0626245

5. component, dfcs=1835.268888, factors:
Factor 9, modelled channnel: 1, called ’y’, cove=0.0030384, dfm=1034.829765
delays → 0 1 2

offset -0.00504452
1 y 1.81475 -0.822106
2 u

Factor 10, modelled channnel: 2, called ’u’, cove=0.11339, dfm=387.774721
delays → 0 1

offset -0.238939
1 y

2 u

6. component, dfcs=834.370300, factors:
Factor 11, modelled channnel: 1, called ’y’, cove=0.00289895, dfm=732.072393
delays → 0 1 2

offset -0.0857733
1 y 1.82453 -0.832945
2 u 0.056043 0.00511369

Factor 12, modelled channnel: 2, called ’u’, cove=0.0112816, dfm=548.187967
delays → 0 1

offset 1.58209
1 y

2 u

7. component, dfcs=884.666363, factors:
Factor 13, modelled channnel: 1, called ’y’, cove=0.00270471, dfm=352.131763
delays → 0 1 2

offset 0.0264342
1 y 1.81473 -0.825945
2 u 0.0115676 -0.00416591

Factor 14, modelled channnel: 2, called ’u’, cove=0.0296442, dfm=203.645471
delays → 0 1 2

offset -1.22122
1 y 0.0136029
2 u 0.0120795

20

8. component, dfcs=1435.531948, factors:
Factor 15, modelled channnel: 1, called ’y’, cove=0.00273428, dfm=575.673990
delays → 0 1 2

offset 0.0186852
1 y 1.88061 -0.898927
2 u -0.0254451 0.00211818 0.00469921

Factor 16, modelled channnel: 2, called ’u’, cove=0.160593, dfm=250.840317
delays → 0 1 2

offset 0.440853
1 y 0.0127503
2 u -0.035918

4.6.2 Results of Single Component Identification and Parameter Estimation (and
Model Validation)

Comprehensive tests of the model validity:

Value of mixll: 3.682e+02 (the bigger the better)
Test of validity of the model: 0 (1=O.K.,0=bad)
Relative SE of pred.err: [0.000563556, 0.0100005](standard error of ep relative to std of data)
Test of whiteness: [0.0549918, 0.0507126]

(sum of correlations with delayed predictions)

Elementary statistics for the channel y:
MIN MAX MEAN MEDIAN STD

data -1.17939 2.21166 0.550652 0.559995 0.562724
differences -0.198751 0.228216 1.91239e-05 -0.000612289 0.0557418
predictions -1.22471 2.24139 0.550642 0.559758 0.561829
errors of prediction -0.125308 0.117345 1.0206e-05 0.000114461 0.0317111

Elementary statistics for the channel u:
MIN MAX MEAN MEDIAN STD

data 9.01343e-05 0.999918 0.496014 0.495356 0.288124
differences -0.98473 0.988182 -7.35039e-05 0.00352103 0.406616
predictions 0.496017 0.496017 0.496017 0.496017 6.37855e-14
errors of prediction -0.495927 0.503901 -2.78884e-06 -0.000660595 0.288124

Noise noise-variance estimates for individual factors:
1 2 dfcs

component 1 0.00341 1.07 1

Mixture Factors

This mixture has 1 components with 2 factors each. Mixture consists of ARX factors. Interpretation
of tables below: Each column correspond to one delay. Each row corresponds to the channel, and the
first row employs the offset.

1. component, dfcs=10845.145960, factors:
Factor 1, modelled channnel: 1, called ’y’, cove=0.00341127, dfm=10845.145972
delays → 0 1 2

offset
1 y 1.81299 -0.821943
2 u

21

Factor 2, modelled channnel: 2, called ’u’, cove=1.07418, dfm=10845.146001
delays → 0 1

offset 0.000229105
1 y

2 u

4.6.3 User Ideal Mixture

This mixture has 1 components with 2 factors each. Mixture consists of ARX factors. Interpretation
of tables below: Each column correspond to one delay. Each row corresponds to the channel, and the
first row employs the offset.

