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Abstract 

 
This contribution focuses on the modelling of volatility of returns in Czech and US stock 
markets using a two-factor stochastic volatility model, i.e. the volatility process is modeled as 
a superposition of two autoregressive processes. As the volatility is not observable, the 
logarithm of the daily range is employed as the proxy. The estimation of parameters and 
volatility extraction are performed using the Kalman filter. We have obtained a meaningful 
decomposition of the volatility process into one highly persistent factor and another quickly 
mean-reverting factor. Moreover, we have shown that although the overall level of the 
volatility of returns is roughly the same in both markets, the US market exhibits substantially 
lower volatility of the volatility process. 
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1. Theory 
 
1.1. Stochastic volatility models 
 

The fact that volatility is not constant in most financial time series such as stock prices 
and exchange rates is widely recognised. From a practical point of view, estimating volatility 
is important in several fields within finance such as option pricing, portfolio optimization or 
risk management. There exist two prominent approaches to deal with time-dependent 
variances: ARCH/GARCH and stochastic volatility (SV) approaches. The GARCH model 
(Bollerslev, 1986) focuses on capturing the clustering of volatility in returns when the 
conditional variance at time t is modelled as a deterministic function of lagged values of 
conditional variances and squared returns. On the other hand, the stochastic volatility models 
understand the time-varying variance as a stochastic process which can be a continuous-time 
diffusion (Hull and White, 1987) or a more general Lévy process (Barndorff-Nielsen and 
Shepard, 2001).  For econometric purposes, it is convenient to work with some discretized 
version of the model (pioneered by the seminal paper Taylor, 1982). 
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Now we introduce a simple example of a stochastic volatility model. Let the asset 
price P(s) follow the geometric Brownian motion with local volatility ( )sσ  and suppose that 
log-volatility evolves as a mean-reverting Ornstein-Uhlenbeck process with mean lnσ  and 
mean reversion parameter 0α > : 
 

1( ) ( ) ( ) ( ) ( )dP s P s ds s P s dW sµ σ= +        (1a) 

( ) 2ln ( ) ln ln ( ) ( )d s s ds dW sσ α σ σ β= − +       (1b) 

 
where 1( )W s and 2( )W s  are independent Brownian motions. This specification leads to a 
lognormal SV model which is widely used in volatility modelling. One reason for its 
popularity is given by the econometric tractability of its discrete-time counterpart, represented 
by a linear Gaussian first order autoregressive process.  
 
 
1.2. Volatility proxies 
 

It is important to note that the log-volatility is a latent variable and therefore is not 
directly observable. Instead, we are able to observe some of its proxy contaminated by a 
measurement error. Early attempts (for instance Ruiz, 1994, or Harvey et al., 1994) focused 
on squared returns as a volatility proxy, however the performance of Kalman filter turn out to 
be quite poor due to substantial skewness of squared returns. A novel and promising approach 
(Alizadeh et al., 2002) relies instead on the log range defined in the following way 
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       (2) 

 
where p(s) denotes the log price and supremum and infimum are taken over the daily interval 
which is normalized to unity purely for ease of notation. 

 
It turns out that the log range exhibits several desirable properties: first, it is more 

efficient due to lower variance of the measurement errors relative to log absolute returns. 
Second, the log range is known to be robust to certain market microstructure effects as bid-
ask bounce.  Finally, contrary to log absolute returns, the distribution of the log range is 
nearly Gaussian. The asymptotic distribution of log range has been studied in Alizadeh et al. 
(2002); it is easily obtained in the series form (based on the result of Feller, 1951) but for 
practical purposes it can be well approximated by the normal distribution with mean 0.43 + th  

and variance 0.08 where ( )lnt th σ≡  is the daily log-volatility. On the other hand, the 

distributional properties of the log absolute return are quite different. Recall that returns in 
discrete-time SV model are generated by 
 

t t tr u σ=           (3) 

 
with (0,1)tu nid∼ . Equation (3) implies 

 

( )ln 0.64r t tr h ξ= − + +         (4) 
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where the measurement error ( ) ( )ln lnt t tu E uξ ≡ −  has zero mean, variance 2 /8 1.23π ≐  

and is highly skewed.  
 

