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Abstract

In this paper we present results of experimental comparisons of several
triangulation heuristics on bipartite graphs. Our motivation for testing
heuristics on the family of bipartite graphs is the rank-one decomposition
of BN2O networks. A BN2O network is a Bayesian network having the
structure of a bipartite graph with all edges directed from the top level
toward the bottom level and where all conditional probability tables are
noisy-or gates. After applying the rank-one decomposition, which adds an
extra level of auxiliary nodes in between the top and bottom levels, and
after removing simplicial nodes of the bottom level we get so called BROD
graph. This is an undirected bipartite graph. It is desirable for efficiency
of the inference to find a triangulation of the BROD graph having the sum
of table sizes for all cliques of the triangulated graph as small as possible.
From this point of view, the minfill heuristics perform in average better
than other tested heuristics (minwidth, h1, and mcs).

1 Introduction

A BN2O network is a Bayesian network having the structure of a bipartite graph
with all edges directed from the top level toward the bottom level and where all
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conditional probability tables are noisy-or gates. Let U = {u1, . . . , um} be the
nodes of the top level of a BN2O network and V = {v1, . . . , vn} be the nodes of
the bottom level of this network.

In order to perform efficient inference, we transform these networks using
tensor rank-one decomposition [4, 11, 7]. The rank-one decomposition (ROD)
graph [8] of a BN2O graph G is the undirected graph constructed from G by

• adding an auxiliary node wi for each vi ∈ V ,

• replacing each directed edge (uj , vi) by an undirected edge {uj , wi}, and

• adding an undirected edge {vi, wi} for each vi ∈ V .

The ROD graph is further transformed by triangulation resulting in an undi-
rected triangulated graph. Note that nodes vi ∈ V are simplicial in the ROD
graph and have degree one. Therefore we can perform optimal triangulation
of the ROD graph by optimal triangulation of its subgraph induced by nodes
U ∪ W [1]. This graph will be called the BROD graph [8]. See Figure 1 for an
example of the BROD graph.

u1 u2 u3 u4

w1 w2

Figure 1: An example of the BROD graph

An important parameter for the inference efficiency is the total table size
after triangulation. The table size of a clique C in an undirected graph is∏

v∈C |Xv|, where |Xv| is the number of states of a variable Xv corresponding
to a node v. If all variables are binary the table size of a clique C is 2|C|. The
total table size of a triangulation is defined as the sum of table sizes for all cliques
of the triangulated graph. Therefore, it is desirable to find a triangulation of
the BROD graph having the total table size as small as possible. Since this
problem is known to be NP-hard and remains NP-hard for bipartite graphs [2],
diferent heuristics are often used.

In this paper we perform experimental comparisons of existing heuristic tri-
angulation methods applicable to the BROD graph, which is an undirected
bipartite graph. This extends the results already published in [8]. Let us point
out that the class of all possible BROD graphs is the same as the class of all
bipartite graphs. We talk about BROD graphs, since this corresponds to our
motivation.
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2 Triangulation heuristics

In Section 3 we will experimentally compare triangulation heuristics minfill [6],
minwidth [6], maximum cardinality search [10], and h1 [3]. In order to describe
these heuristics, we need notions defined below.

Definition 2.1 Let G = (V,E) be an undirected graph and U ⊆ V . The
subgraph of G induced by a set of nodes U , denoted G[U ], is G[U ] = (U,F ),
where F = {{u, v} ∈ E : u, v ∈ U}.

Definition 2.2 Let F (v) = {{v1, v2} : {v1, v} ∈ E, {v2, v} ∈ E}.

In Table 1 we describe a general template for the considered triangulation
heuristics except of minimum cardinality search. The criterion φ(u) used in
step 1 in the template is different for different heuristics and is as follows.

Definition 2.3 Let v be a node a a graph G = (V,E). Then, let

1. φminfill(v) be the number of edges added if v is chosen,
i.e., φminfill(v) = |F (v) \ E|.

2. φminwidth(v) be the degree of v, φminwidth(v) = |nbG(v)|.

