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Abstract: One of the hot topics discussed recently in relation to pattecognition techniques is the question of ac-
tual performance of modern feature selection methods. uFeaelection has been a highly active area of
research in recent years due to its potential to improve thatiperformance and economy of automatic deci-
sion systems in various applicational fields, with medidafjdosis being among the most prominent. Feature
selection may also improve the performance of classifiemnéd from limited data, or contribute to model
interpretability. The number of available methods and métthogies has grown rapidly while promising
important improvements. Yet recently many authors putdeigelopment in question, claiming that simpler
older tools are actually better than complex modern onesiehytespite promises, are claimed to actually fail
in real-world applications. We investigate this questisimw several illustrative examples and draw several
conclusions and recommendations regarding feature srienethods’ expectable performance.

1 INTRODUCTION ing. A typical feature selection process consists of
four basic stepgfeature subset selectipfeature sub-
Dimensionality reduction (DR) concerns with the task ?et e\éaluagon, fﬁOp?'n? crlte_rt|or:and Les_,ult \;alut:la-
of finding low dimensional representation for high di- slg:ﬂ(;ctigr?eme?rqo d??nzzlf;ugmrfeﬁiﬁgsa iﬁ?outrheree
mensional data. DR is an important step in data pre- , .
P P b types: thdfilter (Yu and Liu, 2003; Dash et al., 2002),

processing in pattern recognition applications. It is . :
: e he wrapper(Kohavi and John, 1997) and thgbrid
sometimes the case that such tasks as classification O'_LDas, 2001 Sebban and Nock, 2002: Somol et al..

the data represented by so called feature vectors, ca , : .
be carried out in the reduced space more accurately .006). The filter model relies on general characteris-
than in the original space. There are two main ways tics of the data to evaluate and select feature subsets
of doing DR depending on the resulting features: DR without mvo_lvmg any mining alg_onthm._ T_he wrapper
by feature selectiofFS) and DR byfeature extrac- model requires one predetermined mining algorithm

tion (FE). The FS approach does not attempt to gen- and uses its performance as the evaluation criterion. It
erate neW features. but tries to select the “best” onesattempts to find features better suited to the mining al-

from the original set of features. The FE approach gorithm aiming to improve mining performance. This

defines a new feature vector space in which each newapproach tends to be more computationally expensive

feature is obtained by transformations of the original than the filter approach. The hybrid model a“e”?PtS
features. FS leads to savings in measurement cosl{o tgke_advantage of the two ap_prc_)aches by exploiting
and the selected features retain their original physi- heir different eva]uatmn cnteqa in different search
cal interpretation, important e.g., in medical applica- stages. The hybrid approach is recently proposed to
tions. On the other hand, transformed features gener—handle large datasets.

