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Abstract

The basic idea of an algebraic approach to learning Bayesian network
(BN) structures is to represent every BN structure by a certain (uniquely
determined) vector, called the standard imset. In a recent paper [11], we
have shown that the set S of standard imsets is the set of vertices (=
extreme points) of a certain polytope P and introduced natural geometric
neighborhood for standard imsets, and, consequently, for BN structures.

The new geometric view led to a series of open mathematical ques-
tions. In this contribution, we try to answer some of them. First, we
introduce a class of necessary linear constraints on standard imsets and
formulate a conjecture that these constraints characterize the polytope P.
The conjecture has been confirmed in the case of (at most) 4 variables.
Second, we confirm a former hypothesis by Raymond Hemmecke that the
only lattice points (= vectors having integers as components) within P
are standard imsets. Third, we give a partial analysis of the geometric
neighborhood in the case of 4 variables.

1 Motivation

The motivation for this research is learning Bayesian network (BN) structures
from data by the method of maximization of a quality criterion (= the score
and search method). By a quality criterion is meant a real function Q of the
BN structure (= of a graph G, usually) and of the database D. The value
Q(G,D) should say how much the BN structure given by G is good to explain
the occurrence of the database D.

The basic idea of an algebraic and geometric approach to this topic, pro-
posed in Chapter 8 of [8] and then developed in [11], is to represent the BN
structure given by an acyclic directed graph G by a certain vector uG having in-
tegers as components, called the standard imset (for G). The point is that then
every reasonable criterion Q for learning BN structures (score equivalent and
decomposable one) is an affine function (= a linear function plus a constant) of
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the standard imset. More specifically, one has

Q(G,D) = sQD − 〈t
Q
D, uG〉,

where sQD is a real number, tQD a vector of the same dimension as the standard
imset uG (these parameters both depend solely on the database D and the
criterion Q) and 〈∗, ∗〉 denotes the scalar product. The vector tQD is named the
data vector (relative to Q).

The main result of [11] is that the set of standard imsets over a fixed set of
variables N is the set of vertices (= extreme points) of a certain polytope P.
Thus, as every reasonable quality criterion Q can be viewed as (the restriction
of) an affine function on the respective Euclidean space (of higher dimension),
the task to maximize Q over BN structures is equivalent to the task to maximize
an affine function over the above-mentioned polytope P.

This maximization problem has been treated thoroughly within the linear
programming community. A classic tool to solve linear programming problems
is the simplex method [5]. One of possible interpretations of this method is that
it is a kind of a search method, in which one moves between the vertices of
the polytope along its edges (in the geometric sense) until an optimal vertex is
reached. This motivated the concept of the geometric neighborhood for standard
imsets, and, consequently, for BN structures.

Several open mathematical questions have been mentioned in the conclusions
of [11]. They are motivated by the above-mentioned intention to apply linear
programming methods in the area of learning BN structures. This contribution
is devoted to three of them.

2 Basic concepts

2.1 Learning BN structures

Throughout this paper we assume that N is a non-empty finite set of variables.
Every variable i ∈ N is assigned a finite set of possible values, the individual
sample space Xi. To avoid trivial cases and consequent troubles we assume
|Xi| ≥ 2 for any i ∈ N .

Let DAGS(N) denote the collection of all acyclic directed graphs having N
as the set of nodes. The (discrete) Bayesian network (BN) is a pair (G,P ),
where G ∈ DAGS(N) and P is a probability distribution on the joint sample
space XN ≡

∏
i∈N Xi which (recursively) factorizes according to G [4]. Given

G ∈ DAGS(N), the respective statistical model of a BN structure is the class of
all distributions P on XN that factorize according to G.

Note it may happen that two different graphs over N describe the same BN
structure. Thus, one is usually interested in describing the BN structure by a
unique representative. A classic such graphical representative is a special chain
graph, called the essential graph [1]. However, in our algebraic approach, we
use an algebraic representative instead, called the standard imset (see below).
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There is a polynomial algorithm for transforming the essential graph into the
standard imset and conversely [10].

