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1 Introduction
This work has been motivated by the need for improvement of Bayesian filtering for
sensor-less control of electric drives. This is a traditional area of application of Bayesian
filtering, namely Extended Kalman Filter [1], [2, 3, 4, 5]. All current implementation
are based on the fact that covariance matrices of the disturbances are known. This
assumption is not met in this case and the covariances are often manually tuned for
optimal performance [6]. Tuning of the EKF is a complex process usually discouraging
the researchers from using this filter and strongly limiting its practical applications.
The idea of this report is to consider unknown variances as additional parameters and

estimate their values. The problem of unknown disturbances of the state-space model
has been addressed using many approaches. One important approach is based on the use
of marginalized particle filter [7]. In this paper, we study their properties and suitability
for sensor-less control.

1.1 State of the art
Severeness of the assumption of unknown covariance of disturbances in a state-space
model has been realized very early [8]. Traditionally, the problem is solved for linear
systems where many dedicated methods have been developed [9]. Methods for non-linear
systems are also available [10], however, these require computationally heavy off-line
processing are thus are unsuitable for an exploratory analysis of an unknown system.
Another common assumption is that the we estimate time invariant full matrix Q

of the system. In this case, the derivation is rather complicated, however, proofs of
convergence are available [11]. This approach is not suitable for our problem since the
covariance matrices are assumed to be state-dependent.
More suitable approach is reformulation of the problem into the form of Bayesian

filtering. The unknown covariance matrices are considered as a new state-variable for
which a state-transition equation needs to be defined. This is an early formulation of
the problem [8], which can now be fully explored with the availability of approximate
Bayesian inference via particle filters [12]. The drawback of particle filtering is the need
to sample from potentially large space. This can be remedied by using technique of
Rao-Blackwellization [13], also known as marginalized particle filter [14]. We focus in
this approach, which is shortly reviewed in the next Section.

2 Bayesian Filtering
Consider a sequence of observation models in the following manner:

dt ∼ f (dt|xt) , xt ∼ f (xt|xt−1) . (1)

Here, xt is a vector known as the state variable and dt are the observations. The first
density in (1) is known as the observation model, the second is known as the evolu-
tion model. By Bayesian Filtering, we mean the recursive evaluation of the filtering
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distribution, f (xt|Dt), using Bayes’ rule [15, 13]:

f (xt|Dt−1) =
∫
f (xt|xt−1) f (xt−1|Dt−1) dxt−1, (2)

f (xt|Dt) ∝ f (dt|xt) f (xt|Dt−1) , t = 1, 2, .... (3)

where f (θ1) is the prior distribution, and Dt = [d1, . . . , dt] denotes the set of all obser-
vations.
Bayesian filtering (BF) is analytically tractable if (i) marginalization over xt−1 is

analytically tractable, and (ii) the resulting marginal distribution, f (xt|Dt), is in the
same form as the previous step, f (xt−1|Dt−1), allowing the procedure to be iterated. (i)
and (ii) are satisfied in only a very limited class of models [16], most notable example of
which is the Kalman filter [17]. For models outside of the tractable class, exact inference
is computationally prohibitive and must be replaced by approximation. Two important
approximation techniques are now shortly reviewed.

2.1 Extended Kalman Filter
Consider a non-linear Gaussian state-space model

f(xt|xt−1) = N (g(xt−1), Q), (4)
f(dt|xt) = N (h(xt−1), R),

where g(·) and h(·) are vector functions of appropriate dimensions, N (µ,R) denotes
Gaussian probability density with mean value µ and variance R. Due to non-linear
functions g() and h(), operations (2)–(3) do not yield posterior density in the form of a
Gaussian. However, it can be approximated for by a Gaussian distributed density of the
parameter xt−1,

f(xt−1|Dt−1) = N (x̂t−1, Pt−1|t−1),

using Taylor expansion at the current point estimate, θ̂t−1 as follows:

f(xt|Dt−1) ≈ N (g(x̂t−1), Pt),
f(xt|Dt) ≈ N (g(x̂t−1)−K(dt − h(x̂t−1)), Pt|t). (5)

where A = d
dxt
g(xt), C = d

dxt
h(xt) and K,Pt are the Kalman gain and posterior covari-

ance matrix well known from the Kalman filter.

Ry = C ′Pt−1C +R,

K = Pt−1CR
−1
y (6)

Pt|t = Pt−1 − Pt−1C
′R−1

y CPt−1,

Pt = APt|tA+Q.

