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Abstract. Recently we have proposed Gaussian mixtures as a local sta-
tistical model to synthesize artificial textures. We describe the statisti-
cal dependence of pixels of a movable window by multivariate Gaussian
mixture of product components. The mixture components correspond to
different variants of image patches as they appear in the window. In this
sense they can be used to identify different segments of the source color
texture image. The segmentation can be obtained by means of Bayes for-
mula provided that a proper decomposition of the estimated Gaussian
mixture into sub-mixtures is available. In this paper the mixture model
is decomposed by maximizing the mean probability of correct classifica-
tion of pixels into segments in a way taking into account the assumed
consistency of final segmentation.

1 Introduction

The concept of texture segmentation derives from a simple image decomposi-
tion suggested e.g. by different colors or by distinct edges. However, it is uneasy
to specify the underlying classification problem when the image segments have
to be identified by different textural properties. A unique solution of the tex-
ture segmentation problem is hardly achievable because a generally accepted
definition of texture is also missing. The available texture based image segmen-
tation methods usually consider some local texture properties to identify either
boundaries or regions or to combine both approaches [12]. In view of the un-
derlying high-dimensional problems the texture segmentation methods usually
apply different feature extraction techniques or subspace approaches [7], [8], [9].
In most applications like image analysis or image database retrieval the segmen-
tation algorithms should be computationally efficient. However, in some areas
like medical imaging the computing time is less relevant [13].

In the present paper we propose a novel segmentation procedure based on a
local statistical model of the texture properties. We assume that the image to
be segmented is composed of different textures which can be characterized by
some local statistical properties and simultaneously that the potential texture
segments are sufficiently large and homogeneous to enable their identification.
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Recently we have shown in a series of papers [3], [5], [6] that gray-scale textures
can be described locally in terms of a joint probability density of gray-levels
in a suitably chosen observation window. Unlike other approaches, no feature
extraction technique has been applied to pixel variables of the window image
patch. Consequently, the dimension of the estimated density may be very high,
e.g. of order 102 ÷ 103. By estimating the probability density in the form of
Gaussian mixture of product components we succeeded to synthesize artificial
textures by sequential prediction. A specific advantage of texture synthesis is the
possibility to verify the quality of the estimated mixture model by comparing
the original- and synthesized image visually [5], [6]. Motivated by successful
experiments we have applied the local mixture model to statistical evaluation of
color texture images with the aim to emphasize abnormalities or local defects [4].

The present application of the statistical model to color texture segmentation
is based on decomposition of the underlying mixture density into sub-mixtures
which correspond to different segments of the source texture image. Considering
the framework of statistical classification we suggest a simple criterion in terms
of probability of correct classification of pixels into the segments. The criterion
is maximized by means of an iterative algorithm which is shown to converge
monotonically in a finite number of steps.

In the following we first describe the local statistical texture model in the
form of a multivariate Gaussian mixture of product components. In Sec. 3 we
propose the basic texture segmentation algorithm and in Sec. 4 its topological
modification. In Sec. 5 we illustrate the method by numerical examples from the
Prague segmentation benchmark [11]. Finally in the Conclusion we summarize
the method and discuss different computational aspects.

2 Gaussian Mixture Model

A digitized color texture image can be described by a matrix of vector variables
where each pixel specifies the three RGB spectral values

Z = [zij ]
I J

i=0 j=0 , zij = (zij1, zij2, zij3) ∈ R3.

Here i, j correspond to row and column indices respectively. We assume that the
statistical dependencies between pixels in a suitably chosen observation window
do not depend on the window position or, in other words, that the local statis-
tical properties of the texture are shift-invariant. Given a window centered at a
position (i, j), we denote

x(i, j) = x = (x1, x2, . . . , xN )

the vector of spectral values of window defined context neighborhood in a fixed
arrangement, i.e. for each pixel three spectral values. Then in each position the
window interior (image patch) x can be viewed as an observation of a random
vector and therefore we can describe the statistical properties of the variables xn
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in full generality by a joint probability density. For this purpose we approximate
the unknown density function in the form of Gaussian mixture

P (x) =
∑

m∈M
wmF (x|μm, σm), x ∈ RN . (1)

Assuming conditional independence of variables we define the mixture compo-
nents as products of univariate Gaussian densities [5], [6]:

F (x|μm, σm) =
∏

n∈N
fn(xn|μmn, σmn), (2)

fn(xn|μmn, σmn) =
1√

2πσmn

exp
{
− (xn − μmn)2

2σ2
mn

}
. (3)

To simplify notation we denote M = {1, 2, . . . , M} and N = {1, 2, . . . , N} the
index sets of components and variables respectively.

