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1 Introduction

Ranking of alternatives is a common, difficult and repeatedly addressed problem,
especially when it requires negotiation of experts. This important task is required
by many application domains like medicine, environment, engineering, e-democracy,
finances, (e.g., Prato, 1999; Rios Insua et al., 2003; Hallerbach and Spronk, 2003).
Naturally, the experts have different viewpoints and preferences and systematic
approach able to harmonise theirs often contradictory demands is needed. The desired
approach should respect personal biases of the experts as well as different scaling
presented. A considerable amount of research is devoted to the search formethodology
providing the desired solution, see, for instance Jacquet-Lagreze and Siskos (1982),
Kim et al. (1999), Butler et al. (2001), Slevin et al. (1998), Rios Insua et al. (2003) and
Medaglia et al. (2007). Difficultyof the fair rankingof alternatives is formally expressed
by a bit depressing Arrow’s impossibility theorem, Arrow (1995). The limitations
expressed by it are now attacked by more realistic problem formulations based on
a ‘soft’ description of preferences, Nurmi (2001), but a constructive unambiguous
methodology is still missing. The present paper tries to fill this gap by reformulating
the ranking problem as estimation of unknown ‘objective’ rank-determining vector.
With this reformulation, it boils down to modelling of relationships of marks assigned
by respective experts to the parameter describing the objective ranking and to simple
Bayesian parameter estimation, Peterka (1981).

The work has been inspired by the evaluation procedure currently employed by
the majority of grant agencies. The procedure relies on marks provided by experts
reviewing the submitted project proposals. The complete procedure considers several
different tasks including ranking of the submitted proposals according to some
predefined criteria. This ranking procedure serves as the problem prototype here.

The layout of the paper is as follows. Section 2 describes the current ranking
procedure as it is and outlines its main drawbacks. Formalisation of the ranking as
parameter estimation problem is proposed in Section 3. Section 4 describes the key
model of the marking process. The solution of the resulting estimation problem is
presented in Section 5. The proposed procedure, which modifies the current ranking
practice, is summarised in Section 6. Section 7 presents a case study of the developed
solution on real data. Section 8 provides the concluding remarks, and outlines the
directions of the future work.

The following notation and conventions are used throughout the text. x∗ denotes
a set of possible values of the variable x.

◦
x means cardinality of the finite set x∗.

f(·|·) denotes probability density function (pdf). The pdfs are distinguished by the
identifiers in their arguments. No formal distinction ismade between randomvariable,
its realisation and an argument of a pdf. The correctmeaning follows from the context.

2 Standard proposals ranking and its drawbacks

Project proposals, submitted to a granting agency, are numbered by p ∈ p∗ ≡
{1, . . . ,

◦
p}. Limited overall budget available for the support motivates the peer review

process to select high quality proposals. To respect various grant agency’s aims,
several criteria, labelled by c ∈ c∗ ≡ {1, . . . ,

◦
c}, are established. The importance of

the particular criterion is reflected by its weight wc > 0,
∑

c∈c∗ wc = 1. To set a lower
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limit on the proposal’s quality, the grant agency a priori determines threshold values
tc ∈ m∗

c for all criteria c ∈ c∗, wherem∗
c defines a set of possible marks for the criterion

c. Therefore, only the proposals passed the thresholds for all criteria can be considered
for the support.

The review process is performed by
◦
e independent experts. Each expert e ∈ e∗ ≡

{1, . . . ,
◦
e} judges a subset of proposals ep∗ ≡ {1, . . . , e

◦
p} ⊂ p∗, allocated to him.

The allocation is done so that each proposal p is reviewed by several experts forming
the set pe∗ ≡ {1, . . . , pe∗} ⊂ e∗.

The number of the proposals, judged by the expert e, is 1 < e
◦
p � ◦

p. The left-hand
side restriction allows the expert to compare quality of the competitive proposals and
thus decreases the needed number of experts. The right-hand side restriction shortens
the reviewing time and reduces inevitable personal biases and inconsistencies.