ated by FE may provide a better discriminative abil- In recent years FS seems to have become a
ity than the best subset of given features, but thesetopic attracting an increasing number of researchers.
new features may not have a clear physical mean- Among the possible reasons the main one is certainly
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the importance of FS (or FE) as an inherent part of 1.1 FS Methods Overview
classification or modelling system design. Another
reason, however, may be the relatively easy acces-Before giving overview of the main methods to be dis-
sibility of the topic to the general research commu- cussed further we should note that it is not generally
nity. Apparently, many papers have been published agreed in literature what the term “FS method” does
in which any substantial advance is difficult to iden- actually describe. The term “FS method” is equally
tify. One is tempted to say that the more papers on FS often used to refer to a) the complete framework that
that are published, the fewer important contributions includes everything needed to select features, or b)
actually appear. the combination of search procedure and criterion or
Certainly many key questions remain unanswered c) just the bare search procedure. In the following we
and key problems remain unsolved to satisfaction. For will focus mainly on comparing the standard search
example, not enough is known about error bounds procedures, which are not criterion- or classifier de-
of many popular feature selection criteria, especially pendent. The widely known representatives of such
about their relation to classifier generalization per- “FS methods” are:
formance. Despite the huge number of methods in , gegt Individual Features (IB) (Jain et al., 2000),
existence, it is still a very hard problem to perform ) i ]
FS satisfactorily, e.g., in the context of gene expres- ® Sequential Forward Selection (SFS), Sequential
sion data, with enormous dimensionality and veryfew ~ Backward Selection (SBS), (Devijver and Kittler,
samples. Similarly, in text categorization the standard 1982),
way of FS is to completely omit context information e “Plus |-take awayr” Selection (+L-R) (Devijver
and to resort to much more limited FS based on indi- and Kittler, 1982),
vidual feature evaluation._ In medicine the_se problems Sequential Forward Floating Selection (SFFS),
tend to be_come emphas_|ze_d, as the avaﬂable_datasets Sequential Backward Floating Selection (SFBS)
are often incomplete (missing feature values in sam- (Pudil et al., 1994)
ple vectors), continuous and categorical data is to be o ’ _
treated at once, and the notion of feature itself may be ® Oscillating Search (OS) (Somol and Pudil, 2000).
difficult to interpret. Many other methods exist (in all senses of the term
Among many criticisms of the current FS devel- “FS Method”), among others generalized versions of
opment there is one targeted specifically at the ef- the ones listed above, various randomized methods,
fort of finding more effective search methods, capa- methods related to use of specific tools (FS for Sup-
ble of yielding results closer to optimum with re- port Vector Machines, FS for Neural Networks) etc.
spect to some chosen criterion. The key argumentFor overview see, e.g., (Jain et al., 2000; Liu and
against such methods is their alleged tendency toYu, 2005). The selection of methods we are going to
“over-select” features, or to find feature subsets fitted investigate is motivated by their interchangeability —
too tightly to training data, what degrades generaliza- any one of them can be used with the same given cri-
tion. In other words, more search-effective methods terion, data and classifier. This makes experimental
are supposed to cause a similar unwanted effect ascomparison easier.
classifier over-training. Indeed, this is a serious prob-
lem that requires attention.
In recent literature the problem of “over-effective” 32 PERFORMANCE ESTIMATION
FS has been addressed many times (Reunanen, 2003;
Raudys, 2006). Yet, the effort to point out the prob- PROBLEM
lem (which seems to have been ignored, or at least in-
sufficiently addressed before) now seems to have ledFS methods comparison seems to be understood am-
to the other extreme notion of claiming that most of biguously as well. It is very different whether we
FS method developmentis actually contra-productive. compare concrete method properties or the final clas-
This is, that older methods are actually superior to Sifier performance determined by use of particular
newer methods, mainly due to better over-fitting re- methods under particular settings. Certainly, final
sistance. classifier performance is the ultimate quality measure.
The purpose of this paper is to discuss the issue However, misleading conclusions about FS may be
of comparing actual FS methods’ performance and to €asily drawn when evaluating nothing else, as classi-
show experimentally what impact of the more effec- fier performance depends on many more different as-
tive search in newer methods can be expected_ peCtS then jUSt the actual FS method used. Neverthe-
less, in the following we will adapt classifier accuracy
as the main means of FS method assessment.
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There seems to be a general agreementin the liter-  mation of final classifier performance than it is
ature that wrapper-based FS enables creation of more  possible with 1-Tier CV. The data is split to sev-
accurate classifiers than filter-based FS. This claimis  eral parts, FS is then performed repeatedly in 1-
nevertheless to be taken with caution, while using ac-  Tier CV manner on all but one part, which is
tual classifier accuracy as the FS criterion in wrapper- eventually used for classifier accuracy estimation.
based FS may lead to the very negative effects men-  This process yields a sequence of possibly differ-
tioned above (overtraining). At the same time the ent feature subsets, thus it can be used only for
weaker relation of filter-based FS criterion functions assessment of FS method effectivity and not for
to particular classifier accuracy may help better gen- actual determination of the best subset. The av-
eralization. But these effects can be hardly judged be-  erage classifier performance on independent test
fore the building of classification system has actually data parts is then considered to be the measure of
been accomplished. FS method quality. This is computationally de-

In the following we will focus only on wrapper- manding.

