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Abstract. An unsupervised multi-spectral, multi-resolution, multiple-
segmenter for textured images with unknown number of classes is
presented. The segmenter is based on a weighted combination of sev-
eral unsupervised segmentation results, each in different resolution, using
the modified sum rule. Multi-spectral textured image mosaics are locally
represented by four causal directional multi-spectral random field models
recursively evaluated for each pixel. The single-resolution segmentation
part of the algorithm is based on the underlying Gaussian mixture model
and starts with an over segmented initial estimation which is adaptively
modified until the optimal number of homogeneous texture segments is
reached. The performance of the presented method is extensively tested
on the Prague segmentation benchmark using the commonest segmen-
tation criteria and compares favourably with several leading alternative
image segmentation methods.

1 Introduction

Segmentation is the fundamental process which partitions a data space into
meaningful salient regions. Image segmentation essentially affects the overall
performance of any automated image analysis system thus its quality is of the
utmost importance. Image regions, homogeneous with respect to some usually
textural or colour measure, which result from a segmentation algorithm are anal-
ysed in subsequent interpretation steps. Texture-based image segmentation is
area of intense research activity in recent years and many algorithms were pub-
lished in consequence of all this effort. These methods are usually categorised [1]
as region-based, boundary-based, or as a hybrid of the two. Different published
methods are difficult to compare because of lack of a comprehensive analysis to-
gether with accessible experimental data, however available results indicate that
the ill-defined texture segmentation problem is still far from being satisfactorily
solved. Spatial interaction models and especially Markov random fields-based
models are increasingly popular for texture representation [1,2], etc. Several re-
searchers dealt with the difficult problem of unsupervised segmentation using
these models see for example [3,4,5] or [6,7,8].
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image GT MW3AR SWA

Fig. 1. Selected Berkeley benchmark image, ground truth from the benchmark and the
segmentation results from the presented method (MW3AR) and SWA [9]

The concept of decision fusion [10] for high-performance pattern recognition
is well known and widely accepted in the area of supervised classification where
(often very diverse) classification technologies, each providing complementary
sources of information about class membership, can be integrated to provide
more accurate, robust and reliable classification decisions than the single classi-
fier applications.

Similar advantages can be expected and achieved [8] also for the unsuper-
vised segmentation applications. However, a direct unsupervised application of
the supervised classifiers fusion idea is complicated with unknown number of
data hidden classes and consequently a different number of segmented regions
in segmentation results to be fused. This paper exploits above advantages by
combining several unsupervised segmenters of the same type but with different
feature sets.

2 Combination of Multiple Segmenters

The proposed method (MW3AR) combines segmentation results from different
resolution. We assume to down-sample input image Y into M different resolu-
tions Y (m) =↓ιm Y with sampling factors ιm m = 1, . . . , M identical in both
horizontal and vertical directions and Y (1) = Y . Local texture for each pixel
Y

(m)
r is represented the 3D simultaneous causal autoregressive random field

model (CAR) parameter space Θr (4) and modelled by the Gaussian mixture
model (5),(6).

2.1 Single-Resolution Texture Model

Static smooth multi-spectral textures require three dimensional models for ad-
equate representation. We assume that single multi-spectral textures can be
locally modelled using a 3D simultaneous causal autoregressive random field
model (CAR). This model can be expressed as a stationary causal uncorrelated
noise driven 3D autoregressive process [11]:

Yr = γXr + er , (1)

where γ = [A1, . . . , Aη] is the d × dη parameter matrix, d is the number of
spectral bands, Ic

r is a causal neighborhood index set with η = card(Ic
r ) and
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er is a white Gaussian noise vector with zero mean and a constant but unknown
covariance, Xr is a corresponding vector of the contextual neighbours Yr−s

and r, r − 1, . . . is a chosen direction of movement on the image index lattice I.
The selection of an appropriate CAR model support (Ic

r ) is important to obtain
good texture representation but less important for segmentation. The optimal
neighbourhood as well as the Bayesian parameters estimation of a CAR model
can be found analytically under few additional and acceptable assumptions using
the Bayesian approach (see details in [11]). The recursive Bayesian parameter
estimation of the CAR model is [11]:

γ̂T
r−1 = γ̂T

r−2 +
V −1

x(r−2)Xr−1(Yr−1 − γ̂r−2Xr−1)T

(1 + XT
r−1V

−1
x(r−2)Xr−1)

, (2)

where Vx(r−1) =
∑r−1

k=1 XkXT
k +Vx(0). Local texture for each pixel is represented

by four parametric vectors. Each vector contains local estimations of the CAR
model parameters. These models have identical contextual neighbourhood Ic

r but
they differ in their major movement direction (top-down, bottom-up, rightward,
leftward), i.e.,

γ̃T
r = {γ̂t

r, γ̂
b
r , γ̂

r
r , γ̂l

r}T . (3)

The parametric space γ̃ is subsequently smooth out, rearranged into a vector
and its dimensionality is reduced using the Karhunen-Loeve feature extraction
(γ̄). Finally we add the average local spectral values ζr to the resulting feature
vector (Θr).