The standard way to estimate mixtures is to use the EM algorithm [10]. By us-
ing the “image patch” data set S obtained by pixel-wise shifting the observation
window through the original texture image

S = {x(1), . . . , x(K)}, x(k) ∈ RN , (K = |S|), (4)

we maximize the corresponding log-likelihood function

L =
1
|S|

∑

x∈S
log

[
∑

m∈M
wmF (x|μm, σm)

]
(5)

by means of the well-known EM iteration equations [1] :

E-step: (m ∈ M, n ∈ N , x ∈ S)

q(m|x) =
wmF (x|μm, σm)∑
j∈M wjF (x|μj , σj)

, m ∈ M (6)

M-step:

w
′
m =

1
|S|

∑

x∈S
q(m|x), μ

′
mn =

1∑
x∈S q(m|x)

∑

x∈S
xnq(m|x), (7)

(σ
′
mn)2 = −(μ

′
mn)2 +

1∑
x∈S q(m|x)

∑

x∈S
x2

nq(m|x). (8)

Here the apostrophe denotes the new parameter values in each iteration.
The local mixture model P (x) provides fully general description of statisti-

cal dependencies of pixel variables in the observation window. For any given
image patch x ∈ S we can compute the corresponding conditional weights
q(m|x), m ∈ M which can be viewed as highly informative features describ-
ing the textural properties of the image patch x in terms of its affinity with
the component means μm. It is intuitively clear that the context information
contained in q(m|x) increases with the window size but, simultaneously, the re-
lated textural properties become less local. The underlying density estimation
problem also becomes more difficult with the increasing dimension N .



290 J. Grim et al.

3 Segmentation Algorithm

By its nature the EM algorithm produces a set of mixture components which
correspond to different local properties of the source texture image, as it can be
seen in Fig. 1. The first row shows the color texture examples to be segmented [11]
and the second row shows the corresponding mixture models. The component
means μm (in the arrangement of the observation window) can be viewed as
averaged (smoothed) representants of the typical image patch variants. All the
three mixture densities have been estimated in the space of dimension N=1143
without any feature extraction (window size: 21x21 pixels with the corners cut
away, i.e. N=381x3=1143). The number of mixture components has been chosen
M1 = 64, M2 = 59 and M3 = 64 respectively.

The basic idea of segmentation is to unify similar texture pieces. As the mix-
ture component means μm correspond to different variants of the image patches
we assume that different parts of the texture can be characterized by aggregat-
ing the related mixture components, i.e. by decomposing the Gaussian mixture
P (x) into sub-mixtures. In particular, let � be a partition of the index set M
into disjunct subsets Mk ⊂ M:

� = {M1,M2, . . . ,MM}, ∪k∈MMk = M, Mk ∩Mj = ∅, k 	= j. (9)

Then we can define the corresponding decomposition of the mixture density (1)
into sub-mixtures:

P (x) =
∑

k∈M
Pk(x) =

∑

k∈M

∑

m∈Mk

wmF (x|μm, σm), (10)

Pk(x) =
∑

m∈Mk

wmF (x|μm, σm). (11)

We assume a sub-mixture Pk(x) corresponding to Mk to be zero in case of empty
subset Mk = ∅. Given the sub-mixtures Pk(x) we can classify the image patches
x ∈ S by means of Bayes formula. Let us recall that each vector x = x(i, j) ∈ S
uniquely corresponds to the position (i, j) of central pixel of the observation
window and also for each x ∈ S we can evaluate the probabilities

p(k|x) =
Pk(x)
P (x)

=
∑

m∈Mk

q(m|x), k ∈ M. (12)

Here p(k|x) is the probability that the central pixel of the image patch x belongs
to the texture segment Sk which is characterized by the sub-mixture Pk(x).
Ignoring some border pixels, we can define a segmentation of the texture image
as a partition 
 of the set S into disjunct subsets Sk ⊂ S:


 = {S1,S2, . . . ,SM}, ∪k∈MSk = S, Sk ∩ Sj = ∅, k 	= j. (13)



Color Texture Segmentation 291

In view of Eq. (12) the optimal subsets Sk given � can be defined by means of
the Bayes decision function 1

d(x|�) = arg max
k∈M

{p(k|x)} = arg max
k∈M

{
∑

m∈Mk

q(m|x)} (14)

Sk = {x ∈ S : d(x|�) = k}, k ∈ M (15)

where d(x|�) specifies the sub-mixture with the maximum aposteriori probabil-
ity p(k|x) given x ∈ S.