Mark empc ∈ m∗
c , assigned by the eth expert, expresses expert’s subjective opinion

about the pth proposal with respect to the degree of satisfaction of the cth criterion.
The completely ordered set of all possible marks with respect to the cth criterion m∗

c ,
c ∈ c∗, is a priori defined by a finite collection of values on the interval [mc,mc], where
mc and mc are the lowest and the highest possible mark, respectively. The overall
mark emp of the proposal p, assigned by the eth expert, is computed as the weighted
sum of marks empc

emp ≡
∑
c∈c∗

wc
empc. (1)

As said, each proposal p is judged by a group of experts pe∗ ≡ {1, . . . , p ◦
e} ⊂ e∗ with a

few members. A full agreement on the marking empc, ∀e ∈ pe∗, ∀c ∈ c∗ is required in
the specific case, which has motivated this paper. To reach this, a detailed discussion
of the group pe∗ is supposed. The discussion can, however, modify the experts’
original marking with respect to particular criteria empc and, consequently, the overall
marks emp.

The overall harmonisation of experts’ marking of all proposals is the final stage of
the review process. On the final experts’ assembly, where all

◦
e experts participate:

• the proposals, whose group-harmonised marking of particular criteria fail to
cross the given thresholds, are taken as unsuccessful and withdrawn from the
future consideration

• the remaining proposals are ranked according to the overall mark assigned to
them

• the final overall harmonisation is performed with the stress on the proposals
with the highest overall marks (the most probable candidates for funding).

The proposals with marks the assembly doubts about as well as those with identical
marks are ranked by the assembly, which can modify the marks.

The described well-elaborated procedure has the following drawbacks.

• The outcome is probably biased due to naturally different scaling of experts’
marking. For instance, some experts take the upper marking bounds as
unreachable ideals. Others may interpret them as a basis, which should be left
only when some significant flaws are found in the project proposal.
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• The reaching of the full agreement is hard even within a small group of experts.
Often, the group fixes marks due to the limited negotiation time and sometimes
at price of voting. It can be practically reached only when finite set of marks m∗

c ,
c ∈ c∗, is allowed (so-called discrete-valued ranking).

• A fair overall ranking via discussion of the experts’ assembly is almost
impossible as each expert e reviewed only the subset ep∗ of all proposals p∗.
Moreover, the assembly is too large for an efficient and fair communication.

The procedure proposed below suppresses the mentioned drawbacks:

• personal biases and inconsistencies are counteracted

• need for the full agreement on marking can be relaxed

• a set of possible marks m∗
c is defined as an infinite collection of all values within

the interval [mc,mc], so-called real-valued ranking

• the final ranking is done computationally in a well-justified way, so that the
expert assembly (if needed at all) may care only about the exceptional cases
requiring complementary peer review

• the proposed procedure offers an additional quality assurance as it points to
experts with excessive biases or personal uncertainty.

3 Formalisation of ranking problem as parameter estimation

During the peer review process, each proposal p gets an overall mark mp ∈ [m,m],
0 ≤m < m < ∞, see equation (1). The considered ranking procedure concerns
creation of the ranking vector, which ranks the proposals according to their quality:
from the worst to the best. A number of high quality proposals, corresponding to the
several last elements of the ranking vector, will be considered for funding. The final
number of such proposals is determined by the agency’s budget that has to cover the
sum of budgets of the supported proposals.

The ranking procedure is applied only to the proposals eligible for the support,
i.e., those passed corresponding threshold values. Elements of the desired ranking
vector are the overall marks reached by the respective proposals, ordered from the
smallest to the highest mark. Thus, for example, the last element corresponds to
the proposal of the highest quality. Creation of the ranking vector, using the marks
provided by experts, is the main aim of the reviewing procedure.

