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Extended Abstract 

Traditional prediction methods for time series often restrict on linear regression analysis, exponential 
smoothing, and ARMA. These methods generally produce reasonable prediction results for stationary 
random time series of linear systems. In the recent decades, development in econometrics resulted 
also in methods which are capable of forecasting more complex systems, such as Wavelet 
decomposition or Neural Networks. These methods proved to better explain the complex stock market 
behavior. In this paper we apply neural network with wavelet denoising layer method for forecasting of 
Central European Stock Exchanges, namely Prague, Budapest and Warsaw. Hard threshold 
denoising with Daubechies 6 wavelet filter and three level decomposition is used to denoise the stock 
index returns, and two-layer feed-forward neural network with Levenberg-Marquardt learning algorithm 
is used for modeling. The results show that wavelet network structure is able to approximate the 
underlying process of considered stock markets better that multilayered neural network architecture 
without using wavelets. Further on we discuss the impact of structural changes of the market on 
forecasting accuracy on the daily stock market data. Stock markets change their structure rapidly with 
changing agent sentiment structure. These changes then have great impact on the prediction 
accuracy. 
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1. Introduction 

Traditional prediction methods for time series often restrict on linear regression analysis, 
exponential smoothing, and ARMA. These methods generally produce reasonable prediction results 
for stationary random time series of linear systems. In the recent decades, development in 
econometrics brought also methods which are capable of forecasting more complex systems, such as 
stock markets. These mainly include Wavelet Decomposition [10], [4], [1] and Neural Networks 
analysis, [5], [9]. Further on, the idea of combining both methods into single wavelets and neural 
networks has resulted in the formulation of wavelet networks. This research area is new, and there is 
tremendous potential for its development and application to various fields.  This paper is one of the 
first attempts to fit this exciting method to Central European Stock markets, namely Prague Stock 
Exchange, Budapest Stock Exchange and Warsaw Stock Exchange. Our main expectation will be that 
this method will improve the single neural network approach.  

 

2. Denoising with Wavelets 

Classical time series denoising approaches are rooted in Fourier analysis where noise is assumed 
to be represented mainly as high frequency oscillations. The wavelet based denoising, assumes that 
analysis of time series at different resolutions might improve the separation of the true underlying 
signal from noise. Let us begin with description of the basics of Wavelet decomposition theory. 
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2.1. Wavelets 

There are two types of wavelets: father wavelets     and mother wavelets    . The father wavelet 
integrates to unity and the mother wavelet integrates to zero. The father wavelet, also called scaling 
function, essentially represents the smooth, trend, i.e., the low frequency part of the signal, on the 
other hand the mother wavelet represents the details, i.e., the high frequency part of the signal. The 
mother wavelet is compressed or dilated in time domain, to generate cycles to fit the actual time 
series. The formal definition of the father     and mother     wavelet is  

 j,k = 2− j
2  t − 2jk

2j ,  j,k = 2− j
2  t − 2jk

2j
 

where  j   is the scale (or dilatation) and  k   is the translation (or shift). Commonly, many types of 
wavelets can be possibly used, including Haar wavelet, Mexican hat, Morlet wavelet, Daubechies 
wavelet etc. In the empirical part, we will use Daubechies wavelet db6. 

Any time series  x(t)   can be built up as a sequence of projections onto father and mother 
wavelets indexed by both  j  , the scale, and  k  , the number of translations of the wavelet for any 
given scale. Usually  k   is assumed to be dyadic. The wavelet coefficients are approximated by 
integrals 

sJ,k ≈ ∫−∞
∞

x(t)J,k(t)dt, dj,k ≈ ∫−∞
∞

x(t) j,k(t)dt
 

 j = 1,2,…,J  , where  J   is the maximum scale. The wavelet representation of the time series  
x(t)   in  L2(R)  1 can be given by 

x(t) = ∑
k

sJ,kJ,k(t) + ∑
k

dJ,kJ,k(t) + ∑
k

dJ−1,kJ−1,k(t) +. . .+∑
k

d1,k1,k(t)  
 

where the basis functions  J,k(t)   and   j,k(t)

N

  are assumed to be orthogonal. When the number 
of observations is dyadic, the number of the wavelet coefficients of each type at the finest scale  2   is  

  , labeled  d  . The next scale  2   has    coefficients, labeled  d  . At the coarsest 

scale  2

1

/ 2N 1,k
2 2/ 2 2,k

J   there are  / 2JN   coefficients  dJ,k   and  sJ,k  . 