2.2 Mixture Based Segmentation

Multi-spectral texture segmentation is done by clustering in the CAR parameter
space Θ defined on the lattice I where

Θr = [γ̄r, ζr]T (4)

is the modified local parameter vector (3) computed for the lattice location r.
We assume that this parametric space can be represented using the Gaussian
mixture model (GM) with diagonal covariance matrices due to the previous
CAR parametric space decorrelation. The Gaussian mixture model for CAR
parametric representation at the m-th resolution (m = 1, . . . , M) is as follows:

p(Θ(m)
r ) =

K(m)
∑

i=1

p
(m)
i p(Θ(m)

r | ν(m)
i , Σ

(m)
i ) , (5)

p(Θ(m)
r | ν(m)

i , Σ
(m)
i ) =

|Σ(m)
i |− 1

2

(2π)
d
2

e − (Θ(m)
r −ν

(m)
i

)T (Σ(m)
i

)−1(Θ(m)
r −ν

(m)
i

)
2 . (6)

The mixture model equations (5),(6) are solved using a modified EM algorithm.
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Initialization. The algorithm is initialised using ν
(m)
i , Σ

(m)
i statistics for

each resolution m estimated from the corresponding thematic maps in two
subsequent steps:

1. refining direction
ν

(m−1)
i

(
∀Θ

(m−1)
r : r ∈↑ Ξ

(m)
i

)
, Σ

(m−1)
i

(
∀Θ

(m−1)
r : r ∈↑ Ξ

(m)
i

)

m = M + 1, M, . . . , 2 i = 1, . . . , K(m) ,
2. coarsening direction

ν
(m)
i

(
∀Θ

(m)
r : r ∈↓ Ξ

(m−1)
i

)
, Σ

(m)
i

(
∀Θ

(m)
r : r ∈↓ Ξ

(m−1)
i

)

m = 2, 3, . . . , M i = 1, . . . , K(m) ,

where Ξ
(m)
i ⊂ I ∀m, i, and the first initialisation thematic map Ξ

(M+1)
i is ap-

proximated by the rectangular subimages obtained by regular division of the
input texture mosaic. All the subsequent refining step are initialised from the
preceding coarser resolution upsampled thematic maps. The final initialisation
results from the second coarsening direction where the gradually coarsening seg-
mentations are initialised using the preceding downsampled thematic maps. For
each possible couple of components the Kullback Leibler divergence

D (p(Θr | νi, Σi) || p(Θr | νj , Σj)) =
∫

Ω

p(Θr | νi, Σi) log
(

p(Θr | νi, Σi)
p(Θr | νj , Σj)

)

dΘr

is evaluated and the most similar components, i.e.,

{i, j} = argmin
k,l

D (p(Θr | νl, Σl) || p(Θr | νk, Σk))

are merged together in each initialisation step. This initialisation results in Kini

subimages and recomputed statistics νi, Σi . Kini > K where K is the optimal
number of textured segments to be found by the algorithm.

Two steps of the EM algorithm are repeating after initialisation. The compo-
nents with smaller weights than a fixed threshold (pj < 0.1

Kini
) are eliminated.

For every pair of components we estimate their Kullback Leibler divergence.
From the most similar couple, the component with the weight smaller than the
threshold is merged to its stronger partner and all statistics are actualised us-
ing the EM algorithm. The algorithm stops when either the likelihood function
has negligible increase (Lt − Lt−1 < 0.05) or the maximum iteration number
threshold is reached.

2.3 Resulting Mixture Probabilities

Resulting mixture model probabilities are mapped to the original fine resolu-
tion image space for all m = 1, . . . , M mixture submodels ((5)(6)). The M
cooperating segmenters deliver their class response in the form of conditional
probabilities. Each segmenter produces a preference list based on the mixture
component probabilities of a particular pixel belonging a particular class, to-
gether with a set of confidence measurement values generated in the original
decision-making process.
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Single-segmenters Correspondence. Single-resolution segmentation results
cannot be combined without knowledge of the mutual correspondence between
regions in all different-resolution segmentation probabilistic mixture component
maps (K1×∑M

m=2 Km combinations). Mutual assignments of two probabilistic
maps are solved by using the Munkre’s assignment algorithm [8] which finds the
minimal cost assignment

g : A �→ B,
∑

α∈A

f(α, g(α))

between sets A, B, |A| = |B| = n given the cost function f(α, β), α ∈ A, β ∈
B. α corresponds to the fine resolution probabilistic maps, β corresponds to
downsampled probabilistic maps and f(α, β) is the Kullback Leibler divergence
between probabilistic maps. The algorithm has polynomial complexity instead
of exponential for the exhaustive search.