Formulation of the ranking problem as parameter estimation is the basic idea
of the paper. Let us assume that there is an objective ranking of proposals (with
respect to the a priori known agency aims) expressed by the real-valued ranking vector
r ≡ [r1, . . . , r◦

p
]′,

rp ∈ [r, r] ⊇ [m,m], m =
∑
c∈c∗

wcmc, m =
∑
c∈c∗

wcmc. (2)

The ranking vector ranks the proposals: the pth is better than p̃th iff rp > rp̃.
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The mark emp of the pth proposal chosen by the expert e reflects his subjective
guess on the unknown objective value rp. Thus, the expert can be considered as non-
ideal observing device: marks he selects represent noisy observations of the unknown
ranking vector. The collection of all marks (‘observations’)

D ≡ {{emp}p∈ep∗
}

e∈e∗ (3)

represents the data available for estimation of the unknown ranking vector r and
some experts’ characteristics θ. In accordance with Bayesian view on incomplete
knowledge (Peterka, 1981), the unknown r and θ are treated as random variables.
The richest information on them is then represented by the conditional pdf f(r, θ |D).
Its maximiser (r̂, θ̂) is a good point estimate of the unknown ‘objective’ ranking vector
r and experts’ characteristics θ.

Bayes rule implies that (∝ means proportionality)

posterior pdf︷ ︸︸ ︷
f(r, θ |D) ∝

likelihood function︷ ︸︸ ︷
f(D | r, θ) ×

prior pdf︷ ︸︸ ︷
f(r, θ).︸ ︷︷ ︸

exp(−0.5L(r,θ))≡exp(−0.5×posterior log−likelihood)

(4)

A fair evaluation is considered. Consequently, the distribution of the mark emp of
the eth expert to pth proposal is fully determined by the expert characteristics eθ,
which do not vary with the judged proposal, and by the entry rp of the ranking vector
that corresponds to the proposal p. In other words, observations are conditionally
independent and the likelihood function (4) reads

f(D | r, θ) =
∏
e∈e∗

∏
p∈ep∗

f
(
emp | rp,

eθ
)
. (5)

Considering the general form of the prior pdf (4), the values rp, p ∈ p∗, are assumed to
bemutually independent as the project proposals are submitted by different proposers.
In the considered fair evaluation, they are also independent of evaluating experts,
whose characteristics are also a priori independent, i.e.,

f(r, θ) =
∏
e∈e∗

ef(eθ)
∏

p∈ep∗

pf(rp). (6)

The form of the posterior pdf (4) is thus determined by the specific form of individual
factors f(emp | rp,

eθ), ef(eθ) and pf(rp). The first factor results from a simple
modelling of the expert e. Form of the prior pdf is taken to be similar to the likelihood
function on fictitious observations. Its moments are fitted to expected ranges of
involved variables. This pragmatic methodology is known to provide self-reproducing
(conjugate) prior pdf whenever it exists.

The rest of the text follows this line in estimating the overall rank. The same
methodology can be used for estimating ranks of the respective partial criteria.

4 Modelling of an expert

The proposed ranking way relies on the modelling of the evaluating experts.
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4.1 Probabilistic model of an expert

The allowed set of experts’ marks m∗
c (and thus of ranks r∗) can be either

• an interval m∗
c = [mc,mc], or

• a predefined collection of values m∗
c = {mi}

◦
m
i=1, with mi ∈ [mc,mc].

Evaluation and ranking corresponding to the first case are called here real-valued,
while the second case implies discrete-valued ranking. We focus on real-valued marks
and real-valued ranking vector. The discrete-valued version is just briefly commented.