based FS. Wrapper-based FS can be accomplisheqn our experiments we accept 2-Tier CV as satisfac-
(and accordingly its effect can be evaluated) using one tory for the purpose of FS methods performance eval-
of the following methods: uation and comparison. Due to the fact that 2-Tier CV
e Re-substitution — In each step of the FS algorithm Yields a series of possibly different feature subsets,
all data is used both for classifier training and test- we define an additional measure to be cattedsis-
ing. This has been shown to produce strongly op- tency that expresses the stability, or robustness of FS
timistically biased results. method with respect to various data splits.
Definition: LetY = {fy, fz,..., fiy|} be the set of all
features and les = {S1,S,...,S} be a system of
n> 1feature subse = {fi|li=1,...,d;,fieY,dje
(1,|Y])},] =1,...,n. Denotes; the system of sub-
sets ins containing featurd, i.e.,

e Data split — In each step of the FS algorithm the
same part of the data is used for classifier training
and the other part for testing. This is the correct
way of classifier performance estimation, yet it is
often not feasible due to insufficient size of avail-
able data or due to inability to prevent bias caused Fi={8Ses,f €S} 1)
by unevenly distributed data in the dataset (e.g., LetFs be the number of subsetsim andX the subset
it may be difficult to ensure that with two-modal of Y representing all features that appear anywhere in
data distribution the training set won’t by coinci- systems, i.e.,
dence represent one mode and the testing set the X ={f|f €Y,Fs >0}. 2)

other mode}) Then theconsistency ) of feature subsets in sys-
e 1-Tier Cross-Validation (CV) — Data is split to tems is defined as:

several parts. Then in each FS step a series of 1 Fr—1

tests is performed, with all but one data part used Cls)= X rZ< h—1" (3)

for classifier training and the remaining part used . €

for testing. The average classifier performance is Properties ofC(s)

then considered to be the result of FS criterion 1. 0<C(s) <1.

evaluation. Because in each test a different part 2 c(s)=0ifand only ifall subsets ig are disjunct

of data is used for testing, all data is eventually from each other.

utilized, without actually testing the classifier on . . . . .

the same data on which it had been trained. This is 3. (C:;f) =1ifand onlyif all subsets iv are identi-

significantly better than re-substitution, yet it still N o

produces optimistically biased results because all The higher the value, the more similar are the subsets

data is actually used to govern the FS process.  in system to each other. F@X(s) ~ 0.5 on average
each feature present inappears in about half of all

e Leave-one-out— can be considered a special casey psets. When comparing FS methods, higbesis-
of 1-Tier CV with the finest data split granularity, tencyof subsets produced during 2-Tier CV is clearly
thus the number of tests in one FS step is equal 54y antageous. However, it should be considered a
to the number of samples while in each test all but ¢ jjementary measure only as it does not have any
one sample are used for training with the one sam- qy5ight relation to the key measure of classifier gen-
ple used for testing. This is computationally more o jization ability.
expensive, better utilizes the data, but suffers the ramark: In experiments, if the best performing FS
same problem of optimistic bias. method also produces feature subsets with ligh-

e 2-Tier CV — Defined to enable less biased esti- sistencyits superiority can be assumed well founded.
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3 EXPERIMENTS sian classifier. Note the lomonsistencyn this case.
Conversely, Table 2 shows no less outstanding per-

Toillustrate the differences between simpler and more formance of OS with 3-Nearest Neighbor classifier
complex FS methods we have collected experimental (3-NN) with betterconsistencyand smallest subsets
results under various settings: for two different clas- found, while Table 3 shows top performance of SFFS
sifiers, three FS search algorithms and eight datasetgvith both Gaussian and 3-NN classifiers. Although it
with dimensionalities ranging from 13 to 65 and num- IS impossible to draw decisive conclusions from the
ber of classes ranging from 2 to 6. We used 3 limited set of experiments, it should be of interest to
different mammogram datasets as well as wine and extract some statistics (all on independent test data —
wave datasets from UCI Repository (Asuncion and results in the column Outer-CV):

Newman, 2007), satellite image dataset from ELENA | pagt resuylt among FS methods for each given clas-
database (ftp.dice.ucl.ac.be), speech data fror_n Brltls_h sifier: SFS 1%, SFFS 1%, OS 11x.

Telecom and sonar data (Gorman and Sejnowski,

1988). For details see Tables 1 to 8. o Best achieved overall classification accuracy for

Note that the choice of classifier and/or FS setup ~ €ach dataset: SFS<] SFFS 5, OS 2«.
may not be optimal for each dataset, thus the reportedayerage classifier accuracies:
results may be inferior to results reported in the liter- )
ature; the purpose of our experiments is mutual com- ® Gaussian: SFS 0.652, SFFS 0.672, OS 0.663.
parison of FS methods only. All experiments have o 1-NN: SFS 0.361, SFFS 0.361, OS 0.349.
been done with 10-fold Cross-Validation used to split )
the data into training and testing parts (to be denoted * 3-NN: SF50.762, SFFS 0.774, 05 0.765.
“Outer CV” in the following), while the training parts
have been further split by means of another 10-fold
CV into actual training and validation parts for the 4 DISCUSSION AND
purpose of feature selection and classifier training (to CONCLUSIONS
be denoted “Inner CV”).