1. component, dfcs=1.000000, factors:
Factor 1, modelled channnel: 1, called ’y’, cove=0.00108019, dfm=1.000000
delays → 0 1

offset -0.978354
1 y

2 u
Factor 2, modelled channnel: 2, called ’u’, cove=0.089177, dfm=1.000000
delays → 0 1

offset -1.72128
1 y

2 u

4.6.4 Controller Mixture

This mixture has 8 components with 2 factors each. Mixture consists of ARX factors. Interpretation
of tables below: Each column correspond to one delay. Each row corresponds to the channel, and the
first row employs the offset.

1. component, dfcs=1992.764705, factors:
Factor 1, modelled channnel: 1, called ’y’, cove=0.00332444, dfm=1396.443574
delays → 0 1 2

offset 0.0254656
1 y 1.81056 -0.818404
2 u 0.0386102 0.00306867 0.00264698

Factor 2, modelled channnel: 2, called ’u’, cove=0.035041, dfm=1.000000
delays → 0 1 2

offset -2.10251
1 y -12.4589 9.19651
2 u -0.0540221 -0.00100543

2. component, dfcs=1507.208982, factors:
Factor 3, modelled channnel: 1, called ’y’, cove=0.00295473, dfm=1042.004114
delays → 0 1 2

offset
1 y 1.81278 -0.825892
2 u 0.00549226

Factor 4, modelled channnel: 2, called ’u’, cove=0.035041, dfm=1.000000
delays → 0 1 2

offset -2.10251
1 y -12.4589 9.19651
2 u -0.0540221 -0.00100543

22

3. component, dfcs=877.848773, factors:
Factor 5, modelled channnel: 1, called ’y’, cove=0.002882, dfm=759.558895
delays → 0 1 2

offset
1 y 1.82671 -0.835076
2 u 0.00357796 0.00239426

Factor 6, modelled channnel: 2, called ’u’, cove=0.035041, dfm=1.000000
delays → 0 1 2

offset -2.10251
1 y -12.4589 9.19651
2 u -0.0540221 -0.00100543

4. component, dfcs=1477.492899, factors:
Factor 7, modelled channnel: 1, called ’y’, cove=0.003096, dfm=730.192481
delays → 0 1 2

offset -0.0094869
1 y 1.73629 -0.733612
2 u -0.00625134

Factor 8, modelled channnel: 2, called ’u’, cove=0.035041, dfm=1.000000
delays → 0 1 2

offset -2.10251
1 y -12.4589 9.19651
2 u -0.0540221 -0.00100543

5. component, dfcs=1835.268888, factors:
Factor 9, modelled channnel: 1, called ’y’, cove=0.0030384, dfm=1034.829765
delays → 0 1 2

offset -0.00504452
1 y 1.81475 -0.822106
2 u

Factor 10, modelled channnel: 2, called ’u’, cove=0.035041, dfm=1.000000
delays → 0 1 2

offset -2.10251
1 y -12.4589 9.19651
2 u -0.0540221 -0.00100543

6. component, dfcs=834.370300, factors:
Factor 11, modelled channnel: 1, called ’y’, cove=0.00289895, dfm=732.072393
delays → 0 1 2

offset -0.0857733
1 y 1.82453 -0.832945
2 u 0.056043 0.00511369

Factor 12, modelled channnel: 2, called ’u’, cove=0.035041, dfm=1.000000
delays → 0 1 2

offset -2.10251
1 y -12.4589 9.19651
2 u -0.0540221 -0.00100543

7. component, dfcs=884.666363, factors:
Factor 13, modelled channnel: 1, called ’y’, cove=0.00270471, dfm=352.131763
delays → 0 1 2

offset 0.0264342
1 y 1.81473 -0.825945
2 u 0.0115676 -0.00416591

23

Factor 14, modelled channnel: 2, called ’u’, cove=0.035041, dfm=1.000000
delays → 0 1 2