In view of the available mixture model a natural way to measure the quality
of the texture segmentation 
 is to compute the mean probability of correct
pixel classification with respect to the given segments Sk ∈ 
:

Q(�,
) =
1
|S|

∑

k∈M

∑

x∈Sk

p(k|x) =
1
|S|

∑

k∈M

∑

x∈Sk

∑

m∈Mk

q(m|x). (16)

In the above criterion p(k|x) denotes the probability that the pixel (i, j) has
been classified correctly, i.e. that x = x(i, j) ∈ Sk. Given a segmentation 
 we
define the optimal mixture decomposition � by Eqs.:

ϕ(m|
) = arg max
k∈M

{
∑

x∈Sk

q(m|x)}, (17)

Mk = {m ∈ M : ϕ(m|
) = k}, k ∈ M. (18)

Here ϕ(m|
) specifies the segment Sk with the greatest “contribution” of the
m-th mixture component. The criterion Q(�,
) can be maximized by repeating
the iterative steps (15), (18). In particular we prove:

Theorem. The iterative use of Eqs. (15) and (18) produces a nondecreasing
sequence of values of the criterion Q(�,
) converging in a finite number of steps
to a finite limit.

Proof. Let us note first that any change of the mixture decomposition � can
be viewed as a result of a sequence of elementary steps. In particular, let �+ be
defined by an elementary change of � (cf. (17)):

M+
k = Mk ∪ {m0}, M+

l = Ml \ {m0}, M+
j = Mj , j ∈ M, j 	= k, l

with m0 satisfying the condition ϕ(m0|
) = k (cf. (18)). Therefore the following
inequality holds (cf. (17))

∑

x∈Sk

q(m0|x) ≥
∑

x∈Sj

q(m0|x), ∀j ∈ M (19)

and the corresponding change of the criterion Q (cf. (16)) is non-negative
1 If the maximum is not unique we choose the smallest index k ∈ M with the specified

property.
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Q(�+,
) − Q(�,
) =
1
|S|

[
∑

x∈Sk

q(m0|x) −
∑

x∈Sl

q(m0|x)

]
≥ 0. (20)

Consequently, the inequality (20) is also valid for the resulting “cumulative”
decomposition as defined by (18).

Analogously, let 
+ is defined by an elementary change of texture segmenta-
tion 
:

S+
k = Sk ∪ {x0}, S+

l = Sl \ {x0}, S+
j = Sj , j 	= k, l

with x0 satisfying the condition d(x0|�) = k (cf. (15)). Therefore the following
inequality is satisfied (cf. (14)):

p(k|x0) ≥ p(j|x0), ∀j ∈ M, (21)

and the corresponding change of the criterion (16) is non-negative

Q(�,
+) − Q(�,
) =
1
|S| [p(k|x0) − p(l|x0)] ≥ 0.

It can be seen that the last inequality is also valid for any complex change of
the segmentation 
.

Consequently, the iterative segmentation algorithm (15), (18) based on the
local mixture model P (x) converges to a finite limit in a finite number of steps
because the criterion Q(�,
) is bounded above and the number of possible
partitions � and 
 is finite.

4 Topologically Modified Segmentation

The “bottom up” segmentation algorithm from Sec. 3 starting with the finest
partition �0 : Mk = {k}, k ∈ M and maximizing the criterion Q(�,
) con-
verges in few iterations to a highly over-segmented texture. The tendency to
over-segmentation is closely related to the high dimensionality of the estimated
density P (x). Even in case of a small size the observation window may contain
several hundreds of pixels with three spectral values and the resulting dimen-
sion N is very high. In multidimensional spaces the mixture components are
nearly non-overlapping and therefore there is usually one-to-one correspondence
between the mixture components and the initial highly specific texture seg-
ments. The examples of the initial over-segmentation are shown in Fig. 1 (third
row). Recall that in case of the mixture components from Fig. 1 the underly-
ing densities have dimension N = 1143. In high-dimensional spaces the mixture
components are well separated and almost non-overlapping and therefore the
conditional probabilities q(m|x) have nearly binary properties.

In order to increase the senzitivity of the criterion (16) with respect to the
topological properties of the texture we include a neighborhood into the under-
lying decision-making. We define the decision neighborhood D(x(i, j)) of the
vector x(i, j) ∈ S as a subset of vectors x ∈ S which correspond to the pixels
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near the central point (i, j). In particular, considering a square decision neigh-
borhood with the corners cut away, we can write:

D(x(i, j)) = {x(k, l) ∈ S : |i − k| + |j − l| < (2ρ − r)}. (22)

where ρ ≥ 0 is a window “radius” and r = ρ/2 the corner size (cf. Fig. 1, second
row). To simplify notation, the position (i, j) of the observation window will be
omitted whenever tolerable.