The application of SFS and SFFS was straightfor-
ward. The OS algorithm as the most flexible proce-
dure has been used in two set-ups: slower random-
ized version and faster deterministic version. In both
cases theycle deptlset to 1 [see (Somol and Pudil,
2000) for details]. The randomized version, denoted
in the following as OS(1,r3), is called repeatedly with
random initialization as long as no improvement has
been found in last 3 runs. The deterministic version
denoted as OS(1,IB) in the following, is initialized by
means of Individually Best (IB) feature selection.

The problem of determining optimal feature sub-
Z?Itaslgc?rytvr?;:(\il/\é?g Qp;:::;?:gg?gé?yb% P;lljlti;gg_e' methods, have better potential of finding better solu-

ble feature sizes whenever needed. The final resulttions' This often follows directly from the method
: . definition, as newer methods are often defined to im-

e oy o e i g 25 prove some paricuar Weakness f olderones. (Un-
y like IB, SFS takes into account inter-feature depen-

ties). dencies. Unlike SFS, +L-R does not suffer the nesting
) problem. Unlike +L-R, Floating Search does not de-
3.1 Notes on Obtained Results pend on pre-specified user parameters. Unlike Float-
ing Search, OS may avoid local extremes by means of
All tables clearly show that more modern methods randomized initialization etc.) Better solution, how-
are capable of finding criterion values closer to op- ever, means in this context merely being closer to op-
timum — see column Inner-CV in each table. timum with respect to the adopted criterion. This may
The effect pointed out by Reunanen (Reunanen, not tell much about final classifier quality, while cri-
2003) of the simple SFS outperforming all more com- terion choice has proved to be a considerable problem
plex procedures (regarding the ability to generalize) initself. Vast majority of practically used criteria have
takes place in Table 4, column Outer-CV, with Gaus- only insufficient relation to correct classification rate,

With respect to FS we can distinguish the follow-
ing entities which all affect the resulting classifica-
tion performance: search algorithms, stopping crite-
ria, feature subset evaluation criteria, data and classi-
fier. The impact of the FS process on the final classi-
fier performance (with our interest targeted naturally
at its generalization performance, i.e., its ability to
classify previously unknown data) depends on all of
' these entities.
When comparing pure search algorithms such,

then there is enough ground (both theoretical and ex-
perimental) to claim that newer, often more complex
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Table 1: Classification performance as result of wrappsetideature Selection on wine data.

Winedata: 13 features, 3 classes containing 59, 71 and 48 sarhjiléRepository
Inner 10-f. CV | Outer 10-f. CV|| Subset Size Consis-| Run Time
Classifier FS Method| Mean | St.Dv. | Mean | St.Dv. || Mean [ St.Dv.]| tency h:m:s.ss
Gaussian SFS 0.599| 0.017 | 0.513] 0.086 || 3.1 1.221 || 0.272 | 00:00:00.54
SFFS 0.634| 0.029 | 0.607 | 0.099 || 3.9 1.136 || 0.370 | 00:00:02.99
0S(1,r3) 0.651| 0.024 | 0.643| 0.093 || 3.1 0.539 || 0.463 | 00:00:34.30
1-NN SFS 0.355| 0.071 | 0.350| 0.064 || 1 0 1 00:00:00.98
scaled SFFS 0.358 | 0.073 | 0.350| 0.064 || 1 0 1 00:00:02.27
0S(1,r3) 0.285| 0.048 | 0.269| 0.014 || 1.1 0.3 0.5 00:00:15.61
3-NN SFS 0.983| 0.005 | 0.960| 0.037 || 6.5 1.118 || 0.545 | 00:00:01.10
scaled SFFS 0.986 | 0.005 | 0.965| 0.039 || 6.6 0.917 || 0.5 00:00:03.75
0S(1,r3) 0.986| 0.004 | 0.955| 0.035 || 6.1 0.7 0.505 | 00:00:45.68

Table 2: Classification performance as result of wrappsetideature Selection on mammogram data.

Mammograndata, 65 features, 2 classes containing 57 (benign) and &@yfrant) samples, UCI Rep.