Learning BN structures is done on the basis of data, assumed in the form of
a complete database D : x1, . . . , xd of the length d ≥ 1, which is a sequence of
elements of the joint sample space XN . Let DATA(N, d) denote the collection
of all databases from XN of the length d. A quality criterion (for learning
BN structures) is a real function Q on DAGS(N) × DATA(N, d). The learning
procedure based on Q consists in maximizing the function G 7→ Q(G,D) over
G ∈ DAGS(N), where D ∈ DATA(N, d) is the observed database. Thus, the
value Q(G,D) should somehow evaluate how the statistical model determined
by G fits the database D. We refer for the related concept of (statistical)
consistency of a quality criterion to § 8.4.2 in [4].

However, there are other technical requirements on quality criteria raised in
connection with computational methods for their maximization [3]. A criterion
is decomposable if it is the sum of contributions that correspond to factors in
the factorization according to the graph and score equivalent [2] if it ascribes
the same value to graphs describing the same BN structure. There are several
examples of quality criteria that meet these requirements. A kind of standard
example of such a criterion is Schwarz’s Bayesian information criterion (BIC)
[6], but there is also a bunch of Bayesian quality criteria [9].

2.2 A few concepts from polyhedral geometry

Let us consider a real Euclidean space RK , where K is a non-empty finite set.
The scalar product of two vectors v,x in RK will be denoted as follows:

〈v,x〉 ≡
∑
s∈K

vs · xs .

A rational polytope in RK is the convex hull of a finite set V ⊆ QK of rational
points. A well-known result in polyhedral geometry (Corollary 7.1c in [5]) says
that a polytope can equivalently be characterized by means of a finite number
of linear inequality constraints.

Note that the classic version of the simplex method is applicable to the task
to find maximum/minimum of a linear function over a set P ⊆ RK defined by
means of a finite number of linear inequality constraints (see Chapter 11 in [5]).

A vertex (= an extreme point) of a polytope P is a point in P which cannot
be written as a convex combination of other elements in P. An edge of P is a
line-segment [x,y], where x,y are distinct vertices of the polytope P and the set
P \ [u,v] is convex. The vertices and edges of a polytope are quite important in
linear programming because the simplex method applied to a polytope P can be
interpreted as a kind of search method in which one moves between the vertices
of P along its (geometric) edges (see § 11.1 of [5]).
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2.3 Imsets

The method of structural imsets has been proposed in [8] to provide an universal
(mathematical) tool for describing probabilistic conditional independence struc-
tures. In the context of graphical models, it leads to an algebraic approach to
learning BN structures.

An imset u over N is an integer-valued function on P(N) ≡ {A; A ⊆ N},
the power set of N . It can be viewed as a vector whose components are integers,
indexed by subsets of N . Any real function m : P(N)→ R will be analogously
interpreted as a real vector (= identified with an element of RP(N)). Thus, an
imset is nothing but an element of ZP(N); in the context of integer programming
[5] called a lattice point in the Euclidean space RP(N).

A trivial example of an imset is the zero imset, denoted by 0. Given A ⊆ N ,
the symbol δA will denote this basic imset:

δA(B) =
{

1 if B = A,
0 if B 6= A,

for B ⊆ N.

Since {δA; A ⊆ N} is a linear basis of RP(N), any imset can be expressed as a
combination of these basic imsets.

An elementary imset (over N) is an imset of the form

u〈a,b|C〉 = δ{a,b}∪C + δC − δ{a}∪C − δ{b}∪C ,

where C ⊆ N and a, b ∈ N \ C are distinct. In our algebraic approach [8] it
encodes an elementary conditional independence statement a ⊥⊥ b |C. The class
of all elementary imsets over N will be denoted by E(N); it is a finite subset of
RP(N). The cone spanned by E(N) will be denoted by R(N).1

An imset will be called combinatorial if it is a combination of elementary
imsets with non-negative integers as coefficients.2 The degree of a combinatorial
imset u, denoted by deg (u), is the number

deg (u) = 〈m∗, u〉 ≡
∑
S⊆N

m∗(S) · u(S) , (1)

where m∗(S) = 1
2 · |S| · (|S| − 1) for S ⊆ N . It is shown in Proposition 4.3

of [8] that deg (u) is the sum of coefficients in the decomposition of u into
elementary imsets; in particular, this sum only depends on u, not on a particular
combination of elementary imsets yielding u.