The expert’s mark emp always differs from the rank rp by a ‘personal’ deviation
of the expert e. This deviation can be decomposed into systematic shift eb from
the unknown objective value rp and zero-mean variation eεp of expert’s subjective
evaluation. Thus,

emp = rp + eb + eεp. (7)

Supposed fair evaluation implies that the subjective variations eεp can be assumed
mutually independent (over all proposals and over all experts) with expert-dependent
variances ev. Besides, we treat the variations eεp as normal. This choice is motivated
by the desired simplicity of the subsequent treatment. It can also be supported by the
well-known fact that the normal pdf has the largest entropy among pdfs having zero
mean and a fixed variance ev > 0.

Under the normality assumption, parameter eθ ≡ (eb, ev) characterises the

eth expert. The collection θ ≡ (b, v) ≡ (1b, . . . ,
◦
eb, 1v, . . . ,

◦
ev) parameterises all

participating experts and the likelihood function in equation (4) becomes

f(D | r, b, v) =
∏
e∈e∗

∏
p∈ep∗

(2πev)−0.5 exp
[−0.5ev−1(emp − rp − eb

)2]
(8)

∝
∏
e∈e∗

ev−0.5e ◦
p exp

{
−0.5ev−1e ◦

p

[
(eb − eB(r))2 +

e
◦
p −2
e

◦
p

eV (r)
]}

,

eB(r) ≡ 1
e

◦
p

∑
p∈ep∗

(emp − rp),

eV (r) ≡ 1
e

◦
p −2

[
1

e
◦
p

∑
p∈ep∗

(emp − rp)2 − eB2(r)
]
.

Note that the second line in equation (8) is obtained by completing squares in the
exponent with respect to eb. Alternatively, the squares can be completed with respect
to the ranking vector r. These alternatives motivate the choice of the marginal pdfs
forming the prior pdf, see Section 4.2.

Comment on the number of data available

Thenumber
◦
D of thedataprovidedby the experts is

∑
e∈e∗

e
◦
p. ThedataD are available

for estimating the unknown parameters Θ ≡ (r, b, v) with
◦
Θ ≡ ◦

p +2 × ◦
e entries. It is

desirable to have
◦
D >

◦
Θ. This situation is reached, iff an average number of proposals

judged by an expert is greater than
◦
p
◦
e

+ 2.
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Comment on discrete-valued ranking

Often, the discrete-valued marking is required. It is simple to handle and makes the
groups and the assembly’s negotiations easier. However, the quality of proposals
usually varies smoothly and unevenly within the proposals’ set p∗. Thus, the
real-valued ranking vector r is a more realistic model than the discrete-valued one.
In spite of the fact that the discrete-valued marking introduces unnecessary rounding
errors, the common use of quantised marks calls for the model suitable to this case.
Assuming that both the marking and ranking vector are discrete-valued, the following
formula provides a possible discrete-valued counterpart of the model (8)

f(D | r, a, w) =
∏
e∈e∗

∏
p∈ep∗

ewδ(emp−rp−ea)
(

1 −e w
◦
r −1

)1−δ
(

emp−rp−ea
)
, (9)

where δ(0) = 1 and δ(x �= 0) = 0; ea is the unknown discrete-valued bias of the expert
e; ew ∈ (0, 1) is the probability with which the expert e selects themark emp = rp + ea.
The probability ew of this event is expected to be close to one. This makes a finer
modelling of events emp �= rp + ea unnecessary.

The number
◦
D of data D provided by experts is again

∑
e∈e∗

e
◦
p. The data D

serve for estimating the unknown parameters Θ ≡ (r, a, w) with
◦
Θ ≡ ◦

p +2 × ◦
e entries.

Thus, the condition
◦
D >

◦
Θ is independent of the valuation version.

4.2 Choice of the prior pdf

In order to decrease evaluation complexity, the conjugated form, Berger (1985), of
prior pdf is desired. However, parameters (b, v) characterising experts and ranking
vector r are assumed to be a priori independent. Thismakes us to selectGauss-inverse-
Wishart pdf as the prior pdf but with eb not depending on the ranking vector r, cf. (8).