3. φh1(v) be the size of the largest clique containing nbH(v), where H is the
induced subgraph of (V,E ∪ F (v)) on the set V \ {v}.

Table 1: General template for triangulation heuristics using criterion φ

For i = 1, . . . , |V | do:

1. Select a node v of graph G as v = arg minu∈V φ(u),
breaking ties arbitrarily.

2. Set f(v) = i.

3. Make v a simplicial node in G by adding edges to G,
i.e., G = (V,E ∪ F (v)).

4. Eliminate v from the graph G, i.e. replace G by G[V \{v}].

Return f .

Maximum cardinality search has slightly different structure than previously
described heuristics. See Table 2.
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Table 2: Maximum cardinality search

For all v ∈ V set weight w(v) = 0.
For i = |V |, . . . , 1 do:

1. Select an unnumbered node v of graph G maximizing
weight w, breaking ties arbitrarily.

2. Set f(v) = i.

3. For all unnumbered nodes u ∈ nbG(v) set w(u) = w(u)+1.

Return f .

3 Experiments

We performed an experimental comparison of the triangulation heuristics on
three types of random BN2O graphs. In the first set of experiments, we used
1300 BN2O networks, whose edges were chosen from the uniform distribution
on all edges of a complete directed bipartite graph of a given dimension. In the
second and third set of experiments we used submodels of the decision theoretic
version of Quick Medical Reference (QMR-DT) model using a determinisitic
choice of the nodes at the top level and two different types of random choice of
the nodes at the bottom level. We will call these submodels QMR thumbnails.

3.1 Randomly generated BN2O networks

First, similarly to [8], we compared the triangulation heuristics on 1300 BN2O
networks randomly generated with varying values of the following parameters:

• x, the number of nodes on the top level,

• y, the number of nodes on the bottom level, and

• e, the average number of edges per node on the bottom level.

For each x-y-e type, x, y = 10, 20, 30, 40, 50 and e = 3, 5, 7, 10, 14, 20 (excluding
those with e ≥ x) we generated randomly ten BN2O graphs by choosing the set
of edges from the uniform distribution on the set of all e-tuples of edges from
the x · y edges of the complete bipartite graph.

3.2 QMR-DT thumbnails

The decision theoretic version of the Quick Medical Reference [9] (abbreviated
QMR-DT) is a large Bayesian network version of the original Quick Medical
Reference [5]. There are 570 diseases and 4075 observations in the model.
The structure of the model is a directed bipartite graph with edges directed
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from diseases in the top level to observations in the bottom level. All variables
are binary and conditional probability tables of observations given diseases are
noisy-or gates. Therefore, QMR-DT represents an example of BN2O model.

Testing triangulation heuristics on the whole QMR-DT is very time consum-
ing and the analysis of this model requires specific algorithms. Our goal is to
test the heuristics on smaller graphs. However, we want to test the heuristics
on graphs, which contain substructures similar to those, which may appear in
real applications. For this purpose, we split the top level of QMR-DT into 10 or
20 disjoint intervals of indices in the order of the nodes, in which the model is
presented. This choice implies that similar nodes have higher chance to be cho-
sen to the same subgraph. The exact bounds of the k intervals, where k = 10 or
k = 20, were computed as [si−1 + 1, si], where i = 1, . . . , k and si = b570 · i/kc.

For each of the k intervals in the top level, denoted X, we used two types
of random selection of the set Y of y = d4075/ke nodes in the bottom level and
generated 10 randomly selected sets Y using each of the two methods. Hence,
each interval X yields 20 pairs (X, Y ) describing a submodel of QMR-DT of the
required size. We used the following two types of random selection of Y .

• Selection by edges. We choose a random permutation of the edges with
the starting point in X from the uniform distribution on such permutations
and consider the sequence of the end points of these edges. Then, Y is
the set of the first y different nodes in this sequence.

• Selection by nodes. We consider the set of end points of the edges,
whose starting point is in X. Then, Y is a random subset of these end
nodes of size y chosen from the uniform distribution on such subsets.

When k = 10, we obtain 200 models, which form the group of thumbnails
denoted QMR-DT-57-408. When k = 20, we obtain 400 models, which form
the group denoted as QMR-DT-29-204.