2.4 Algebraic approach to learning BN structures

Given G ∈ DAGS(N), the standard imset for G is given by the formula:

uG = δN − δ∅ +
∑
i∈N

{ δpaG(i) − δ{i}∪paG(i) }, (2)

1It is a pointed rational polyhedral cone in RP(N).
2Equivalently, the sum of elementary imsets with allowed repetition of summands.
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where paG(i) = { j ∈ N ; j → i in G } denotes the set of parents if i in G. Note
that the terms in (2) can both sum up and cancel each other. Nevertheless, it
follows from the definition that uG has at most 2 · |N | non-zero values. Thus,
the memory demand for representing standard imsets are polynomial in |N |.

An important observation is that, for G,H ∈ DAGS(N), one has uG = uH

iff they describe the same BN structure (Corollary 7.1 in [8]). In particular, the
standard imset for G ∈ DAGS(N) is a unique representative of the corresponding
BN structure. Note that every standard imset is combinatorial; actually, it is a
sum of elementary imsets (see Lemma 2 in § 5). The degree of a standard imset
uG is

(|N |
2

)
− r, where r is the number of arrows in G (see Lemma 7.1 in [8]).

Now, Lemmas 8.3 and 8.7 from [8] together say that every score equivalent
and decomposable criterion Q must have the form:

Q(G,D) = sQD − 〈t
Q
D, uG〉 for G ∈ DAGS(N), D ∈ DATA(N, d), d ≥ 1 (3)

where the constant sQD ∈ R and the vector tQD : P(N) → R do not depend on
G. The formulas for the data vector tQD relative to some basic quality criteria
Q have been derived in [8, 9].

2.5 Geometric view on learning BN structures

Let us take a geometric view on the set of standard imsets over a fixed set of
variables N , denoted by S:

S ≡ {uG; G ∈ DAGS(N) } ⊆ RP(N) .3

Theorem 4 in [11] says that S is the set of vertices of a rational polytope P ⊆
RP(N), whose dimension is 2|N | − |N | − 1. This polytope P will be called the
standard imset polytope in the sequel. It follows from (3) that the task to
maximize Q over G ∈ DAGS(N) is equivalent to the task to minimize the linear
function u 7→ 〈tQD, u〉 over P.

The idea of application of linear programming methods in the area of learning
BN structures led to the concept of geometric neighborhood for BN structures.
More specifically, two standard imsets u, v ∈ S will be called the geometric
neighbors if the line-segment connecting them in RP(N) is an edge of the standard
imset polytope P.

It has been shown in Theorem 5 of [11] that the well-known inclusion neigh-
borhood, used widely in present computational methods for learning BN struc-
tures, like the GES algorithm [3], is strictly contained in the geometric one.
Moreover, it follows from Corollary 8.4 in [8] that standard imsets u, v ∈ S
correspond to inclusion neighbors iff their differential imset w = u− v is either
elementary one or a multiple of it by −1.

The importance of the concept of geometric neighborhood is based on the
fact that, for any affine function Q on P, a local maximum of Q in u ∈ S with

3To avoid misunderstanding recall that distinct G, H ∈ DAGS(N) may give rise the same
standard imset uG = uH but S contains just one vector for any group of graphs defining the
same BN structure.
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respect to the geometric neighborhood must be the global maximum of Q over P
(Theorem 6 in [11]). In particular, this holds for any reasonable quality criterion
Q for learning BN structures. The following research goals have been expressed
in conclusions of [11]:

• Describe linear constraints on the elements P. A complete characteriza-
tion of these constraints would provide a description of P suitable for the
intended application of linear programming methods.