Moreover, experts are a priori independent f(1b, 1v, . . . ,
◦
eb,

◦
ev) =

∏◦
e
e=1

ef(eb, ev) and
a priori indistinguishable. Thus, ef(b, v) = f(b, v),∀e ∈ e∗, and statistics determining
the single pdf f(b, v) have to be chosen only. This makes us to select

f(eb, ev) = f(eb, ev | b̂0, v̂0, c0, ν0) ≡ f(eb, ev | S0), with

f(b, v | S) ∝ v−0.5(ν+3) exp
{

−0.5v−1ν

(
(b − b̂)2

c
+

ν − 2
ν

v̂

)}
. (10)

This pdf has the following moments of interest (Kárný et al., 2005), determined by the
statistics S consisting of four entries b̂, v̂ > 0, c > 0, ν > 0

E[b|S, v] = b̂, E[v | S] = v̂, var(b | S, v) = v
c

ν
, var[v | S] =

v̂

ν − 4
. (11)

These moments and vague prior knowledge lead to the following specific but universal
options (motive for the particular choice is given in brackets)

b̂0 = 0 (experts are a priori believed to be unbiased), (12)

v̂0 = [0.25 × (m − m)]2 (expected v is squared half of the half-range of m),
ν0 = 4 (chosen flat prior implies the first moment of v exists only),
c0 = 1 (expected standard deviation of eb is the half of

√
v).
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The entries of the ranking vector r are also a priori independent and indistinguishable.
They should be independent of the experts’ parameters, too, i.e., pf(r | b, v) =
f(r), ∀p ∈ p∗. The following normal form of f(r) = f(r | r̂0, γ), with the expected
value r̂0 and variance γ, is assumed

f(r | r̂0, γ) =
∏

p∈ep

(2πγ)−0.5 exp
{

−0.5
(rp − r̂0)2

γ

}
with statistics (13)

r̂0 = 0.5 × (m + m) (prior rank expectation is in the middle of interval) (14)

γ = [0.25 × (m − m)]2 = v̂0 (standard deviation coincides with that of v).

The formulae (13) and (14) complete the choice of the prior pdf, i.e., both its form and
its statistics.

5 Estimation of unknown parameters

The proposed parameterised model (8) establish a base for estimation of unknown
parameters Θ = (r, (b, v)) ≡ (ranking vector, experts’ characteristics). For the

considered models, the number
◦
D of data D is larger than the number

◦
Θ of estimated

parameters Θ. Moreover, the maximum likelihood estimate cannot be used as the
corresponding normal equations are always singular due to possible compensation of
the ranking entries and expert biases. Besides, the excess of data is relatively small.
Thus, the exploitation of prior knowledge is inevitable. Due to its regularising effect
we can take maximum a posteriori probability estimate as a good point estimate.

Likelihood (8) and the prior pdf (10), (13) with the statistics (12) and (14), provide
the following form of the −2 × logarithm of a posteriori probability density function
L(Θ), (see equation (4), the term not influencing maximiser is omitted)

L(Θ) =
∑

p∈ep∗

(rp − r̂0)2

v̂0
+

∑
e∈e∗

{
(e ◦

p +ν0 + 3) ln(ev)

+
1
ev

[
2v̂0 + ν0

eb2 +
∑

p∈ep∗
(emp − rp − eb)2

]}
. (15)

The maximisation of a posteriori probability is equivalent to the minimisation
of the function (15) with respect to (r, b, v). It is quadratic function of r, b with
positive-definite kernel. Introducing the weights eα ≡ 1

e
◦
p +ν0+3

, the necessary

conditions for the extremum read

ev̂ = eα

[
v̂0 + ν0

eb̂2 +
∑
p∈ep

(emp − r̂p − eb̂)2
]
, (16)

eb̂ =
1

e
◦
p +ν0

∑
p∈ep∗

(emp − r̂p), (17)

r̂p =
r̂0 +

∑
e∈pe∗

v̂0
ev̂ (emp − eb̂)∑

e∈pe∗
v̂0
ev̂ + 1

. (18)
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The minimised function can be shown to be strictly convex around the stationary
points. Thus, it has single minimiser and the solution of the equations (16)–(18) is a
unique maximiser of the a posteriori pdf. This system of equations can be solved by
successive approximations as follows.