However, a word of caution is needed here. In finite samples, the distribution of range 
estimators depends also on the number of observations per unit of time (day in this case). 
Therefore, we investigated the impact of discretization on mean and variance of the log range 
by a Monte Carlo simulation (results are reproduced in Table 1). The pattern is clear: reducing 
the number of observations during a trading day results in lower mean and higher variance. 
Nevertheless, the variance of the proxy seems to be quite close to the asymptotic one even for 
50 trades per day.  
 
 

N 5 10 50 100 200 500 1000 
Mean -0.115 0.097 0.300 0.340 0.366 0.401 0.415 

Variance 0.233 0.152 0.104 0.097 0.092 0.086 0.084 
 

Table 1. Mean and variance of log range for a Wiener process with zero drift and unit 
variance observed N times during a unit period. The Monte Carlo simulation was performed with 1 
milion replications.  

 
There exists a closely related estimator proposed by Parkinson (1980) given by 

2 / 4 ln 2tR  and several modifications thereof: Garman and Klass (1980) included the open and 

close prices in addition to the high and close prices, Rogers and Satchell (1991) suggested an 
estimator which allowed for a nonzero drift and also investigated the discretization bias (see 
also Christensen and Podolskij, 2007). 

 
If higher efficiency is needed, intraday data should be used and appropriated volatility 

estimator constructed (realized volatility, see Andersen et al., 2001, or realized range, see 
Martens and van Dijk, 2007). 
 
 
1.3. One and two-factor models 
 

Stochastic volatility models can be conveniently written in the state space form. In the 
simplest case with one process governing the log-volatility the model reads as follows: 
 

( )1t t th h h hρ η−= + − +         (5a) 

t t tR b h ε= + +          (5b) 

 
where th  represents the latent log-volatility, ( )0,1ρ ∈  the autoregression parameter, h the 

mean of the log-volatility process, tR  the observed log-volatility proxy (log range), b the bias 

of the proxy, 2(0, )t nid ηη σ∼  and 2(0, )t nid εε σ∼  are uncorrelated transition and measurement 

errors, respectively. 
 

Equation (5a) is a transition equation which describes the dynamics of the latent 
variable, whereas the observation equation (5b) relates the latent variable and its (observable) 
proxy. The dynamics of the latent log-volatility can be enriched by including a second 
component. In this case, transition equations are modified in the following way: 
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1 2t t th h h h= + +          (6a) 

1 1 1 1 1t t th hρ η−= +          (6b) 

2 2 2 1 2t t th hρ η−= +           (6c) 

 
where 1 2,t th h  are volatility factors, ( )1 2, 0,1ρ ρ ∈  autoregression parameters and 1 2,t tη η  

mutually uncorrelated n.i.d. disturbances.  
 

It is worth discussing in more details the benefits of employing two-factor models. 
Probably the most important reason is the ability thereof to capture several empirically 
observed patterns of the autocorrelation function, and the long memory-like behaviour in 
particular. The fact that the superposition of independent short memory processes (for 
instance, Ornstein-Uhlenbeck process in continuous time formulation or autoregressive 
process in discrete time) can mimic slow decay of the autocorrelation function or power laws 
empirically observed has been explored by several authors (LeBaron, 2001 or Barndorff-
Nielsen, 2001, among others). The idea had appeared even in the context of GARCH models: 
Ding and Granger (1996) suggested a two-component GARCH model, one component 
describing the short-run effect whereas the persistent component specified as IGARCH 
process.  

 
For the sake of illustration, suppose a composite process 1 2t t tx y y= +  where both 

component processes are modeled as AR(1), i.e. 
 

