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Abstract

We study probabilistic properties of a zero intelligence model of a limit order market, very similar
to those of [4] and [8]. We (recursively) describe the distributions of the order books and the best
quotes. Based on these theoretical results, a procedure for statistical inference of the model may
be designed and the evolution of the process may be simulated more efficiently then by the crude
simulation of all the events.

Keywords. Continuous double auction, limit order markets, distribution, simulation, statistical
inference, price increment tails.

1 Introduction

Recently, several zero-intelligence models of limit order markets® have been introduced: [4] shows that
even a simple model assuming a Poisson orders’ arrival and the uniform distribution of the limit prices
generates fat-tailed price increments. [6] computes the rate of the tail by means of a mean-field ap-
proximation. [8] introduce a model, similar to that of [4], including, in addition, order cancelations.? A
generalization of this model incorporating the statistical properties of real-life order books is made by
[5]. Even though many stylized facts cannot be explained by the zero-intelligence models (see [1]) they
may be regarded as a good first approach.

Despite the great effort of the authors, no exact probabilistic description of any of the zero-intelligence
has been published yet, which, among others, disallows statistical inference of the models. In our recent
work [7] we formulated a general model, covering fully the models of [4] and [8] (the latter after a
discretization) and partially the one by [5] and we recursively described its distribution. The purpose of
the present paper is to apply these results to a simpler (uniform) model of the continuous double auction.

In particular, we consider a model with Poisson order flows, constant cancelation rate and continuous
uniform distribution of limit prices (Section 2) which may be easily transformed both to the Maslov’s
model [4] (by sending the cancelation rate to infinity) and to the model of [8] (by a slight redefinition
and the rounding of the prices, see [7], Section 3). The distribution of the present model is described in
Section 3). Further (Section 4), we discuss applications of our results. Finally, we conclude the paper
(Section 5).

*This work is supported by the grants No. 402/09/0965 and No. 402/07/1113 of the Czech Science Foundation and by
project No. LC06075 of the Ministry of Education, Youth and Sports.

TThis work is supported by the grants no. 402/06/1417 and 402/07/1113 of the Czech Science Foundation.

IFor a detailed description of a limit order market, see e.g. [8].

2In a subsequent work [2] it is argued that, despite the radical assumption of economic agents acting as gas particles,
zero intelligence models replicate several stylized facts found in real-life limit markets.
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2 Definitions

2.1 Inputs

In the model we study, the orders of all the four types (i.e. buy/sell market/limit orders) arrive with
(possibly different) constant intensities, the intensity of the limit orders’ cancelations is constant and the
limit prices are uniformly distributed. In particular,

- the arrivals of sell limit orders form a marked Poisson process x with an intensity ¢ and with marks m; ~
U (=h,h), u; ~ Exp (v), standing for the absolute limit price, lifetime of the order respectively, where
h is a finite positive constant® and where all the marks are mutually independent and independent of
the arrival times,

- the arrivals of sell market orders form a Poisson process  with an intensity z,

- the process y of arrivals of buy limit orders is Poisson with an intensity w and with independent,
mutually independent marks (r;,¢;)$2; (absolute limit prices, cancelation times respectively) such
that 7; ~ U (h, h) and v; ~ Exp (2) for some constant z,

- the process g of arrivals of buy market orders is Poisson with an intensity @,

- the random elements z, y ,y, & are mutually independent.

2.2 Dynamics of the System
We describe the state of the market at a time 7 by a tuple

Er= (AT,BT) (1)

where A, and B, are simple atomic measures (collections of points on the real line) describing the sell
order book, buy order book respectively, each atom (point) standing for a waiting limit order with the
(absolute) limit price equal to its location. We denote

a2 min{7 : 7w is an atom of A} A h (2)

the value of the (best) ask (we put min ) = co) and
b, 2 max{7 : 7 is an atom of B;}V —h (3)

the value of the (best) bid (we put max ) = —c0).

We assume our process to start by a single limit order on each side, i.e. both Ay and By contain a
single (deterministic) point 7o, po respectively, such that pg < mp. Further, we assume the lifetime wug
(vo) of the starting sell (buy) order to be exponentially distributed with parameter v, (z) such that ug,
v and (z,Z,y,y) are mutually independent.

We let the process Z (possibly) jump only at the times (7;)ien, (7:)ien, (04)ien, (7i)ien, denoting the
jump times of z, Z, y, and § respectively, or at (1;)ien, ((;)ien Where 7; 2 7; +u; and (; 2 oi +v;,1>0
(i.e. the cancelation times of sell limit orders, buy limit orders respectively, we put 79 = g = 0).