The observation likelihood is then:

f(dt|Dt−1) ≈ N (h(x̂t−1), Ry). (7)

This approximation is performed in each step as is typical for local approximations which
are known to diverge with time [18].
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2.2 Particle filtering
Particle filtering (PF) [13] refers to a range of techniques for generating an empirical
approximation of f (Xt|Dt), where Xt = [θ1, . . . , xt] is the state trajectory:

f (Xt|Dt) ≈ fδ(Xt|Dt) = 1
n

n∑
i=1

δ
(
Xt −X(i)

t

)
, (8)

where X(i)
t , i = 1, . . . , n are i.i.d. samples from the posterior and δ(·) denotes the Dirac

δ-function. We reserve the symbol fδ(·) for the empirical distribution. Therefore, this
approach is feasible only if the we can sample from the exact posterior, f (Xt|Dt) . If this
is not the case, we can draw samples from a chosen proposal distribution (importance
function), q (Xt|Dt), as follows:

f (Xt|Dt) ≈
f (Xt|Dt)
q (Xt|Dt)

1
n

n∑
i=1

δ
(
Xt −X(i)

t

)
. (9)

Using the sifting property of the Dirac δ-function, the approximation can be written in
the form of a weighted empirical distribution, as follows:

fδ (Xt|Dt) ≈
n∑
i=1

w
(i)
t δ

(
Xt −X(i)

t

)
, (10)

w
(i)
t ∝

f
(
X

(i)
t |Dt

)
q
(
X

(i)
t |Dt

) . (11)

Under this importance sampling procedure, the true posterior distribution need only be
evaluated point-wise. Furthermore, normalizing constant of f(·) is not required, since
(10) can be normalized trivially via a constant c =

∑n
i=1w

(i)
t . Weights (11) may be

written in the following recursive form:

w
(i)
t ∝

f
(
dt|x(i)

t

)
f
(
x

(i)
t |x

(i)
t−1

)
q
(
x

(i)
t |X

(i)
t−1, Dt

) w
(i)
t−1. (12)

where, now, x(i)
t are drawn from the denominator of (12), which can be chosen as

f (xt|xt−1). Thus, the form of the posterior distribution is preserved by Bays rule as
is characteristic for global approximation, [18]. Successful application of the particle
filter requires more steps—such as re-sampling and appropriate choice of the importance
function—which are beyond scope of this paper. See [13] for more details.

2.3 Marginalized Particle Filtering (MPF)
The main advantage of importance sampling is its generality. However, it may be com-
putationally prohibitive to draw samples from the possibly high dimensional state space
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of xt. Furthermore, it is necessary to generate large numbers of such particles in these
cases in order to achieve an acceptable error of approximation. These problems can be
overcome in cases where the structure of the model (1) allows analytical marginalization
over a subset, xt, of the full state vector x′t = [x′t, z′t] [13, 14, 7]. Therefore, we consider
the factorization

f (Xt|Dt) = f
(
Xt|Zt, Dt

)
f (Zt|Dt) , (13)

where f
(
Xt|Zt, Dt

)
is analytically tractable, while f (Zt|Dt) is not. We replace the

latter by a weighted empirical distribution, in analogy to (9), yielding

f (Xt|Dt) ≈
n∑
i=1

w
(i)
t f

(
Xt|Z(i)

t , Dt

)
δ
(
Zt − Z(i)

t

)
, (14)

w
(i)
t ∝

f
(
Z

(i)
t |Dt

)
q
(
Z

(i)
t |Dt

) . (15)

Note that we now only have to sample from the space of zt. The weights can, once again,
be evaluated recursively:

w
(i)
t ∝

f
(
dt|z(i)

t

)
f
(
z

(i)
t |z

(i)
t−1

)
q
(
zt|Z(i)

t−1, Dt

) w
(i)
t−1. (16)

Hence, the model (1) must admit a partition, [xt, zt], for which xt−1 can be integrated
analytically in (2) and the resulting f (xt|Zt, Dt−1) is of the same form as in the previous
step. Then, the marginalized particle filter (14)–(16) can be evaluated exactly. This
requirement is always fulfilled when the model can be decomposed in linear and non-
linear parts [14], and possibly even for wider class [16]. (14)–(16) is sometimes referred
to as the Rao-Blackwellized particle filter [13].