Initial phase

• Specify sets p∗, e∗, ep∗, pe∗ and set ν0 = 4.

• Evaluate the number of elements e
◦
p in ep∗ and the weights eα = 1

e
◦
p +ν0+3

.

• Specify the ranges m, m and define the prior statistics depending on them
r̂0 = 0.5(m + m), v̂0 = [0.25(m − m)]2.

• Collect the data D = {{emp}p∈ep∗}e∈e∗ .

• Select the upper bound
◦
n on the possible number of iterations n, and the

stopping precision ε > 0, ε ≈ 0.

• Set initial values for the counter n = 0 and the stopping-rule norm = 2ε.

• Set (at iteration n = 0) the initial estimates of variances ev̂(n) = v̂0, biases
eb̂(n) = b̂0 = 0 and the negative log-likelihood L(Θ̂(n)) = ∞.

Iterative phase

• Do while n ≤ ◦
n and norm > ε.

• Set r̂p(n + 1) =
r̂0+

∑
e∈pe∗ (emp−eb̂(n)) v̂0

ev̂(n)
∑

e∈pe∗
v̂0

ev̂(n)+1
, ∀p ∈ p∗, cf. (18).

• Set eb̂(n + 1) = 1
e

◦
p +ν0

∑
p∈ep(

emp − r̂p(n + 1)), ∀e ∈ e∗, cf. (17).

• Set n = n + 1 and ev̂(n) = eα[v̂0 + ν0
eb̂2(n) +

∑
p∈ep∗(emp − r̂p(n) − eb̂(n))2],

∀e ∈ e∗, cf. (16).

• Evaluate for Θ̂(n) ≡ (r̂(n), b(n), v(n)) the negative log-likelihood L(Θ̂(n)),
cf. (15), determining the norm ≡ abs[L(Θ̂(n)) − L(Θ̂(n − 1))].

Terminal phase

Take r̂(n) as the best guess of the ranking vector r and use v̂(n), possibly together with
b̂(n), for judging reliability of experts.

6 The recommended proposals evaluation procedure

Here, we summarise the ranking procedure that combines the current practice with the
derived results in the case of continuous-valued marking and ranking.
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• Select
◦
e experts and assign to each of them e

◦
p > 1 proposals, so that each

proposal is judged by ≈3–4 experts.

• Let the experts judge proposals assigned.

Continuous − valued marks within pre − specified ranges should be used.

This optional change should avoid quantisation errors and increase robustness
of the overall evaluation process.

• Estimate ranking vector and quality of experts using their non-harmonised data,
i.e., data available before the group discussion, see Section 2.

This step serves informal judging of the negotiation process and, primarily,
evaluation of experts’ quality. Experts with high values of personal variance ev̂
and bias abs(eb̂) are suspected of possible conflict of interests or an insufficient
competency.

This is novel optional step serving quality assurance.

• Let the group of experts evaluating the same proposal consult mutually and let
them harmonise their marking.

Experts should harmonise their comments, but their numerical marking
need not be identical!

This change will help to avoid necessary voting in controversial cases and will
make the harmonisation procedure more fair and robust. This relaxation of the
current rules (see Section 2) seems to be highly desirable. Among other, it would
speed up the procedure without loosing its quality.

• Estimate ranking vector and quality of experts using the harmonised data.

The estimation should replace, or, at least, prepare the last overall
harmonisation step more rigorously.

The changes of expert-parameter estimates should be mainly in biases: this
would reflect improvement in scaling. Again, high values of ev̂ indicate
unreliable expert.

The procedure should be also applied to particular criteria and to the
probability whether they (do not) crossed thresholds with respect
to them.