 

3. Nonlinear Wavelet Denoising 

The simplest method of nonlinear wavelet denoising is via thresholding. The procedure sets all 
wavelet coefficients that has lower value than some fixed constant to zero. Two thresholding rules 
were instrumental in the initial development of wavelet denoising, both for their simplicity and 
performance: hard and soft thresholding [4]. 

 

                                                      

1Square integrable real-valued function,  ∫−∞
∞ x 2(t)dt < ∞.   

 

 



3.1. Threshold Selection 

Optimal thresholding occurs when the threshold is set to the noise level, i.e.,   . Setting  
  will allow unwanted noise to enter the estimate while setting     will destroy 

information that belongs to the underlying signal. Following [3] we can set a universal thresholding as 

= ∈

∈ < ∈ >

U = ∈ 2 logN ,
 

where  N   is the sample size. In practical situations the standard deviations of noise     is not 
known. The most commonly used estimator of  

∈

∈   is the maximum absolute deviation (MAD) 
standard deviation [10].  

MAD =
median(|d1,1 |, |d1,2 |, . . . , |d1,N/2−1 |)

0.6745 .
 

The denominator is needed to rescale the numerator so that  MAD   is tuned to estimating the 
standard deviation for Gaussian white noise [4]. 

 

3.2. Hard Thresholding 

In our paper we use a hard thresholding. The hard thresholding rule on the wavelet coefficients  o   
is given by 

t

H(ot ) = {
ot if |ot | > 

0 otherwise
,

 

where     is the threshold value. The operation is not a continuous mapping, it only affects input 
coefficients that are less or equal to the threshold  . After obtaining the thresholded wavelet 

coefficients using  
H

  we compose the denoised times series via an inverse wavelet transform 
(IDWT) so we get  

x den(t)  . For a more detailed treatment see [10]. 

 

4. Wavelet Network Structure 
 

Wavelet Network is a network combining the ideas of the feed-forward neural networks and the 
wavelet decomposition. Wavelet networks use simple wavelets and wavelet network learning is 
performed by the standard type algorithm such as Conjugate-Gradient, or more efficient Levenberg-
Marquardt [6], [8]. Neural networks can be viewed as universal approximation tools for fitting linear or 
nonlinear models, as [5] showed. Limiting space of this paper do not allow us to explore Neural 
Networks estimation methodology in detail, but reader is advised to follow i.e. [12], or [9] for very good 
explanation. 

There are basically two main approaches to form wavelet networks. In the first approach, the 
wavelet decomposition is decoupled from the learning component of neural network architecture. In 
other words, the series are firstly decomposed / denoised using wavelets, and then fed to the neural 
network. In the second approach, the wavelet theory and neural networks are combined into a single 
method, where the inputs  x 1 , . . . ,x k   with weights     are combined to estimated output in 
Multilayer feed-forward network (MPL): 

1 , . . . ,n

 

 



x DWNN(t) = ∑
i=1

N

 if(ix(t) + i),  
 

where  f   is an activation function,  , ,i i iγ β ω   are network weight parameters that are optimized 
during learning, and N is number of hidden layers. If we feed this network with nonlinear wavelet 
denoised values 

x (see section 3) we will get the form of the wavelet neural network (DWNN) 
used in this paper. 

den(t)

 

5. Results 
 

In the testing, we focus on sample of 1050 daily returns from 7.1.2004 to 3.4.2008 of value-
weighted indices PX-50, BUX and WIG (Prague, Budapest and Warsaw stock exchanges 
respectively). The dataset was downloaded from the server www.stocktrading.cz. In the prediction task 
we start with denoising of the 512 data sample with db6 wavelet filter and a 3-level decomposition. 
Then two-layer neural network with 5 neurons in each layer and Levenberg-Marquardt learning 
algorithm is used to learn the sample. To avoid over-fitting of the network we use a window of 50 real 
out-of-sample data on which we test the estimated model on one day predictions. This algorithm is 
repeated 10 times with moving window of 50, so the final prediction of 500 data is obtained. Finally we 
compare this method to neural network approach so we can see if the wavelet denoising layer 
improves the forecasts. Architecture of the network is again two layers with 5 neurons and Levenberg-
Marquardt optimization. 