Inner 10-f. CV | Outer 10-f. CV|| Subset Size Consis-| Run Time
Classifier FS Method| Mean | St.Dv. | Mean | St.Dv. || Mean [ St.Dv.]| tency h:m:s.ss
Gaussian SFS 0.792] 0.028 | 0.609| 0.101 || 9.6 3.382 | 0.156 | 00:12:07.74
SFFS 0.842| 0.030 | 0.658| 0.143 || 12.8 | 2.227 || 0.179 | 00:46:59.06
0S(1,1B) 0.795| 0.017 | 0.584| 0.106 || 7.2 2.638 | 0.139 | 01:29:10.24
1-NN SFS 0.335| 0.002 | 0.337| 0.024 || 1 0 1 00:00:30.05
scaled SFFS 0.335| 0.002 | 0.337| 0.024 || 1 0 1 00:00:59.72
0S(1,1B) 0.335| 0.002 | 0.337| 0.024 || 1 0 1 00:01:45.63
3-NN SFS 0.907| 0.032 | 0.856| 0.165 || 15.3 | 6.001 || 0.361 | 00:00:31.10
scaled SFFS 0.937| 0.017 | 0.896| 0.143 || 7.7 3.770 || 0.206 | 00:03:03.16
0S(1,1B) 0.935| 0.014 | 0.907| 0.119 || 5.3 0.781 | 0.543 | 00:04:18.10

Table 3: Classification performance as result of wrappsetideature Selection on sonar data.

Sonardata, 60 features, 2 classes containing 103 (mine) and &6k)(@amples, Gorman & Sejnowski
Inner 10-f. CV | Outer 10-f. CV || Subset Size Consis-| Run Time
Classifier FS Method| Mean| St.Dv. | Mean| St.Dv. || Mean| St.Dv. || tency h:m:s.ss
Gaussian  SFS 0.806| 0.019 | 0.628| 0.151 || 20.2 | 12.156|| 0.283 | 00:08:41.83
SFFS 0.853| 0.016 | 0.656| 0.131 || 22.8 | 8.738 || 0.326 | 01:51:46.31
0S(1,IB) 0.838| 0.018 | 0.649| 0.066 || 21.5 | 10.366|| 0.315 | 03:36:04.92
1-NN SFS 0.511| 0.004 | 0.505| 0.010 || 1 0 1 00:01:51.78
scaled SFFS 0.511| 0.004 | 0.505| 0.010 || 1 0 1 00:03:10.47
0S(1,IB) 0.505| 0.001 | 0.505| 0.010 || 1 0 1 00:08:06.63
3-NN SFS 0.844| 0.025 | 0.618| 0.165 || 15.2 | 7.139 | 0.273 | 00:02:15.84
scaled SFFS 0.870| 0.016 | 0.660| 0.160 || 18.9 | 7.120 || 0.293 | 00:12:26.01
0S(1,IB) 0.864 | 0.016 | 0.622| 0.151 || 15.8 | 5.474 || 0.247 | 00:25:55.39

while their relation to classifier generalization perfor- the general case. But this is not true, as confirmed by
mance can be put into even greater doubt.

When comparing feature selection methods as

our experiments.

According to our experiments the “better” meth-

a whole (under specific criterion-classifier-data set- ods (being more effective in optimizing criteria) also
tings) the advantages of more modern search algo-tend to be “better” with respect to final classifier gen-
rithms may diminish considerably. Reunanen (Re- eralization ability, although this tendency is by no
unanen, 2003) points out, and our experiments con- means universal and often the difference is negligi-
firm, that a simple method like SFS may lead to better ble. No clear qualitative hierarchy can be recognized
classifier generalization. The problem we see with the among standard methods, perhaps with the excep-
ongoing discussion is that this is often claimed to be tion of mostly inferior performance of IB (not shown
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Table 4: Classification performance as result of wrappsetdeature Selection on mammogram data.