3 MPF for Models with Unknown Covariance Matrix
Note that formulation (13)–(15) readily offers a way how to estimate covariance matrices
for linear state-space models with time-invariant covariance matrices, i.e. linear g() and
h() in (4). The original state xt becomes xt and the unknown covariance matrices, Q
and R, form the extension zt = [vec(Qt)′, vec(Rt)′]′. The state space model (4) has to
be extended by an evolution model on the covariance matrices, f(zt|zt−1). Then, the
resulting filter acts as a bank of n Kalman filters, each with different covariance matrix,
z

(i)
t == [vec(Q(i)

t )′, vec(R(i)
t )′]′.

If the MPF formulation is followed strictly for a non-linear model (4), the nonlinear
part of xt (in the sense of [14]) would have to be estimated using empirical approximation
as well. This would complicate future use of the result. Therefore, we use formulation
of [7], where MPF arise as an approximation of term f(Zt|Dt) in (13) by an empirical
density. In the same spirit, we can replace f(Xt|Zt, Dt) by a suitable approximation,
f̃(Xt|Zt, Dt), for example that of the EKF (4). The resulting posterior density is then:
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f (xt, zt|Dt) ≈
n∑
i=1

wif̃
(
xt|z(i)

t , Dt

)
δ(z(i)

t − zt). (17)

3.1 Scalar variance
In one-dimensional case, the covariance matrix is just a non-negative scalar. Note that
posterior density of unknown variance of a Normal model is inverse-Gamma distributed
[15]. Therefore, we propose to model evolution of scalar variance, for example f(rt|rt−1),
by an inverse-Gamma random walk

f(rt|rt−1) = iG(a, b) = ba

Γ(a)
r−a−1
t exp(− b

rt
), (18)

where a > 0, b > 0 are shaping parameters of the density, and Γ(a) is the Gamma
function [19]. The walk will be defined via moments of (18), as follows:

E(rt) = b

a− 1
≡ rt−1, std[rt] = b

(a− 1)
√
a− 2

≡ krt−1. (19)

The first choice is typical for a random walk, the second choice makes standard deviation
of the process proportional to its mean value by a chosen constant of proportionality
k. Low values of k allows only small variations of the process, higher values of k model
rapid variations of the variance. Substituting choices (19) into (18) we get:

f(rt|rt−1) = iG
( 1
k2 + 2, rt−1

( 1
k2 + 1

))
. (20)

Notes:

• rt can be sampled using Gamma sampler, using relation 1/rt ∼ G(a, b).

• Random walk of this type may yield unstable results. Stabilization can be achieved
using geometric combination of rt−1 and some reference point rref

E(rt) = b

a− 1
≡ rlt−1r

1−l
ref , (21)

where l ∈< 0, 1 > is a chosen weight of the geometric combination.

Remark 1 (Log-normal random walk). Alternatively, we may sample rt from a log-
Normal density rt ∼ logN (µ, σ). Using conditions (19) with substituted moments of the
log-Normal density, parameters µ, σ must satisfy:

exp(µ+ 1
2
σ2) = rt−1,

√
eσ2 − 1 exp(µ+ 1

2
σ2) = krt−1.

Hence, σ2 = ln(k2 + 1), µ = ln(rt−1)− 1
2σ

2.
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3.2 Multi-dimensional covariance matrix
In analogy to uni-variate case, we can define random walk on multivariate matrix using
inverse Wishart density, since it is the form of posterior density of unknown covariance
matrix of multi-variate normal density [15]. The evolution model of p× p matrix Qt is

f(Qt|Qt−1) = iW(Ψ, ν) = |Ψ|
1
2ν |Qt|−

1
2 (ν+p+1)

2
νp
2 Γp(ν2 )

exp
{

tr
(
−1

2
ΨQ−1

t

)}
,

where Γp() is the multivariate Gamma function [19]. Moments are:

E(Qt) = Ψ
ν − p− 1

≡ Qt−1, var(qij) =
(ν − p+ 1)ψ2

ij + (ν − p− 1)ψiiψjj
(ν − p)(ν − p− 1)2(ν − p− 3)

. (22)

Remark 2 (Univariate special case). of the Wishart density is inverse-Gamma which was
used in the previous Section. For diagonal elements (22) reduces to

E(qii,t) = ψii,t
ν − p− 1

≡ qii,t−1, std(qii,t) =
√

2ψii,t
(ν − p− 1)

√
ν − p− 3

≡ kqii,t.