• An interesting related conjecture by Raymond Hemmecke is that the only
lattice points within P are standard imsets.

• Describe differential imsets for geometric neighbors, that is, imsets of the
form uG − uH , where G,H ∈ DAGS(N) are such that uG and uH are
geometric neighbors.

These questions concern the complexity of a potential future linear programming
procedure for maximization of a quality criterion Q. In this paper we answer
partially some of them.

3 Necessary linear constraints

In this section, we summarize all linear constraints on standard imsets we are
aware of. Of course, they give necessary conditions on points in P.

3.1 Overview of the constraints

We classify our linear constraints into three groups, denoted (A), (B) and (C).
First, basic results from [8] imply that every standard imset belongs to the
cone R(N) generated by elementary imsets. This observation implies two kinds
of necessary linear conditions on the elements of P: the equality constraints,
denoted by (A), and the remaining inequality constraints, denoted by (B).

(A) Equality constraints

If u ∈ S then the following two conditions are valid:

(A.1)
∑

S, S⊆N

u(S) = 0,

(A.2) ∀ i ∈ N
∑

S, i∈S⊆N

u(S) = 0.

This means that S, and, therefore, P as well, belongs to a linear subspace of
RP(N) of the dimension 2|N | − |N | − 1.
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Table 1: Number of non-specific inequality constraints.

|N | 2 3 4 5
|K�` (N)| 1 5 37 117978

(B) Non-specific inequality constraints

The inequality constraints for points in the cone R(N) are related to supermod-
ular functions. A function m : P(N)→ R is called supermodular iff

m(C ∪D) +m(C ∩D) ≥ m(C) +m(D) for every C,D ⊆ N .

An equivalent definition is that 〈m, v〉 ≥ 0 for every elementary imset v over N .
This observation gives a (formally infinite) set of inequality constraints for the
points in R(N), and, therefore, for any standard imset u:

(B) 〈m,u〉 ≥ 0 for every supermodular function m : P(N)→ R.

Nevertheless, the point is that this condition can equivalently be formulated in
the form of a finite number of linear inequality constraints. First, without loss of
generality one can assume that m(S) = 0 for S ⊆ N with |S| ≤ 2. Second, the
class of these special supermodular functions is a pointed rational polyhedral
cone and has, therefore, finitely many extreme rays.4 Thus, the class normalized
integral representatives of these extreme rays, denoted by K�` (N) and called the
`-skeleton in [8], establishes a finite set of normalized inequality constraints:

∀m ∈ K�` (N) 〈m,u〉 ≥ 0.

These (representatives of) extreme rays have been computed for |N | ≤ 5 using
linear programming packages [7]. It seems that the number of these extreme
rays grows super-exponentially with |N |; their numbers are in Table 1.

It looks like none of these inequality constraints for P is derivable from the
other constraints (including those mentioned below).

(C) Specific inequality constraints

The results of [10] led to a series of specific linear inequality constraints for
standard imsets, that are not valid for all points in the cone R(N). These
constraints are related to “ascending” classes of sets. We say that a class A ⊆
P(N) of subsets of N is closed under supersets if

∀S ∈ A if S ⊆ T ⊆ N then T ∈ A.

To avoid vacuous constraints and a trivial consequence of (A.1) we consider
only non-empty classes of non-empty sets. This gives the following series of

4See § 5.1.2 and Lemma 5.3 (pp. 90-93) in [8] for both these claims.
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constraints:

(C)
∑
S∈A

u(S) ≤ 1 for any system ∅ 6= A ⊆ {S ⊆ N ; |S| ≥ 1}

which is closed under supersets.

Note that, unlike the number (B)-constraints, the number of constraints in (C)
seems to grow only exponentially with |N |. Actually, these constraints are in
correspondence with log-linear models over N .5 Nevertheless, the list of condi-
tions (C) is not reduced completely: some of these constraints are superfluous
because they follow from the other ones combined with (A) and (B).6 Moreover,
each of the (C)-constraints can, owing to (A.2), be re-formulated equivalently
in a kind of “standard” form∑

S∈B
kS · u(S) ≤ 1 for B ⊆ {S ⊆ N ; |S| ≥ 2} and kS ∈ Z for S ∈ B.