Neither the last nor other mechanical steps should violate peer-review principles.
The questionable cases should be discussed individually. Note that the proposed
evaluations are relatively simple and no new optional parameters are introduced.

7 Case study with real data

Thedeveloped theorywas testedondata sets originating froman international granting
agency. Before processing, the raw data about proposals and experts were made
anonymous. Consequently, no conclusion concerning a specific proposal or expert
can be made. The study wanted
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• to gain experience with the proposed evaluation technique concerning its
behavior (including numerical stability, computational demands)

• to find whether significant personal biases and uncertainties are observable

• to recognise the extent to which the proposed ranking deviates from that made
by the procedure used up to now.

The results of processing of the four data sets, labelled byD1,D2,D3,D4 are presented
on figures of a uniform structure (see Figures 1–4).

Figure 1 Results obtained on the data set D1: (A) proposed ‘o’ vs. standard ‘x’ ranking:
proposed ranking is ordered; (B) standard ‘x’ vs. proposed ‘o’ ranking: standard
ranking is ordered; (C) estimates of experts’ biases and (D) estimates of experts’
standard deviations (see online version for colours)

The left subplot in the upper part of the figure depicts ranks of proposals ordered
according to the proposed ranking procedure (marked by dots). For comparison,
the corresponding ranks, assigned by the current procedure, are shown by crosses.
The right subplot in the upper part of the figure displays similar comparison, but the
proposals ordered by the current ranking procedure. Both subplots display only the
proposals with high values of the rank, i.e., near the threshold or greater. The first
subplot in the lower part of the figure displays estimates eb̂ of experts’ biases eb and the
second subplot in the lower part of the figure provides estimates of experts’ personal
standard deviations.
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Figure 2 Results obtained on the data set D2: (A) proposed ‘o’ vs. standard ‘x’ ranking:
proposed ranking is ordered; (B) standard ‘x’ vs. proposed ‘o’ ranking: standard
ranking is ordered; (C) estimates of experts’ biases and (D) estimates of experts’
standard deviations (see online version for colours)

Figure 3 Results obtained on the data set D3: (A) proposed ‘o’ vs. standard ‘x’ ranking:
proposed ranking is ordered; (B) standard ‘x’ vs. proposed ‘o’ ranking: standard
ranking is ordered; (C) estimates of experts’ biases and (D) estimates of experts’
standard deviations (see online version for colours)
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Figure 4 Results obtained on the data set D4: (A) proposed ‘o’ vs. standard ‘x’ ranking:
proposed ranking is ordered; (B) standard ‘x’ vs. proposed ‘o’ ranking: standard
ranking is ordered; (C) estimates of experts’ biases and (D) estimates of experts’
standard deviations (see online version for colours)

Descriptive statistics of experiments are given in Table 1. They indicate the degree
of coincidence (discrepancy) between the standard and proposed way of ranking.
Rank thresholds, determining the border line for the funding, were chosen to
illustration purpose only and have no relationships to the thresholds used.

Table 1 Descriptive statistics of experiments

Case D1 D2 D3 D4

Number of proposals 914 255 32 1341
Number of experts 456 66 33 588
Threshold of the overall rank 25 22 22 25
Number of proposals above threshold: proposed 27 11 16 72
Number of proposals above threshold: standard 43 13 11 157
Number of proposals chosen by both ways 16 10 11 57
Degree of coincidence, % 37 77 100 36

Table 2 concerns the experts. The thresholds of the overall rank, given by the Table 1,
are used in relative values presented inTable 2. The histograms inFigure 5 put a proper
perspective on results shown in Table 2 and indicate sensitivity of the outcomes on
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estimates of the ranking vector r. It is sufficient to notice that the boxes in histograms
correspond roughly 2% change in the values r̂p assigned to the proposals. At the same
time, the number of proposals in boxes adjacent to the selected threshold levels may
reach even several tens.