Here, we imposed the same requirements as in (19) which leads to the following choice

ν = 2
k2 + p+ 3, ψii,t = (ν − p− 1)qii,t−1. (23)

Generalizing (23) to the full rank we obtain Ψt = (ν − p− 1)Qt−1.
Sampling from inverse-Wishart density can be achieved using samples from Wishart

identity since
Qt ∼ iW(Ψt, ν)⇐⇒ Q−1

t ∼ W(Ψ−1
t , ν).

An algorithm for sampling from Wishart density has been proposed in [20]. It can be
adapted to inverse-Wishart density as follows:

1. Generate a random p× p lower triangular matrix A such that:

• aii = (χ2
n−i+1)1/2, i.e. aii is the square root of a sample taken from a chi-

square distribution χ2
n−i+1

• ai,j , for j < i, is sampled from a standard normal distribution N (0, 1).

2. Compute the matrix Pt = LAA′L′ where L is Choleski decomposition of Ψ−1
t ,

Ψ−1
t = LL′. P−1

t is a sample from the inverse-Wishart distribution W(Ψt, ν).

Note the Choleski decomposition of matrix Ψt and thus Qt−1 playes an important role
in this scheme. This decomposition is also important in square-root implementations
of the Kalman filter [21]. Hence, combination of these two approaches can be improve
computational efficiency of the scheme.

7



Remark 3 (Square-root EKF). Square root algorithms are common for Kalman filters,
however, these must be modified in order to be used for EKF. Specifically, the only
part of the filter that can be computed in square-root form is the Kalman gain, K (6),
since predictions are computed using non-linear evolution model. However, the stan-
dard square-root algorithm typically computes numerical values of K = AK. This is
advantagegous for computing predictions of the standard Kalman filter, but disadvan-
tageous for EKF. The K needed in EKF my be obtained as K = A−1K but this is
computationally expensive. A better solution is still to be found.

4 Experimental Verification
In this Section, we apply the approach defined above to two problems: a toy problem
where model disturbances are simulated, and PMSM drive model with disturbances
simulated by a realistic simulator operating at 1µs.

4.1 PMSM model
For all experiments, we will use the following non-linear model of a PMSM electrical
drive discretized at ∆t = 125µs:

isα(t+ 1) = (1− Rs
Ls

∆t)isα(t) + Ψpm

Ls
∆tωme(t) sinϑe(t) + usα(k)∆t

Ls
,

isβ(t+ 1) = (1− Rs
Ls

∆t)isβ(k)−
Ψpm

Ls
∆tωme(k) cosϑe(k) + usβ(t)

∆t
Ls
, (24)

ωme(t+ 1) = ωme(t),
ϑe(t+ 1) = ϑe(t) + ωme(t)∆t.

Here, isα, isβ, usα and usβ represent stator current and voltage in the stationary reference
frame, respectively; ωme is electrical rotor speed and ϑe is electrical rotor position. Rs
and Ls is stator resistance and inductance respectively, Ψpm is the flux of permanent
magnets on the rotor, B is friction and TL is load torque, J is moment of inertia, pp is
the number of pole pairs, kp is the Park constant.

4.2 Simulated diagonal covariance matrix
We have simulated model (24) with the following covariance matrices: Q0 = diag([1e−
6, 1e− 6, 1e− 3, 1e− 4]) and R0 = 1e− 8 I2, where I2 is the 2× 2 identity matrix. The
covariance matrices Qt were rapidly switched at times t = [1000, 3000, 5000, 7000], at
each time, one of the diagonal element was multiplied 10 times and after 1000 steps it
was returned to its original value. See Fig. 1 for illustration, where simulated values
are displayed in tandem with posterior mean values. The results were obtained using
evolution model (21) with parameters Qref = 10Q0, l = 0.999, k = 0.1. Note that the
estimates follow simulated values even for 20 particles which is quite promising from
computational point of view.
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Figure 1: Mean values of estimated diagonal matrix Q by MPF using EKF for PMSM
model and random walk model (21) with parameters Qref = 10Q0, l =
0.999, k = 0.1. Two runs for 200 particles (top) and 20 particles (bottom)
are displayed.
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In this experiment, the stabilization of the evolution model via (21) was necessary,
since the original model (20) may become unstable. Results of the same experiment as
above except for l = 0.9999, are displayed in Fig. 2. Note that for 200 particles, the
filter provides reasonable estimates of the covariance matrix, while for 20 particles, the
filter got stuck in a local minima, with Q3,3,t and Q4,4,t falling down to zero. This can
be explained by the chosen evolution model. In fact, they estimates of Q3,3,t were of
orders 1e− 10 for which the chosen evolution model allows standard deviation of similar
order and thus the particle at time t+1 remain in this part of space. With large particle
population, the algorithm was able to reject those while with 20 particles there was no
reasonable alternative particle to choose.
Remarks:

• Qualitatively similar results were obtained using log-normal evolutions model, Re-
mark 1. However, we will consider gamma sampling in further experiments, since
it is slightly less computationally demanding.

• The only tuning parameter in the evolution models is parameter k. Its low val-
ues encourage small variations in the variance evolution yielding smoother curve
estimates. Results of two simulation runs with k = 0.1 and k = 0.3 are displayed
in Fig. 3. Note that the evolution model with k = 0.1 allows generation of a
narrow range of particles (visualized by bounds on minimal and maximal value of
the particle range), hence the estimates are not able to react to the step function
quickly enough. The evolution model with k = 0.3 generates a wider range of
particles, thus being able to react faster to step function. However, it tends to
produce rather ‘spiky’ estimates in contrast to smoother curves provided by the
model with lower k.

• All experiments so far were done for systems with high signal-to-noise ratio (SNR)
with variance of both observation and state noise being much lower than absolute
values of the state variable. Specifically the variance of the observation noise was
of order 1e− 8 which is much lower than the lowest variance on the state variable,
i.e. 1e− 6. Results of estimation of Qt for two simulation runs with Rt = 1e− 6 I2
and R = 1e− 4 I2 are displayed in Figure 4.
Note that for Rt = 1e − 6 I2 the step on Q1,1,t was not detected, but it was
compensated by increase of variance Q2,2,t. For Rt = 1e − 4 steps in variance
were not detected at all without any compensation. The result is expected since
the first two state variables are directly observed, with variance of the observation
noise being 100 times higher that that of the noise on the evolution model of Q1,1,t
and Q2,2,t.

4.3 Simulated full covariance matrix
An experiment with full covariance matrix was performed with data simulated in the
same way as in the previous experiments, i.e. step functions on diagonal of the covariance
matrix Qt. However, the covariance matrix was estimated using inverse-Wishart random
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Figure 2: Mean values of estimated diagonal matrix Q by MPF using EKF for PMSM
model and random walk model (21) with parameters Qref = 10Q0, l =
0.999, k = 0.1. Two runs for 200 particles (top) and 20 particles (bottom)
are displayed.
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Figure 3: Details of results for two simulation runs with k = 0.1 (left) and k = 0.3
(right). Simulated values of Q2,2,t (thick dashed line) are displayed in tandem
with mean value of posterior density (solid line) and upper- and lower-bound
on the posterior density (thin dashed line).

walk (23). Results of the experiment are displayed in Figure 5. Interpretation of the
results is more demanding than in the previous case and detailed analysis is beyond
scope of this report. We only note that:

• Once again, Wishart random walk as defined in (23) is not numerically stable and
estimation procedure using thsi random walk diverges similarly to that on Fig. 2.
Geometric combination of reference vector and diagonal element in the Choleski
decomposition of Qt−1 in the style of (21) was required to stabilize the procedure.

• More particles is now required to achieve better results due to the increase of di-
mensionality of the state vector. Results in Fig. 5 were obtained for 2000 particles.

• The problem is now highly ill-posed since 2 observations at time t are used to
estimate 14 parameters. The posterior density on the paremeters is expected to
be rather flat and correlated.

• Note that all four step functions on the diagonal elements of Qt are reflected in
the posterior mean value. However, they are less accurate that posterior mean
values obtained using pure diagonal model, Fig. 1. This is expected since more
candidates for explanation of the observations are now evaluated.

• All non-diagonal elements were supposed to be zero, yet non-zero values were
estimated, especially during transient periods. Assessment of significance of these
values is rather complicated. In Fig. 5 the scales of off-diagonal elements were
adjusted such that maximum on the y-axix of i, jth element is square-root of
product of maximas on ith and jth diagonal element. In this scale, the estimated
values appears to be reasonably close to zero.

• Similarly to the previous experiment, the results deteriorate with decreasing SNR.
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Figure 4: Results of estimation for different SNR.
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Figure 6: Posterior expected values of Qt for exeriment with varying off-diagonal ele-
ments.