It looks like none of the constraints for A ⊆ {S ⊆ N ; |S| ≥ 2} is superflu-
ous, while if A contains a singleton then both cases can occur: the respective
inequality constraints can be either superfluous or non-derivable from others.7

Lemma 1. (the necessity of specific constraints)
If u ∈ S is a standard imset over N then the condition (C) is valid.

The proof is omitted because of limited scope of a conference contribution.

3.2 Conjecture about the linear constraints

The constraints (A)-(C) from the preceding section have several consequences,
which are, perhaps, not evident at first sight. One of them is that every standard
imset u ∈ S is bounded from below: u(S) ≥ −1 for any S ⊆ N .

We have shown that (A)-(C) are necessary constraints on points in P, but we
have also some reasons to conjecture that they are sufficient to characterize the
standard imset polytope P. More specifically, we have verified for |N | ≤ 4 that
the conditions (A)-(C) characterize P. Thus, we dare to formulate the following
hypothesis.

Conjecture The linear constraints (A)-(C) together form a necessary
and sufficient condition for u ∈ RP(N) to belong to P.

5This is because every class of sets closed under supersets is determined by the collection
of its minimal sets, which is a class of incomparable sets. Hierarchical log-linear models also
correspond to classes of incomparable subsets of the class {A ⊆ N ; |S| ≥ 1}, namely to those
whose union is N .

6For example, if A = {S ⊆ N ; i ∈ S} for some i ∈ N then (A.2) gives
∑

S∈A u(S) = 0 ≤ 1.
7This happens in the case |N | = 5.
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4 Lattice points in the standard imset polytope

Another related question concerning the polytope P is how “thick” it is. More
specifically, we may ask whether there exists a lattice point in its interior. Ray-
mond Hemmecke made some computations to find out whether such a point
exists in the case |N | ≤ 5 and the result was negative. This led him to a hy-
pothesis that every lattice point in the standard imset polytope is already the
standard imset. In this paper, we confirm the hypothesis:

Theorem 1. If u ∈ P ∩ ZP(N) then u ∈ S.

The proof is quite technical and strongly depends on former results of ours
[10]; specifically, it depends on the details of an algorithm for testing whether
an imset is standard. It is omitted in this contribution.

In light of Theorem 1 one can formulate a weaker version of the conjecture
from § 3.2:

Conjecture* The constraints (A)-(C) together form a necessary and
sufficient condition for u ∈ ZP(N) to be a standard imset (over N).

Indeed, if Conjecture is true then, by Theorem 1, Conjecture* holds as well.
However, it is not clear at this moment whether the proof of Conjecture* is
enough to confirm the hypothesis from § 3.2.

5 Differential imsets over 4 variables

The result of our analysis of the geometric neighborhood in the case |N | = 4
is an electronic catalogue. To describe the catalogue we need a few auxiliary
observations.

5.1 Some auxiliary concepts and results

Given a differential imset w = u− v for u, v ∈ S it follows from the formula (1)
that the degree difference deg (u)−deg (v) does not depend on the choice of the
pair u, v ∈ S. This seems to be quite important characteristic of w.

We say that two imsets u, v over N are permutation equivalent if there exists
a bijection π : N → N such that, for all S ⊆ N , it holds that u(S) = v(π(S)),
where π(S) = {π(i); i ∈ S}. Each class of permutation equivalent imsets will be
called a PE class. From the point of view of our analysis, it is not necessary to
distinguish between permutation equivalent differential imsets. Every PE class
can be described by an arbitrary representative.