Final Parametric Space. The parametric vectors representing texture mosaic
pixels are assigned to the clusters based on our modification of the sum rule ac-
cording to the highest component probabilities, i.e., Yr is assigned to the cluster
ωj∗ if

πr,j∗ = maxj

∑

s∈Ir

ws

(
M∑

m=1

p2(Θ(m)
r−s | ν(m)

j , Σ
(m)
j )

∑M
i=1 p(Θ(i)

r−s | ν(i)
j , Σ

(i)
j )

)

,

where ws are fixed distance-based weights, Ir is a rectangular neighbourhood
and πr,j∗ > πthre (otherwise the pixel is unclassified). The area of single cluster
blobs is evaluated in the post-processing thematic map filtration step. Regions
with similar statistics are merged. Thematic map blobs with area smaller than a
given threshold are attached to its neighbour with the highest similarity value.

3 Experimental Results

The algorithm was tested on natural colour textures mosaics from the Prague
Texture Segmentation Data-Generator and Benchmark (http://mosaic.utia.cas.
cz) [12]. The benchmark test mosaics layouts and each cell texture membership
are randomly generated and filled with colour textures from the large (more than
1000 high resolution colour textures) Prague colour texture database. The bench-
mark ranks segmentation algorithms according to a chosen criterion. There are
implemented twenty seven most frequented evaluation criteria categorised into
four criteria groups – region-based [12], pixel-wise [12], clustering comparison cri-
teria, and consistency measures [12]. The region-based [12] performance criteria
mutually compare ground truth (GT) image regions with the corresponding ma-
chine segmented regions (MS). The pixel-wise criteria group contains the most
frequented classification criteria such as the omission and commission errors,
class accuracy, recall, precision, etc. Finally the last two criteria sets incorpo-
rate the global and local consistency errors [12] and three clustering comparison
criteria.
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Table 1. Benchmark criteria: CS = correct segmentation; OS = over-segmentation;
US = under-segmentation; ME = missed error; NE = noise error; O = omission error;
C = commission error; CA = class accuracy; CO = recall - correct assignment; CC
= precision - object accuracy; I. = type I error; II. = type II error; EA = mean
class accuracy estimate; MS = mapping score; RM = root mean square proportion
estimation error; CI = comparison index; GCE = Global Consistency Error; LCE
= Local Consistency Error; dM = Mirkin metric; dD = Van Dongen metric; dVI =
variation of information;

Benchmark – Colour

MW3
AR

TFR
/
KLD
[13]

TFR
[14]

AR3D
+ EM
multi
[8]

AR3D
+ EM
[7]

GMRF
+ EM
[6]

HGS
E
[15]

EG-
BIS
[16]

JSEG
[17]

SWA
def par
[9]

Blob-
world
[18]

EDI-
SON
[19]

CS 53.04 51.25 46.13 43.22 37.42 31.93 29.81 28.78 27.47 27.06 21.01 12.68
OS 59.53 5.84 2.37 49.27 59.53 53.27 10.69 19.69 38.62 50.21 7.33 86.91
US 3.20 7.16 23.99 16.55 8.86 11.24 33.76 39.15 5.04 4.53 9.30 0.00
ME 5.63 31.64 26.70 10.30 12.54 14.97 26.89 20.42 35.00 25.76 59.55 2.48
NE 6.96 31.38 25.23 12.56 13.14 16.91 25.04 21.54 35.50 27.50 61.68 4.68
O 19.32 19.65 28.73 21.99 34.32 33.61 48.94 44.35 37.94 33.01 41.45 73.17
C 86.19 9.67 12.50 87.38 100.00 100.00 32.39 82.87 92.77 85.19 58.94 100.00
CA 71.89 67.45 61.32 64.51 59.46 57.91 49.60 51.10 55.29 54.84 46.23 31.19
CO 74.66 76.40 73.00 71.00 64.81 63.51 63.37 64.12 61.81 60.67 56.04 31.55
CC 95.04 81.12 68.91 90.14 91.79 89.26 66.09 72.73 87.70 88.17 73.62 98.09
I. 25.34 23.60 27.00 29.00 35.19 36.49 36.63 35.88 38.19 39.33 43.96 68.45
II. 0.74 4.09 8.56 3.79 3.39 3.14 13.51 7.59 3.66 2.11 6.72 0.24
EA 80.43 75.80 68.62 73.90 69.60 68.41 58.74 59.88 66.74 66.94 58.37 41.29
MS 71.78 65.19 59.76 64.47 58.89 57.42 46.63 49.03 55.14 53.71 40.36 31.13
RM 3.09 7.21 8.61 4.55 4.88 4.86 13.31 8.38 4.96 6.11 7.96 3.21
CI 82.43 77.21 69.73 76.51 73.15 71.80 61.17 63.11 70.27 70.32 61.31 50.29
GCE 8.17 20.35 15.52 15.31 12.13 16.03 16.75 16.64 18.45 17.27 31.16 3.55
LCE 5.78 14.36 12.03 7.97 6.69 7.31 10.46 8.97 11.64 11.49 23.19 3.44
dM 8.97 12.64 17.47 13.51 15.43 15.27 27.95 19.72 15.19 13.68 20.03 16.84
dD 14.78 18.01 18.21 16.87 19.76 20.63 22.90 21.29 23.38 24.20 31.11 35.37
dVI 16.67 14.06 13.04 16.11 17.10 17.32 12.83 13.79 17.37 17.16 15.84 25.65