offset -2.10251
1 y -12.4589 9.19651
2 u -0.0540221 -0.00100543

8. component, dfcs=1435.531948, factors:
Factor 15, modelled channnel: 1, called ’y’, cove=0.00273428, dfm=575.673990
delays → 0 1 2

offset 0.0186852
1 y 1.88061 -0.898927
2 u -0.0254451 0.00211818 0.00469921

Factor 16, modelled channnel: 2, called ’u’, cove=0.035041, dfm=1.000000
delays → 0 1 2

offset -2.10251
1 y -12.4589 9.19651
2 u -0.0540221 -0.00100543

4.7 Experimental Controller Verification Results

Elementary statistics for simulated channels:
channel mean variance range constr.sat.
1 ”y” 0.33103 0.295568 [-0.370158, 1.03331] 1
∆ 1 ”y” -0.000441788 0.0505706 [-0.158734, 0.156836] 1
2 ”u” 0.304823 0.587081 [-1.24137, 1.82741] 0.887
∆ 2 ”u” 0.000308341 0.221705 [-0.817178, 0.712314] 1

Note: Symbol ∆ means increments of the signal, ”range” means the minimum a maximum of simu-
lated signal values, ”constr.sat.” means constraints satisfaction ratio for given channel and constraint
described in the Section Channel Description.

Sample simulation signals :

0 100 200 300 400 500 600 700 800 900 1000
−1.5

−1

−0.5

0

0.5

1

1.5

2
Sample simulation run of verification

y
u

Simulation signals histogram :

24

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

10

20

30

40

50
Signal histograms of verification

y

−1.5 −1 −0.5 0 0.5 1 1.5 2
0

10

20

30

40

50
u

4.8 Conclusion

The identification part of processing found a mixture of 8 components. The components are very
similar and close to the parameters of the model used for generating of the identification data. The
controller designed works well according to the cerification.

25

Chapter 5

Summary and Conclusions

With Jobcontrol user-friendly interface, Mixtools package becomes powerful set of utilities for sys-
tem identification employing Gaussian mixture model. Together with the Designer toolbox, which
serves the purpose of finding optimal controller parameters, and consequently for constructing ideal
controller. The choice for Matlab environment makes it possible to simplify complicated matrix cal-
culations connected with the task of system identification and visualize results in a very convenient
way.

26

Chapter 6

Acknowledgements

This report was supported by MŠMT 1M0572 (DAR), project AV ČR 1075351, project GA ČR
102/03/0049, and project AV ČR 1ET100750401 (Baddyr).

27

Bibliography

[1] M. Kárný, J. Böhm, T.V. Guy, L. Jirsa, I. Nagy, P. Nedoma, and L. Tesař. Optimized Bayesian
Dynamic Advising: Theory and Algorithms. Springer, London, 2005.

[2] P. Nedoma, M. Kárný, T.V. Guy, I. Nagy, and L. Tesař. Learning and prediction with normal
mixtures. Technical Report 2045, UTIA AV CR, 2002.

[3] V. Peterka. Bayesian system identification. In P. Eykhoff, editor, Trends and Progress in System
Identification, pages 239–304. Pergamon Press, Oxford, 1981.

28

	Introduction
	Jobcontrol Description
	Usage of interactive script jobmain.m
	Using the jobcontrol batch processing
	How to run mixtools/designer repeatedly from the given point?
	Using saved m-files
	Where to find results?
	Mixture Model Validation Results
	Controller Verification Results

	How to start use jobcontrol?

	Reference - Description of the structure Job
	Examples
	Aims of the study
	Description of the study
	Data
	Processing
	Description
	Experiment definition
	Data description
	Channels description
	Prior information
	Mixture initialization
	Mixture estimation
	Mixture validation
	User ideal
	Design
	Verification
	Original Data Plots

	Results
	Results of Mixture Identification and Parameter Estimation (and Model Validation)
	Results of Single Component Identification and Parameter Estimation (and Model Validation)
	User Ideal Mixture
	Controller Mixture

	Experimental Controller Verification Results
	Conclusion

	Summary and Conclusions
	Acknowledgements