The ability to estimate non-diagonal elements was tested by simulating Qt = Q0 with
reference values Q0, l = 0.99 complemented by step functions on off-diagonal elements

q1,2 = q2,1 = 1
2
√
q11q22 for t ∈ [1000, 2000],

q3,4 = q4,3 = −1
2
√
q44q33 for t ∈ [3000, 4000],

q1,3 = q3,1 = 0.9√q11q33 for t ∈ [5000, 6000],

Results of this experiment are displayed in Figure 6. Note that the first step on q1,2 is
reflected in the estimates, while the other steps on q3,4 and q1,3 are completely ignored.
We conjecture that this is due to the use of EKF as approximation in (17). The only
way how matrix Qt enters posterior likelihood (7) of the EKF is via the Kalman gain
K (6) and matrix Ry. However, due to diagonal matrix Rt and sparse matrix C, the
influence of Qt on the posterior is greatly reduced.

4.4 Realistic Simulator of a PMSM drive
The main motivation for this research was the need to estimate covariance structure
of PMSM drive. The most challenging scenario for the drive is the area of very low
speed. A comparison of estimates of rotor speed, ωt, and rotor position, θt, using (i)
EKF with expert-selected covariance matrix, and (ii) MPF with wishart random walk
with reference set the the same covariance matrix as EKF, is displayed in Figure 7. Note
that both estimators fail to estimate the true positions and speed of the rotor. Note,
however, that the true values remain within uncertainty bounds of the MPF for most of
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Figure 7: Posterior density of rotor position, θt, (left column) and rotor speed, ωt, (right
column) obtained using EKF with expert-chosen covariance (upper row) and
MPF with inverse-Wishart random walk (lower row). Dashed black line de-
notes simulated values, solid blue denotes mean value of the posterior density
and dashed gray denotes unceratinty bounds on the estimate.

the time. The main conclusion from this experiment is that the observed data do not
carry sufficient information allowing correct estimation of random-walk evolution model
on covariance matrix Qt.

5 Discussion and conclusion
We have shown in simulation, that combination of extended Kalman filter with particle
filter via marginalized particle filter is applicable to the problem of estimation of unknown
covariance matrices. The method is a combination of two constituents:

1. Bayesian filter of the non-linear state-space model, potentially approximate,

2. Extension of the state for elements of Qt and definition of its evolution model.

In this report, we have investigated the use of EKF as the Bayesian filter and random-
walk evolution models for Qt. Potential of the method was clearly demonstarted on the
toy problem with diagonal matrices, Section 4.2, where 20 particles (each complemented
by an associated Kalman filter) were sufficient to correctly estimate diagonal of the co-
variance matrix Qt. However, further extension of the approach to completely unknown
matrix Qt presents a challenge. Note that dimension of the state extended by the un-
known matrix Qt is significantly greater than dimension of the observations. Hence, the
problem becomes ill-posed and yielding only flat posterior density on the state.
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For a practical problem, such as sensor-less control of PMSM drives, the only feasible
way to address the problem appears to be construction of a detailed model of covariance
structure. Such a model should be based on all available expert knowledge about laws
of physics of the process. All unknowns and uncertainties within the model shoulde
be aggregated into a small number of shaping parameters. For this aprticular case,
deviations from the mean values (given by the difference equations (24)) aer known to
arise from various sources:

PWM (pulse width modulation) due to dead-times effects and Volt-Ampere character-
istics of the power electronics. These deviations are ever-present but bounded, so
that their variance can be easily deduced.

Discrete sampling: differential equations of the motor are converted to the form of
difference equations using a fixed width sampling rate. It is assumed that profile
of the signal during one sample step is known (e.g. rectangular of linear). This
assumption is justified when the system is close to linear (e.g. when the revolutions
are slow, approximation of two subsequent sin(x) by a linear function is justifiable.
However, the accuracy of this approximation heavily depends the operating regime.
For example, the error of approximation of function sin(x) is growing with growing
speed of the rotor .

Unknown parameters: most likely, parameters of interest, such as R, L etc, are not
known exactly. A deviation from their true values would cause another (systematic)
error in the equations.

These sources can be parameterized with one or two parametetrs each. Marginalized
particle filter, as presented in Section 2.3, presents a promising tool for estimation of
such shaping parameters since it allows their non-linear evolution models.
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