Table 2 Statistics characterising the reviewing quality

Case D1 D2 D3 D4

Mean of expert biases 0.27 0.03 0.20 0.36
mean of expert biases

threshold of the overall rank , % 1.0 1.2 6.0 4.1

Standard deviation (std) of expert biases 1.04 1.25 1.15 1.20
std of expert biases

threshold of the overall rank , % 4.2 5.7 5.2 4.8

Minimum of expert biases −4.15 −5.75 −3.00 −11.35
minimum of expert biases

threshold of the overall rank , % −16.6 −26.1 −13.6 −45.4

Maximum of expert biases 4.78 2.06 3.39 3.18
maximum of expert biases

threshold of the overall rank , % 19.1 9.4 15.4 12.7

Mean of expert stds 2.94 2.82 2.94 2.92
mean of expert stds

threshold of the overall rank , % 11.8 12.8 13.4 11.7

Std of expert stds 0.69 0.83 0.57 0.74
std of expert stds

threshold of the overall rank , % 2.8 3.8 2.6 3.0

Minimum of expert stds 0.81 1.81 2.24 1.81
minimum of expert stds

threshold of the overall rank , % 3.2 8.2 10.2 7.2

Maximum of expert stds 6.80 7.41 4.67 9.42
maximum of expert stds

threshold of the overall rank , % 27.2 33.7 21.2 37.7

A deeper discussion would require individual inspection of the outlying cases
(both with respect to proposals and experts). For example, the comparative study
of the estimated overall rank and scientific results achieved by the project supported
would be desirable. Such a study will be published in the future. The current results
indicate that:

• discrepancy in proposals selected by the standard and proposed procedure may
be significant

• the majority of experts has a small biases but there is a non-negligible portion of
those having significant biases

• the majority of experts has similarly small personal variations but there is a
non-negligible portion of experts having significant variations

• use of prior pdf allows to apply the proposed methodology even in cases when
each expert deals with a single proposal (the case D3); the introduced prior
information does not seem to influence the results in an adverse way.
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Figure 5 Histograms of ranking results (see online version for colours)

8 Concluding remarks

The paper addresses the so-called ranking problem. The task arises every time, when
relative ranking based upon peer-review results should be assigned. Relative ranking
of student performance and evaluation of project proposals are the typical application
examples. The last one served as prototype for the research. The efficiency of the
proposed approach has been verified on the real-data application. The proposed
method:

• respects the review procedure already used, no extra steps are required

• simplifies the evaluation process, as no agreement of the experts on marks of
individual proposals is required

• provides an effective evaluation of the quality of experts: the suspicious results
of this evaluation (performed before experts’ discussion) should warn about
expert’s incompetency and/or conflict of interests.

The presentation does not cover particular criteria, but it is obvious that:

• the particular criteria characterising proposals can be evaluated in the exactly
same way

• the evaluation of the particular criteria can make the judgement about
thresholds-crossing more robust
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• the discrete-valued marking with the discrete-valued ranking vector can be
treated in the same way as the continuous-valued one: the model (8) offers the
necessary basis for it.

The research has opened several topics to be studied. In the considered application
area, the solution of the following problems will lead tomore fair judging of proposals.
In particular:

• a comparative study of the ranking of a proposal supported by the granting
agency, and quality of the final results obtained by this project (this needs
inclusion of the same marking, ideally by the same reviewers, into the evaluation
of the completed project)

• study of the influence of the quantisation

• extended inspection of influence the scoring weights allocated to the particular
criteria improving fairness of the judgement of the future project proposals.

The described procedure tries to meet needs of granting agencies. We however believe
that it offers more.

• It is applicable in other domains that need a sort of ranking. For instance,
methods solving the same, for instance diagnostic, problem are often compared
in order to select the best of them.

• It provides a, probably novel, view on an important version of the hard
negotiation problem appearing in multi-participant decision making.
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