Evidently, if w = u − v is a differential imset for u, v ∈ S then −w = v − u
is a differential imset, too. Again, from the point of view of our analysis it
is not necessary to distinguish between w and −w. Therefore, we keep only
one of these in the catalogue. If the degree difference is non-zero we choose
w = u−v with deg (u) > deg (v). That means, our catalogue only contains (PE
representatives of) differential imsets with non-negative degree difference.
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An important question is how to express the differential imsets. An elegant
solution is offered below.

Lemma 2. Every standard imset is a combination of elementary imsets with
coefficients +1 (and 0).

A kind of consequence of Lemma 2 is the following observation.

Lemma 3. Every differential imset w = u− v for u, v ∈ S is a combination of
elementary imsets with coefficients +1 and −1 (and 0). Moreover, there exists
a combination with at most

(|N |
2

)
non-zero coefficients.

Proofs are omitted because of limited scope of the contribution. In particu-
lar, every differential imset for a pair of geometric neighbors can be expressed
in that way, which we utilize in our catalogue.

5.2 Description of the catalogue

Our catalogue contains differential imsets w = u− v for those u, v ∈ S that are
geometric neighbors. It contains just one representative for each PE class and
only imsets with non-negative degree difference are kept there.

We classified those differential imsets w using three criteria:

• the degree difference for w,

• the squared Euclidean length of w, that is,
∑

S⊆N w(S)2, and

• the number of non-zero imset values, that is, |{S ⊆ N ; w(S) 6= 0}|.

In the case |N | = 4 the degrees of differential imsets (for geometric neighbors)
are integers from the interval [0, 3]. The values of the squared Euclidean length
are even numbers from interval [4, 22]. The numbers of non-zero imset values
are integers from interval [4, 12].

There are 8518 ordered pairs (u, v) of geometric neighbors. As explained
above, for each couple of ordered pairs (u, v) and (v, u), we have chosen only
one differential imset out of w = u−v and −w = v−u. In this way, we got 2831
differential imsets; they constitute 319 PE classes. Table 2 gives these numbers
for each degree difference.

In order to understand better the geometric neighborhood we searched for
an elegant description of differential imsets. One possible solution is offered by
Lemma 3: every differential imset over 4 variables can be written as a combi-
nation (with coeficients +1 or −1) of at most 6 elementary imsets (out of 24
possible elementary imsets).

A complete catalogue of differential imsets over 4 variables with a detailed
analysis for each differential imset is available at:

http://staff.utia.cas.cz/vomlel/imset/catalogue-diff-imsets-4v.html
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Table 2: Numbers of geometric neighbor pairs, differential imsets and PE classes.

degree difference neigh. pairs diff. imsets PE classes
0 2894 927 88
1 4248 1359 144
2 1296 505 71
3 80 40 16

total 8518 2831 319

5.3 A simple example

As mentioned in § 2.5, the classic inclusion neighborhood is contained in the
geometric one and the inclusion neighbors are geometric neighbors with the
degree difference ±1.

One of our previous open questions was whether the converse holds. How-
ever, as one can deduce from Table 2, this is not true for |N | = 4: there are
144 PE classes with the degree difference 1 while one has only 3 PE classes of
elementary imsets.

A simple example of a differential imset w = u − v for geometric neighbors
u, v ∈ S with degree difference 1 that is not an elementary imset is as follows:

w = δ{a} − δ{a,b} − δ{c,d} + δ{b,c,d},

where

u = δ∅ − δ{a,b} − δ{c,d} + δ{a,b,c,d}, v = δ∅ − δ{a} − δ{b,c,d} + δ{a,b,c,d}.

6 Conclusions

Let us mention some of our research goals motivated by the results reported
here. First, we would like either confirm or disprove the conjecture from § 3.2
for |N | = 5. If it is confirmed for |N | = 5 we may try to verify the weaker
version of the conjecture from § 4 then.

The catalogue from § 5 is meant as a step towards a deeper analysis of the
geometric neighborhood. For example, we would like to find out whether there is
a graphical interpretation of geometric neighbors, namely whether differential
imsets (for geometric neighbors) correspond to graphical operations with the
respective essential graphs.
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