WPBCdata, 31 features, 2 classes containing 151 (nonrecur)afredur) samples, UCI Repository
Inner 10-f. CV | Outer 10-f. CV|| Subset Size Consis-| Run Time
Classifier FS Method| Mean | St.Dv. | Mean | St.Dv. || Mean [ St.Dv.]| tency h:m:s.ss
Gaussian SFS 0.807| 0.011 | 0.756| 0.088 || 9.2 4534 | 0.241 | 00:00:21.24
SFFS 0.818| 0.012 | 0.698| 0.097 || 15.4 | 5.731 || 0.441 | 00:04:07.81
0S(1,r3) 0.826| 0.010 | 0.682| 0.062 || 12.6 | 5.219 | 0.356 | 00:34:07.20
1-NN SFS 0.251| 0.020 | 0.237| 0.018 || 1 0 1 00:00:14.93
scaled SFFS 0.251| 0.020 | 0.237| 0.018 || 1 0 1 00:00:39.71
0S(1,r3) 0.332| 0.021 | 0.237| 0.018 || 7.3 4.776 || 0.169 | 00:03:19.70
3-NN SFS 0.793| 0.013 | 0.712| 0.064 || 9.4 5.869 || 0.226 | 00:00:15.56
scaled SFFS 0.819| 0.008 | 0.722| 0.086 || 11.7 | 4.797 || 0.322 | 00:01:48.94
0S(1,r3) 0.826| 0.007 | 0.687| 0.083 || 11 3.550 || 0.325 | 00:14:44.24

Table 5: Classification performance as result of wrappsetideature Selection on mammogram data.

WDBCdata, 30 features, 2 classes containing 357 (benign) an¢h2dliynant) samples, UCI Rep.

Inner 10-f. CV | Outer 10-f. CV|| Subset Size Consis-| Run Time
Classifier FS Method| Mean | St.Dv. | Mean | St.Dv. || Mean [ St.Dv.]| tency h:m:s.ss
Gaussian SFS 0.962| 0.007 | 0.933] 0.039 || 10.8 | 6.539 || 0.303 | 00:00:22.21
SFFS 0.972| 0.005 | 0.942| 0.042 || 10.6 | 2.653 | 0.36 00:03:24.90
0S(1,r3) 0.973| 0.004 | 0.943| 0.039 || 10.3 | 2.147 || 0.366 | 00:36:36.49
1-NN SFS 0.373| 0.000 | 0.373| 0.004 || 1 0 1 00:01:33.07
scaled SFFS 0.421| 0.022 | 0.373| 0.004 || 1 0 1 00:03:26.00
0S(1,r3) 0.435| 0.001 | 0.373| 0.004 || 7.6 2.871| 0.202 | 00:25:31.84
3-NN SFS 0.981| 0.002 | 0.967| 0.020 || 15.3 | 4.451 || 0.456 | 00:01:32.19
scaled SFFS 0.983| 0.001 | 0.970| 0.019 || 13.7 | 4.220 || 0.414 | 00:08:16.72
0S(1,r3) 0.985| 0.002 | 0.959| 0.025 || 13.4 | 3.072 | 0.421 | 01:41:02.62

Table 6: Classification performance as result of wrappsetideature Selection on speech data.

Speecldata, 15 features, 2 classes containing 682 (yes) and 736dntples, British Telecom

Inner 10-f. CV | Outer 10-f. CV|| Subset Size Consis-| Run Time
Classifier FS Method| Mean| St.Dv. | Mean| St.Dv. || Mean | St.Dv.| tency h:m:s.ss
Gaussian SFS 0.773] 0.008 | 0.770] 0.052 || 9.6 0.917 || 0.709 | 00:00:03.28
SFFS 0.799| 0.008 | 0.795| 0.042 || 9.3 0.458 || 0.684 | 00:00:20.51
0OS(1,r3) 0.801| 0.008 | 0.793| 0.041 || 9.5 0.5 0.642 00:02:46.16
1-NN SFS 0.522| 0.001 | 0.519| 0.002 || 1 0 1 00:01:27.25
scaled SFFS 0.521| 0.001 | 0.519| 0.002 || 1 0 1 00:03:07.95
0OS(1,r3) 0.556 | 0.011 | 0.519| 0.002 || 8.6 2.577 || 0.526 00:22:55.49
3-NN SFS 0.946| 0.003 | 0.935] 0.030 || 7 1.483 || 0.487 | 00:01:33.55
scaled SFFS 0.948 | 0.003 | 0.939| 0.030 || 6.7 1.1 0.509 00:05:54.57
0OS(1,r3) 0.949| 0.003 | 0.937| 0.029 || 7 1.095 || 0.537 01:08:39.20

here). It has been shown that different methods be- sen, than we would stay with Floating Search as the
come the best performing tools in different contexts, best general compromise between performance, gen-
with no reasonable way of predicting the winner in eralization ability and search speed.