Tab.1 compares the overall benchmark performance of the proposed algorithm
MW3AR (M = 5, ι1 = 1, ι2 = 1.5, ι3 = 2, with the Blobworld [18], JSEG [17],
Edison [19], TFR/KLD [14], SWA [9], EGBIS [16], HGS [15], and our previously
published methods AR3D-multi [8], GMRF [6], AR3D [7], respectively. MW3AR
demonstrates a significant improvement (e.g. 23 % for the correct segmenta-
tion CS criterion) over our previously published unsupervised multi-segmenter
AR3D-multi [8].

These results illustrated in Figs.1,2,3 and Tab.1 demonstrate very good pixel-
wise, correct region segmentation, missed error, noise error, and undersegmen-
tation properties of our method while the oversegmentation results are slightly
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mosaic

ground truth

MW3AR

AR3D – multi [8]

AR3D [7]

TRF / KLD [13]

Fig. 2. Selected experimental texture mosaics, ground truth from the benchmark and
the corresponding segmentation results
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ground truth

GMRF [6]

SWA [9]

JSEG [17]

Blobworld [18]

EDISON [19]

Fig. 3. Selected ground truth from the benchmark and the corresponding segmentation
results
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worse and dVI results are only average. For all the pixel-wise criteria or the
consistency measures our method is among the best ones. The table demon-
strates improvement of the presented multi-segmenter method over our previous
multi-segmenter [8] and its single-segmenter version published earlier [7] in most
benchmark criteria.

Figs.2,3 and show four selected 512× 512 experimental benchmark mosaics
created from four to eleven natural colour textures. The last four or five rows on
these figures demonstrate comparative results from the eight alternative lead-
ing algorithms. Hard natural textures were chosen rather than synthesised (for
example using Markov random field models) ones because they are expected to
be more difficult for the underlying segmentation model. The third row on Fig.2
demonstrates robust behaviour of our CAR3D-multi algorithm but also infre-
quent algorithm failures producing the oversegmented thematic map for some
textures. Such failures can be reduced by a more elaborate postprocessing step.
The TFR/KLD [14], AR3D [7], GMRF [6], SWA [9], EGBIS [16], JSEG [17],
Blobworld [18], HGS [15], and Edison [19], algorithms on these data performed
mostly worse as can be seen in their corresponding rows on Figs.2,3 some areas
are undersegmented while other parts of the mosaics are oversegmented. Fig.2
illustrates also the improvement of the multi-segmenter version of the algorithm
at the cost of slight increase of computational complexity. These results can be
further improved by sophisticated postprocessing and by the optimisation of the
directional models contextual neighbourhoods.

4 Conclusions

We proposed a significant improvement of our previously published unsupervised
multi-segmenter. The MW3AR segmenter is computationally efficient, noise re-
silient and robust method for unsupervised textured image segmentation with
unknown number of classes based on the underlying CAR and GM texture mod-
els. The algorithm is very fast, despite of using the random field type data
representation, due to its efficient recursive parameter estimation of the under-
lying models and therefore is much faster than the usual Markov chain Monte
Carlo estimation approach required for these image representations. Usual draw-
back of most segmentation methods is their application dependent parameters
to be experimentally estimated. Our method requires only a contextual neigh-
bourhood selection and two additional thresholds. The method’s performance
is demonstrated on the extensive benchmark tests on natural texture mosaics.
It performs favourably compared with eight alternative leading segmentation
algorithms. Our method accomplishes very good segmentation results also on
natural images from the Berkeley segmentation benchmark as well as on remote
sensing images.
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