If 7 is one of the possible jump times of = then the change of = at 7 is defined as follows:

- if 7 = 7; for some ¢ > 0 and m; > b,- then =; is added into A

- if 7 = n; for some i > 0 and 7; is present in A,- then ; is removed from A
- if 7 = 7; for some i > 0 and B,- # 0 then b,.- is removed from B

- if 7 = g; for some i > 0 and p; < a,- then p; is added into B

- if 7 = (; for some ¢ > 0 and p; is present in N, - then p; is removed from B

- if 7 = &; for some ¢ > 0 and A,- # 0 then a,- is removed from A

- if 7 does not fit any of the conditions above then both A and B are left unchanged at 7.

3Later we define our model also for infinite h
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It follows from the definition of the input processes that
Plany pair of 7;, 74,04, Ti, i, Giy @ € N, coincide] = 0 (4)
hence our definition is correct with probability one. Further, since
Plany pair of m;, p;, i € N, coincide] = 0 (5)

it is guaranteed that A, and B, are simple (with no overlapping points) at each 7 > 0.
For a “formula based” definition of Z, see [7].

3 Distributions

In the present Section, we describe probabilistic properties of = and of the process of the best quotes

& = (ar,br). ()

An uninterested reader may skip this section; however, (s)he will need to return here for a notation
sometimes.
We start with a nearly obvious statement:

Proposition 1 (Markov properties of =)
(i) For any deterministic 0 < 81 < -+ < 85, < 8,
£(55+' |ES7551""7ESn) :£(55+° ‘Eb) (7)

(here, for any random elements X, Y, symbol L (X |Y') denotes the conditional distribution of X
given'Y' ).

(ii) Relation (7) keeps holding even if s1 < -+ < s, < s are optional times with respect to the filtration
generated by =.

Proof. Statement (i) follows from the fact that all the inter-jump times and the orders’ lifetimes are
exponential and that the value of = at a jump is fully determined by the value at the last jump and the
type of jump time. Part (ii) stems from the fact that Z is pure jump type process (see [3], chp. 12). O

To go on, we need to introduce some notation: For any interval J such that J = [s,¢) or 1 = [s,1],
0 < s <t, denote
a1 R, al 2 max ap, TEI (8)
0cIN(r,00)
and introduce a function
: *
Ip) 2 t =3 P 1
K (p) = Z;[FA%_U —apl T —exp{-v(t-)},  pER, (9)
j=0
where * £ (2h)~ 11, J7 is the number of jumps of @* on J, ¢} < --- < gi; denote the jump times themselves

A
(we put ¢§ = s) and where

~ VANNS .
ity = aiﬂ;, 0<j<Ji, (10)

2

(we put dfﬁl] h). Further, denote 0 = Jy < ¥y < ... the sequence of jump times of &.

3.1 Order Books
Until the end of subsection 3.1, fix s < ¢ fulfilling one of the conditions
- both s and ¢ are deterministic,

- s =9 and t = 9; for some (deterministic) k,i € N, k < 1,
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and agree to write @ instead of al**, J instead of JI®! etc.
The following two Propositions describe the distribution of the order books given =g, §[, ;) where the
latter symbol denotes the trajectory of £ restricted to interval [s, ].

Proposition 2 (conditional distribution of A;)

J K
Ap =04, + Y 8a, €+ ) dazd;+ L. (11)

j=1 j=1
where §, denotes the Dirac measure concentrated in q (i.e. a single point {q}) and

- e1,...,ey are binary variables such that

L (ej |Es,§[s7t]) = Alternative (exp {—U (t — gj)}) , 1<5<J, (12)

- o1 < --- < ag are all the atoms of As whose location is greater then ag,

- dy,...,dg are binary variables with
L (dj |Zs,&s,q) = Alternative (exp {—v (t — s)}), 1<j <K, (13)
- L is (conditionally on Zs, &[5 4)) a non-homogenous Poisson process on (as, h) with the intensity given
by distribution function k,

-e1,...,e7,d1,...,dr, L are conditionally independent given (Zs,§[s)-
Proof. See [7]. O

Remark 1 Using the symmetry of A and B, an analogous formula for the distribution of B may be
obtained as a corollary of Proposition 2.

3.2 Best Quotes

Until the end of subsection 3.2, fix deterministic integers 0 < k < i and agree to abbreviate al?*?) as @,
Jk99) as J ete.