By using the neighborhood D(x) we can compute the mean probability of
correct pixel classification in a more robust way by taking in account the neigh-
bouring pixels:

Q(�,
) ≈ 1
|S|

∑

k∈M

∑

x∈Sk

p(k|D(x)) (23)

Here the probability p(k|D(x)) of correct classification of a pixel x = x(i, j) ∈ S
can be expressed in the form:

p(k|D(x)) =
Pk(D(x))
P (D(x))

=
∑

y∈D(x)

Pk(y)
P (D(x))

=
∑

y∈D(x)

P (y)
P (D(x))

p(k|y). (24)

If we assume the term P (y)/P (D(x)) to be approximately constant for all y ∈
D(x) then it can be replaced by a coefficient 1/|D(x)|. Denoting |D(x)| = D0

we can write the criterion (23) in the following more suitable form:

QD(�,
) =
1
|S|

∑

k∈M

∑

x∈Sk

1
D0

∑

y∈D(x)

p(k|y) (25)

If we modify definition (15) of the segmentation 
 given the decomposition �

dD(x|�) = arg max
k∈M

{
∑

m∈Mk

∑

y∈D(x)

q(m|y)}. (26)

Sk = {x ∈ S : dD(x|�) = k}, k ∈ M, (27)

and the definition (18) of mixture decomposition � given the segmentation 
:

ϕD(m|
) = arg max
k∈M

{
∑

x∈Sk

∑

y∈D(x)

q(m|y)}, (28)

Mk = {m ∈ M : ϕD(m|
) = k}, k ∈ M (29)

then the criterion (25) is again maximized by iterating the steps (27) and (29).
The proof of this assertion is analogous to that of Sec. 3.

5 Computational Experiments

The practical implementation of the above algorithm starts with the highly over-
segmented texture from Sec. 3 which corresponds to the neighborhood radius
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Fig. 1. Texture segmentation experiments. Each column corresponds to one example
taken from [11]. The texture image is in the first row, the second row shows the com-
ponent means μm of the respective Gaussian mixture model and the third and fourth
row show the initial and final segmentation respectively. The resulting segmentation
is essentially correct despite the strong inhomogeneity of the texture segments. There
are only minor “rounding” errors on the segment boundaries.
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ρ = 0, i.e. to |D(x)| = 1. Then the topologically modified segmentation algo-
rithm is repeatedly started again with an increased neighborhood D(x) and iter-
ated until convergence. The repeated application of the segmentation algorithm
represents a hierarchical scheme which can be stopped e.g. when the number
of segments does not change for several repetitions or by choosing an ad hoc
maximum size of the final decision neighborhood.

In the experiments we have applied the proposed segmentation algorithm to
the Prague texture segmentation benchmark which is known to contain very diffi-
cult examples. The three test images shown in the first row of Fig. 1 are available
at the address [11]. For each texture image we have computed the local statistical
model in the form of Gaussian mixture for the window size 21x21 (dimension
N=1143, cf. Sec. 3 for details). The second row of Fig. 1 shows the correspond-
ing component means for the three mixtures - as discussed in Sec. 3. The initial
“over-segmented” images in the third row illustrate the “discriminative power”
of the models and finally the fourth row shows the resulting segmentations. In
the considered examples 1-3 the segmentation algorithm has been stopped for
the size of decision neighborhood ρ = 28, ρ = 33 and ρ = 24 respectively. The
results of segmentation are rather convincing. It can be seen that, despite strong
inhomogeneity, all texture segments have been correctly identified, possibly ex-
cept for some minor “rounding” errors on the segment boundaries.

In the present form the proposed method is rather demanding (several hours)
mainly because of the time-consuming mixture estimation. However, the result-
ing segmentation can be obtained more quickly when the size of the decision
neighborhood can be specified in advance.

6 Conclusion

In the present paper we propose a color texture segmentation algorithm based
on statistical model of local texture properties. We describe the statistical de-
pendencies between the spectral pixel values in a suitably chosen observation
window by a multivariate Gaussian mixture with product components. We es-
timate the mixture parameters by means of EM algorithm from color image
patch data obtained by pixelwise shifting the observation window through the
original color texture image. No feature extraction- or dimensionality reduction
technique is applied to the spectral pixel variables. As the mixture components
correspond to different “averaged” variants of the image patches we identify
each texture segment by a corresponding sub-mixture by using Bayes formula.
We propose a simple segmentation criterion in terms of probability of correct
pixel classification into segments and an iterative algorithm to maximize the pro-
posed criterion. Simultaneously, we prove that the convergence of the algorithm
is monotonic in a finite number of steps.

In the present form the proposed texture segmentation method is time-
consuming and therefore hardly applicable on-line. On the other hand it may be
useful, e.g. for careful off-line evaluation of medical images.
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