1it i it ity y uγ −= +    i = 1,2      (7) 

 
with 1 2γ γ≠  and { } { }1 2,t tu u white noise sequences which are uncorrelated at all leads and 

lags.  As the autocovariance function of a sum of independent components is equal to the sum 
of the autocovariances,  it follows easily that ( ) 1 1 2 2, k k

t t kcorr x x w wγ γ− = + , k = 1,2,..., and the 

weights are given by ( ) ( ) ( )( )1 2var / var vari it t tw y y y= + . An example of such an 

autocorrelation function for 1 2 1 20.5, 0.99, 0.1w w γ γ= = = =  is shown in Figure 1. 
 
 
1.4. Model estimation and volatility extraction 
 

We will shortly review the filtering algorithm known as Kalman filter (for a more 
detailed description see Hamilton, 1994). We assume that there exists a (n x 1) vector of 
observed variables ty whose behaviour depends on a (r x 1) vector of unobserved (state) 

variables tz . The state space representation of the system is 

 

1t t t−= + +z a Fz v          (8a) 

t t t= + +y b Hz w          (8b) 

 
where a, b are (r x 1) and (n x 1) vectors, respectively, F and H are (r x r) and (n x r) matrices, 

respectively,  ( )T
tE τ =v v Q  for t τ=  and 0  otherwise, and ( )T

tE τ =w w R  for t τ=  and 0  

otherwise. The vectors vt and wt are uncorrelated for all t and τ. Moreover, it is convenient to 
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assume that the initial state 1z  and the innovations { },t tv w  are multivariate Gaussian. If  the 

assumption of normality is dropped, the Kalman filter yields optimal (in the mean square 
sense) linear projections which in general differ from conditional expectations.  
 
Step 1: Forecasting ty  given the information at time t-1 

 
Given the initial value ( )1|0 1E=z z  with associated mean squared error (MSE) 

{ }1|0 1 1|0 1 1|0

T
E    = − −   P z z z z   we can compute the forecast of ty  given the information 

observed up to time t-1 as 
 

| 1 | 1t t t t− −= +y b Hz          (9) 

 
with the corresponding MSE 
 

( )( )| 1 | 1 | 1 | 1

T T
t t t t t t t t t tE − − − −

 − − = + ≡  
y y y y HP H R V      (10) 

 
 
Step 2:  Updating the inference about tz  given ty  
 

Next we update the inference about the current value of the state variables tz  as a new 

observation of ty  becomes available: 

 

( )1
| | 1 | 1 | 1 | 1

T
t t t t t t t t t t t

−
− − − −= + −z z P H V y y        (11) 

1
| | 1 | 1 | 1 | 1

T
t t t t t t t t t t

−
− − − −= −P P P H V HP        (12) 

 
Step 3: Forecasting 1t+z  given the information at time t 
 

Subsequently, the transition equation (8b) is used to compute the forecast of 1t+z  based 

on the information available at time t together with its MSE: 
 

( )1
1| | | 1 | 1 | 1 | 1

T
t t t t t t t t t t t t t

−
+ − − − −= + = + + −z a Fz a Fz FP H V y y     (13) 

1| |
T

t t t t+ = +P FP F Q          (14) 

 
If parameters of the model are unknown, their estimates can be obtained by 

maximizing the quasi-loglikelihood defined as (after omitting constant terms) 
 

( ) 1
| 1 | 1

1 1

1 1
ln det

2 2

T T
T

t t t t t t
t t

−
− −

= =
− −∑ ∑V u V u        (15) 

 
where | 1t t t t−≡ −u y y  is a one step ahead prediction error. 
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The quasi-maximum likelihood (QML) estimation is known to yield consistent and 
asymptotically normal estimates of the unknown parameters, however, they are inefficient and 
their sampling properties can be quite poor if the normality approximation is inadequate. 
 