As for evaluation, we focus mainly on out-of-sample performance, as it is most important in 
financial time series forecasting. We consider Root Mean Square Error statistics (RMSE) to see the 
performance of out-of-sample prediction. Further on, we use statistics proposed by Pesaran 
Timmerman – SR (PT) [11], which evaluates the correctness of the signs prediction. Such statistics is 
often used in financial literature as the predicted positive change predicts buy signal, negative change 
sell signal which allows evaluating a trading strategy. Pesaran Timmerman statistics is based on the 
null hypothesis that a given model has no economic value in forecasting direction and is approximately 
normally distributed. In other words, we test the null hypothesis that the signs of the forecasts and the 
signs of actual variables are independent. If the prediction of signs is statistically dependent, we 
approached a good forecasting model with economic significance.  

Finally to test the performance of the wavelet network and the neural network approach we use the 
statistic proposed by Clark and McCracken (CM) [2]. They compare out-of-sample accuracy for two 
models which are nested. The statistics is normally distributed under the null hypothesis of equal 
predictive ability of the two models. 

 

Table 1: Prediction results for PX50, BUX and WIG 

  PX50 BUX WIG

  MPL DWNN MPL DWNN MPL DWNN 
RMSE 0.8 0.175 0.08 0.11 0.37 0.41 
CM 0.78*** 0.25*** -7.6
SR (PT) 0.52 0.56** 0.51 0.53*** 0.47 0.49 

*, **, ***, 1%, 5% and 10% significance levels 

 
To compare the results, we can see that Wavelet Neural Networks (DWNN) performed best on BUX 
returns with lowest RMSE, while RMSE of PX50 was little bit higher, and WIG more than double of 
PX50 and BUX. This would indicate that the DWNN model will forecast the PX50 and BUX returns 

 

 



better than WIG. This is confirmed by Pesaran Timmerman statistics which is significant on 5% level of 
significance for PX 50, 10% level of significance of BUX but is not significant at all for WIG. Success 
rate of correct forecasted direction is 0.56 for PX50, 0.53 for BUX and 0.49 for WIG. As to the 
Multilayer Feedforward architecture (MPL) without denoising the directional accuracy is not significant 
at all. But if we compare the DWNN and MPL using Clark and McCracken statistics, we can see that 
DWNN yields significantly better prediction accuracy for PX50 and BUX series. For WIG the results 
are not significantly different, which would be expected as WIG does not seem to be significantly 
predictable even using Pesaran Timmerman.  

To sum up the achieved results we can say, that DWNN performs significantly better on the PX50 
and BUX returns prediction. Although reader can notice, that the success rate is quite low. This is 
probably caused by quite large data sample which contains large structural changes as recent stock 
market crash of February 2008, etc. Even though Wavelet Neural Networks are considered as a 
universal approximation theorem as mentioned before, reader can see that if we feed it with data 
which simply cannot be approximated, its performance is poor. As the stock market structure changes 
in time quite quickly, testing the prediction on such a large data samples does not seem to provide 
reasonable predictions. Thus our last test is focused on the division of the dataset into 3 month 
moving windows, where we simply look at how does the Success Rate statistics of Pesaran 
Timmerman evolve in time. 

 

 

Figure 1: Success Rate statistics of Pesaran Timmerman of PX50, BUX and WIG in time. 

 

Figure 1 demonstrates that our assumption was right. For some periods, the statistics for PX50 and 
BUX returns is 0.6 to 0.7, which means that 60% to 70% of the one day sign change is predicted 
correctly. For WIG returns the predictability does not excess 55%, which can lead us to suspicion that 
WIG simply does not contain strong predictable patterns. As to other two tested series, we can see 
that the pattern strongly evolves over time, and that it would make sense to adjust appropriate method 
for forecasting each 3-month. This would be done using adjusting wavelets and their levels, number of 
hidden layer of neural network, etc. which we leave for further research.   
 

Conclusion 

Our results indicate that the Wavelet Neural Network might outperform simple Neural Networks 
while forecasting Central European stock exchanges. More concretely, PX50 and BUX returns were 
predicted using DWNN structures significantly better than using MPL Network structure. We also 
conclude that the stock market structural changes affected the final stock market direction prediction 
greatly. Dataset used for testing was quite large and contained structural changes such as large 
market crash of February 2008 which leads to significantly lower prediction accuracy of the used 
methods. For this reason we also used the three month moving window using which we have showed, 
that for some periods the prediction accuracy reached sustainable 60% to 70%, meaning 60% to 70% 

 

 



 

 

future directions of the stock markets were predicted correctly using PX50 and BUX data. On the other 
hand, the prediction accuracy using WIG data did not improve a lot. Thus we conclude that this market 
does not simply contain stronger predictable patterns. Further research should concentrate on the 
exploring of dynamically adjusted wavelet types, number of hidden layers of neural networks or other 
parameters specific to structural changes in the forecasted underlying series.  
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