Our present goal is to specify the conditional distribution of J; 1 and &y, , given Zy, and §y, 9,]- For a
better intuitive understanding, we add an additional step to the definition: we consider an supplementary
variable x;t1, coding the type of the event happening at the time ¥;11. Denoting the possible values of
Xi+1 symbolically by a™, a=, b+ and b~, we define it as

at if Aag, > 0, Aby, =0,

A Jam if Aay, <0,Aby, =0,
Xi =19 .4+ - B (14)
bt if Aay, = 0,Aby, >0,
b~ if Aaqgi = O,Abﬂi < 0.
Denote - N
giu = L*(aﬁi - bﬂi)v giu = 1[aq9i<h] ((D + U)v (15)
G =), S = g b)), (16)
G=TT T AT T w2 (2, (17)
(1 was introduced at the definition of 7).
Proposition 3 (distribution of 9;41)
L (AYi41 |€9,,0.0,E0, ) = Exp (s) - (18)
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Proposition 4 (distribution of x;1+1)

at caT bt bT
L (Xi+1 |A191:+1,§[19k719i],:19,€) - G Z§ ’ LC ’ L§ . (19)
7 7 1 T

Proposition 5 (distribution of ay,,,)

(Z) If Xi+1 = a® then

Plag,,, > plADiy1, Xiv1,E[9,,9:) Zoi)
= 1ppen exp {—r(p)} (1 — exp{—v(Wi41 — Vi }) <P
X H (1 —exp{—v(¥iy1 — <j+1)})

1<5< T <p
where K (p) is the number of points of Ay, belonging to interval (dﬁk,p],

(ii) If xiv1 = a~ then
E (aﬂi+] |A191+17 Xi+1, é‘[’ﬁk,’ﬂi]’ 51919 ) = U (b1917 aﬂi) (20)

(iii) If X441 € {67, b7} then

L(ay,,, |Ais1, Xit1, Ee,0:5 Bon ) = Oay. -

i

Proof of Propositions 3-5. See [7]. O

Remark 2 The formula for the distribution of by, , is symmetric.

4 Applications

Even if the formulas describing the distribution are quite complicated, several useful and practical appli-
cations may be constructed based on them.

4.1 Statistical inference of the model

The problem of the inference of our model (i.e. testing its validity and estimating its parameters) may be
broken into five parts: an inference of all the four input processes. Since the flows of market orders may
be studied by standard techniques,* we do not discuss them in the present work. To test and infer the
distributions of (7,,),en and (p,),en, may also apply standard statistical tools. On the other hand, we
are getting into difficulties with cancelations rates v and z because the sample of observed cancelations
of the orders is censored (some orders are executed before they could be canceled) - in fact, this is the
point where our theoretical results may help: based on our formulas, the cancelation rates (together with
the market limit orders’ arrival rates, if we are lacking detailed enough data to infer them directly) may
be estimated. For details, see Section 4.2. of [7].

4.2 Efficient Simulation

Since we do not know analytic formulae for the (unconditional) distributions of Z and &, a Monte Carlo
simulation is needed when working with the processes. However, our knowledge of the (conditional)
distributions may help us to speed up the simulations significantly.

Contrary to the “crude” simulation, when each variable defining the system is generated, our procedure
allows us to omit a vast majority of the steps of such a simulation: Thanks to our results, it suffices to
generate the process £ only and to draw the values of = only at the times when they are actually needed.?
Our procedure is as follows:

40f course, this is true only if we are able to distinguish the moves of bid, ask respectively, caused by cancelations from
those due to market orders.

5In fact, our procedure “is able” to generate the order books only at the times of jumps of ¢; however, if we wanted to
draw all the values of the order books, we may use the crude simulation since the last jump of £.
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For each ¢ € Ng:

1. Generate AvY;+1 and x;4+1 from their conditional distribution given the (f[smgi],Esi)
where s; is the time of the last generation of a value of Z (by Proposition 3 and 4)

2. Generate ag,,, and by, from their conditional distributions given
(Xit+1, AVi41,&s;,0:05 Zs;) (by Proposition 5 and its symmetric counterpart)

i

3. If needed, generate By,,, and/or Ay, , from their conditional distributions given
(&151,9:41] Zs;) (by Proposition 2 and its symmetric counterpart).

5

Conclusion

We examined theoretically some zero-intelligence models of limit order markets and showed some appli-
cations of our results. In particular, we outlined a way of a rigorous statistical inference of such models
and we proposed a way of an efficient Monte Carlo simulation of the models. Further generalizations of
the model are subjects of our future research.
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