 
2. Empirical application 
 
2.1. Description of the dataset 
 

ČEZ (CZ0005112300) Prague Stock Exchange (SPAD) 
Telefónica O2 C.R. 
(CZ0009093209) 

Prague Stock Exchange (SPAD) 

Erste Bank (AT0000652011) Prague Stock Exchange (SPAD) 
General Electric Co. New York Stock Exchange 

Microsoft Corp. NASDAQ 
Intel Corp. NASDAQ 

 
Table 2.Stocks included in the dataset. 

 
We use daily high and low prices of six stocks (see Table 2) for the period from 

September 16, 2005 until November 13, 2007 (543 and 544 observations for Czech and US 
markets, respectively). The average number of transactions per day for ČEZ, Telefónica O2 
C.R. and Erste Bank was 231, 102 and 86, respectively. In the case of Erste Bank there were 
only three transactions during the trading day in April 14, 2006 giving rise to the observed 
range very close to zero and a corresponding large negative outlier in the log range. 
Therefore, this observation was excluded from our analysis.  

 
The data are depicted in Figures 2a and 2b together with their sample autocorrelation 

functions and QQ plots. The autocorrelation functions clearly show a certain degree of 
persistency in the volatility proxy. Empirical moments of the log range are reported in Table 
3.  
 

 Mean Std deviation Skewness Kurtosis 
ČEZ -3.7541 0.5796 0.1082 3.1717 

Telefónica O2 C.R. -4.2106 0.6215 0.2519 3.3516 

Erste Bank -4.2254 0.5840 -0.0179 2.9515 

General Electric -4.4138 0.3962 0.4316 3.1181 

Microsoft -4.2230 0.4194 0.3390 3.0718 

Intel -3.9355 0.3821 0.1501 2.7630 

 
Table 3. Unconditional moments of the observed log range 

 
 
2.2. Estimation results 
 

Now we proceed to estimate both stochastic volatility models by quasi-maximum 
likelihood method. Estimation results are shown in Tables 4 and 5 and smoothed extractions 
of volatility factors for the two-factor model are depicted in Figures 3a and 3b.  In accordance 
with findings of Alizadeh et al. (2002), there exists a strong evidence that the log-volatility 
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process can be meaningfully decomposed into one highly persistent factor and another 
quickly mean-reverting factor (for a more detailed discussion concerning the inadequacy of 
one factor model see Alizadeh et al., 2002). 

 
In order to obtain a better interpretation of our results, we computed estimated 

variances for both volatility factors and the total variance of the log-volatility process as their 
sum (due to zero cross-correlation) (see Table 6). The variance of both factors is roughly the 
same with notable exceptions of Erste Bank and Intel where the second (less persistent 
component) seems to be much more volatile. Comparing Czech and US markets, the most 
striking feature is substantially lower volatility of the log-volatility process for US stocks, 
even if the overall level of the volatility of returns (estimated by h ) is roughly the same.  

 
 

 
 ρ  h  var( )η  

ČEZ 0.7507 
(0.0391) 

-4.179 
(0.056) 

0.1087 
(0.0141) 

Telefónica O2 
C.R. 

0.6848 
(0.041) 

-4.6395 
(0.0521) 

0.1593 
(0.0168) 

Erste Bank 0.5855 
(0.0464) 

-4.6564 
(0.0439) 

0.1681 
(0.017) 

General Electric 0.8718 
(0.0326) 

-4.8384 
(0.0426) 

0.0147 
(0.0047) 

Microsoft 0.7974 
(0.0221) 

-4.6484 
(0.037) 

0.0292 
(0.0023) 

Intel 0.5036 
(0.0301) 

-4.3656 
(0.0211) 

0.0446 
(0.0072) 

 
Table 4. Quasi-maximum likelihood estimates of the one-factor model (asymptotic standard errors 

appear in parentheses) 
 
 
 

 
1ρ  2ρ  h  1var( )η  2var( )η  

ČEZ 0.9427 
(0.0234) 

0.3992 
(0.0944) 

-4.1688 
(0.0917) 

0.0156 
(0.0066) 

0.0941 
(0.0143) 

Telefónica O2 
C.R. 