3.3 Results of experiments

Triangulation heuristics were tested on the BROD graphs GBROD. We used
the total table size tts of the graph Gh

BROD triangulated by a triangulation
heuristics h as the criterion for comparisons. We used the minfill method as
the base method against which we compared all other tested methods. Since
randomness is used in the triangulation heuristics we run each heuristics ten
times on each model and selected a triangulation with the minimum value of
total table size tts.

For each tested model we computed the decadic logarithm ratio

r(h, minfill) = log10 tts
(
Gh

BROD

)
− log10 tts

(
Gminfill

BROD

)
,

where h stands for the tested triangulation heuristics.
We used three sets of models for the experiments:
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• 1300 randomly generated models x-y-e from Section 3.1,

• 200 larger QMR thumbnails QMR-DT-57-408 from Section 3.2, and

• 400 smaller QMR thumbnails QMR-DT-29-204 from Section 3.2.

For each of these three groups of models we computed the tts estimate produced
by heuristics h ∈ {minfill,minwidth,mcs}. For groups x-y-e and QMR-DT-
29-204, we additionally computed the triangulation by h = h1. The obtained
values of tts for h 6= minfill were than compared to the results of minfill
for the same group of models. We eliminated the pairs of values of tts for h
and minfill, which are equal, and performed two-sided Wilcoxon two-sample
tests of the null hypothesis that the distribution of r(h, minfill) is symmetric
about 0 on the cases, where the two heuristics produced different values. The
alternative hypothesis is that the distribution of r(h, minfill) is biased towards
negative or positive values. In order to asses, which sign of the typical difference
is more likely, we present not only the p-values of the test, but also the values of
the statistics W+ and W−. If W+ > W−, then the tested statistics is typically
worse than minfill, when W+ < W−, then it is typically better. The results are
summarized in Tables 3, 4, and 5, where nr. obs. means the number of models
(observations), for which h and minfill yield different tts.

Table 3: Results of Wilcoxon test for models x-y-e

h nr. obs. W+ W− p-val
minwidth 486 78150 40191 8.96e-10
mcs 1266 802011 0 0.00e+00
h1 499 87367 37383 8.88e-15

Table 4: Results of Wilcoxon test for models QMR-DT-57-408

h nr. obs. W+ W− p-val
minwidth 193 12946 5775 3.95e-06
mcs 200 20100 0 0.00e+00

The tests revealed that minfill performs significantly better than mcs on all
three sets of models.

Also, minfill performed significantly better than minwidth on the set of ran-
domly generated models x-y-e and on the model set QMR-DT-57-408, while on
the model set QMR-DT-29-204 the difference was not significant. On the model
set x-y-e the advantage of minfill over minwidth increases with larger value of
tts, which was not observed on the other test sets, see Figure 2.

The computations of the h1 heuristics on QMR-DT-57-408 took too long,
which kept us from the comparisons of minfill with h1 on this model set. On
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Table 5: Results of Wilcoxon test for models QMR-DT-29-204

h nr. obs. W+ W− p-val
minwidth 313 24517 24624 0.9736
mcs 400 80200 0 0.0000
h1 325 32008 20967 0.0011
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Figure 2: Dependence of r(minwidth,minfill) on decadic logarithm of tts of
minfill for the set of randomly generated models x-y-e and on the model set
QMR-DT-57-408.

the set of randomly generated models x-y-e minfill performed significantly better
than h1 heuristics, while on the model set QMR-DT-29-204 the difference was
not significant.

In Figures 3, 4 and 5 we present histograms of values of r(h, minfill) for
x-y-e, QMR-DT-29-204, and QMR-57-408 model sets.

4 Conclusions

In this paper we presented results of experimental comparisons of existing
heuristic triangulation methods applicable to the BROD graph. The results
of experiments reveal that, although no heuristics was dominant on all graphs,
in average, the minfill heuristics gave the best results from the tested heuristics.
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Figure 4: Histograms of values of r(h, minfill) for QMR-DT-29-204.
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Figure 5: Histograms of values of r(h, minfill) for QMR-DT-57-408.
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