advance (note, e.g., OS in Table 1 — gives best result

with Gaussian classifier but worst result with k-NN). 4.1 Quiality of Criteria

Our concluding recommendation can be stated as
follows: only in the case of strongly limited time The performance question of more complex FS meth-
should one resort to the simplest methods. Wheneverods is directly linked to another question: How well
possible try variety of methods ranging from SFS to do the available criteria describe the quality of evalu-
more complex ones. If one method only has to be cho- ated subsets ? The contradicting experimental results
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Table 7: Classification performance as result of wrappsedid-eature Selection on satellite land image data.

Satimagealata, 36 features, 6 classes with 1072, 479, 961, 415, 470G8®Isamples, ELENA database
Inner 10-f. CV | Outer 10-f. CV|| Subset Size Consis-| Run Time
Classifier FS Method| Mean | St.Dv. | Mean | St.Dv. || Mean [ St.Dv.]| tency h:m:s.ss
Gaussian SFS 0.509| 0.016 | 0.516| 0.044 || 19 7 0.643 | 00:05:21.77
SFFS 0.525| 0.011 | 0.528| 0.034 || 13.7 | 3.743 || 0.474 | 00:41:25.60
0S(1,1B) 0.527| 0.010 | 0.517| 0.055 || 12.2 | 3.311 || 0.410 | 01:57:06.71
1-NN SFS 0.234| 0.000 | 0.234| 0.001 || 1.6 1.2 0.244 | 03:05:20.63
scaled SFFS 0.234| 0.000 | 0.234| 0.001 || 1 0 0.444 | 08:00:19.17
0S(1,1B) 0.234| 0.000 | 0.217| 0.001 || 1.2 0.6 0.222 | 19:32:09.52
3-NN SFS 0.234 | 0.000 | 0.234]| 0.001 || 1 0 1 03:16:08.09
scaled SFFS 0.234| 0.000 | 0.234| 0.001 || 1 0 1 07:51:08.98
0S(1,1B) 0.234| 0.000 | 0.234| 0.001 || 1.1 0.3 0.296 | 19:09:44.29

Table 8: Classification performance as result of wrappsetdeature Selection on wave data.
Waveforndata, 40 features, 3 classes containing 1692, 1653 and a65iles, UCI Repository

Inner 10-f. CV | Outer 10-f. CV|| Subset Size Consis-| Run Time
Classifier FS Method| Mean | St.Dv. | Mean | St.Dv. || Mean [ St.Dv.]| tency h:m:s.ss
Gaussian SFS 0.505| 0.002 | 0.493] 0.015 || 2.1 0.3 0.222 | 00:08:38.86
SFFS 0.506 | 0.003 | 0.492| 0.016 || 2.4 0.663 || 0.185 | 00:42:36.39
0S(1,1B) 0.506 | 0.002 | 0.489| 0.015 || 2.7 1.005 | 0.222 | 01:57:58.04
1-NN SFS 0.356| 0.009 | 0.331| 0.000 || 1 0 1 07:29:40.76
scaled SFFS 0.356 | 0.009 | 0.331| 0.000 || 1 0 1 16:09:52.71
0S(1,1B) 0.331| 0.000 | 0.331| 0.000 || 1 0 1 35:55:50.53
3-NN SFS 0.826| 0.002 | 0.810] 0.024 || 17.4 | 2.332 || 0.411 | 08:08:17.25
scaled SFFS 0.829 | 0.003 | 0.808| 0.020 || 17.4 | 1.020 || 0.475 | 38:46:26.60
0S(1,1B) 0.830| 0.002 | 0.816| 0.016 || 17.1 | 2.022 | 0.593 | 95:12:19.24

seem to suggest, that the criterion used (classifier ac-methods that yield results closer to optimum with re-
curacy on testing data in this case) does not relate wellspect to any given criterion may bring considerably
enough to classifier generalization performance. Al- more advantage in future, when better criteria may
though we do not present any filter-based FS resultshave been found to better express the relation between
here, the situation with filters seems similar. Thus, un- feature subsets and classifier generalization ability.
even performance of more complex FS methods may
be viewed as a direct consequence of insufficient cri-
teria. In this view it is difficult to claim that more  ACKNOWLEDGEMENTS
complex FS methods are problematic per se.
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