0.9403 
(0.0385) 

0.4938 
(0.0955) 

-4.6317 
(0.0919) 

0.013 
(0.0117) 

0.1427 
(0.021) 

Erste Bank 0.9395 
(0.0369) 

0.4235 
(0.0838) 

-4.6493 
(0.0699) 

0.0081 
(0.0065) 

0.1542 
(0.0185) 

General Electric 0.9551 
(0.0228) 

0.1602 
(0.0666) 

-4.8295 
(0.0579) 

0.0039 
(0.002) 

0.0299 
(0.008) 

Microsoft 0.946 
(0.0225) 

0.1086 
(0.1292) 

-4.6366 
(0.0604) 

0.0056 
(0.0024) 

0.0404 
(0.0093) 

Intel 0.9799 
(0.0171) 

0.3444 
(0.1141) 

-4.3664 
(0.0387) 

0.0004 
(0.0004) 

0.0457 
(0.0083) 

 
Table 5. Quasi-maximum likelihood estimates of the two-factor model (asymptotic standard errors 

appear in parentheses) 
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 First factor Second factor Total variance  
ČEZ 0.1401 0.1119 0.2520 

Telefónica O2 C.R. 0.1122 0.1887 0.3009 
Erste Bank 0.0690 0.1879 0.2569 

General Electric 0.0444 0.0307 0.0751 
Microsoft 0.0533 0.0409 0.0942 

Intel 0.0101 0.0518 0.0619 
 

Table 6.Variances of individual factors and the total variance of the estimated log-volatility. 
 
 
3. Conclusion 
 
 We have analysed the volatility of returns of six representative Czech and US stocks 
using a simple but quite flexible two-factor model which specifies the log-volatility as a 
superposition of two independent autoregressive processes with different persistence rates. 
This approach offers a much richer dynamics than the usual autoregressive models allowing 
to model the temporal dependence in a parsimonious way. Moreover, the availability of a 
nearly Gaussian proxy contaminated with a low amount of the measurement error allows to 
estimate parameters of the model and extract the latent log-volatility in a computationally 
efficient way. The main empirical finding of this paper is that Czech and US stock markets 
seem to differ considerably in the variability of the log-volatility process rather than in the 
overall level thereof. Given the importance of the proper volatility modelling in the risk 
management area it would be interesting to extend our analysis to a multivariate setting. 
However, this issue is left for further research. 
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Figures 
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Figure 1. Example of an autocorrelation function for the two-component model 
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Figure 2a. Log range, its sample autocorrelation function and QQ plots  for ČEZ, Telefónica O2 C.R. 
and Erste Bank (from top to bottom). 
 
 



 11 

100 200 300 400 500
-5.5

-5

-4.5

-4

-3.5

-3
Log range

5 10 15 20 25
0

0.1

0.2

0.3

ACF of log range

-4 -2 0 2 4
-6

-5

-4

-3

-2

Standard Normal

Lo
g 

ra
ng

e

QQ plot

100 200 300 400 500

-5

-4

-3

5 10 15 20 25
0

0.1

0.2

0.3

-4 -2 0 2 4
-6

-5

-4

-3

-2

Standard Normal

Lo
g 

ra
ng

e

100 200 300 400 500
-5

-4.5

-4

-3.5

-3

-2.5

5 10 15 20 25
-0.05

0

0.05

0.1

0.15

-4 -2 0 2 4
-6

-5

-4

-3

-2

Standard Normal

Lo
g 

ra
ng

e

 
 
Figure 2b. Log range, its sample autocorrelation function and QQ plots  for General Electric, 
Microsoft and Intel (from top to bottom). 
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Figure 3a. Smoothed extractions of volatility factors for the two-factor model for ČEZ, Telefónica O2 
C.R. and  Erste Bank (from top to bottom). 
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Figure 3b. Smoothed extractions of volatility factors for the two-factor model for General Electric, 
Microsoft and Intel (from top to bottom). 


