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Abstract

We address the problem of credit scoring as a classification and feature subset selection

problem. Based on the current framework of sophisticated feature selection methods, we iden-

tify features that contain the most relevant information to distinguish good loan payers from

bad loan payers. The feature selection methods are validated on several real world datasets

with different types of classifiers. We show the advantages following from using the sub-space

approach to classification. We discuss many practical issues related to the applicability of

feature selection methods. We show and discuss some difficulties that use to be insufficiently

emphasised in standard feature selection literature.

Keywords: credit scoring, feature selection, subset search, probabilistic dependence measures

1 Introduction

One of the key decisions financial institutions have to make is to decide whether or not to grant

a loan to a customer. This decision basically boils down to a binary classification problem

which aims at distinguishing good payers from bad payers. Until recently, this distinction was

made using a judgmental approach by merely inspecting the application form details of the

applicant. The credit expert then decided upon the credit-worthiness of the applicant using all

possible relevant information which describes his socio-demographic status, economic conditions

and intentions. The advent of data storage technology has facilitated financial institutions to

store all information regarding the characteristics and repayment behaviour of credit applicants

1



electronically. This has motivated the need to automate the credit granting decision by using

statistical or machine learning algorithms.

Numerous methods have been proposed in the literature to develop credit scoring models

[1, 2]. These models include traditional statistical methods (e.g. logistic regression [15]),

nonparametric statistical models (e.g. k-nearest neighbour [8] and classification trees [3]) and

neural network models [4]. Most of these studies primarily focus at developing classification

models with high predictive accuracy. However, besides classification accuracy, it is also very

important to have parsimonious models which only consider a limited number of features to

make the credit granting decision. This feature selection idea is in the data mining literature

often embodied by the principle of Occam’s razor which essentially advocates the use of simple,

low parametrised models. By using only a few features to decide upon credit approval, the

scorecard builder will gain more insight into the model and better understand its working.

In this paper, we intend to investigate the potential of feature selection methods for credit

scoring. We will study the possible problems that can emerge when using probabilistic depen-

dence measures (Filter approach) instead of classification rates of concrete classifiers (Wrapper

approach) for feature selection [11]. The experiments will be conducted using 4 real-life credit

scoring datasets.

This paper is organised as follows. Section 2 describes the adopted feature selection method-

ology consisting of two recent subset search methods. The empirical evaluation, consisting of

the feature selection methods setup, the dataset characteristics and the results, are described

in section 3. Section 4 concludes the paper.

2 Adopted Feature Selection Methodology

In this paper, we discuss the possibilities of applying feature selection methods to credit scoring

problems to reduce problem dimensionality, i.e. to identify the most important features and

possibly to improve the performance of employed classifiers.

The feature selection problem is more or less a special case of a much broader problem of

subset selection. Suppose a large set of (D) items is given from which we need to find a small

(d) subset being optimal in a certain sense. In statistical subset selection, being optimal usually

means being most suitable for classification or data approximation. Although it may not be

apparent, the subset selection problem may become prohibitive because of its computational

complexity. It is not possible to rank the items in our set simply according to their individual

properties and select only the best. The item properties may depend strongly on each other

and a subset of individually ”bad” features may prove to be rather ”good” because of positive

interaction effects. Because of this uncertainty, the only apparent way of searching for optimal

subsets is – simply to evaluate all the 2D possible item combinations. However, testing all

subsets is a combinatorial problem that requires an exponential amount of computational time.

Because of this limitation a broad range of sub-optimal feature selection methods has been

developed over the last decades.
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Figure 1: Simplified diagram of the “Forward Floating Search” feature selection algorithm.

Based on our recent experience we have adopted a methodology for applying a combination

of modern feature selection methods to achieve the best possible results in a reasonable time.

At the first stage, we apply the so-called floating search methods [12] because of their proven

performance and relatively high computational speed. At the second stage, we try to improve

some of the most promising results using more computationally demanding, but more flexible

and efficient oscillating search methods [14]. Let us summarise the basic principles of these

methods first.

2.1 Floating Search Methods

In contrast to the conventional sequential search methods, the Floating Search algorithms at-

tempt to improve the feature subset after every step by means of backtracking. Consequently,

the resulting dimensionality in respective intermediate stages of the algorithm is not changing

monotonically but is actually “floating” up and down. Two different algorithms have been de-

fined according to the dominant direction of the search: forward (SFFS) and backward (SBFS)

floating search. A simplified diagram of the SFFS method can be seen on Figure 1. The SFS

abbreviation denotes the simple Sequential Forward Selection algorithm that is used here as a

sub-procedure. SFS adds one feature to the current set of features that improves the overal

criterion value the most. The functionality of SBS as Sequential Backward Selection is obvious.

For details on both SFS and SBS see e.g. [5]. The k variable denotes the current subset size, d

is a user set constant depicting the target subset size and Δ denotes an additional parameter

allowing the algorithm to continue for a short time after reaching the target subset size d – to

take use of the “floating” principle and thus possibly improve the solution for the target subset

size d. It should be noted that restricting the algorithm to stop at d + Δ does not have any

other reason than to spare computational time. The recommended way of usage (the way we

use it here) is letting the algorithm go through all possible subset sizes and examine all results

at the end.

The effectiveness of the floating search has been demonstrated on different problems [12,

6, 9]. The subsequent extension, the Adaptive Floating Search [13], is able to focus on the
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Figure 2: Simplified diagram of the “Oscillating Search” feature selection algorithm.

desired dimensionality and find a better solution but only at the cost of significantly increased

computational time. For a detailed description of the floating search principle see [12].

2.2 Oscillating Search Methods

Unlike other methods, the Oscillating Search (OS) [14] repeatedly modifies the current subset

of d features. This is achieved by alternating the so-called down- and up-swings. The down-

swing removes o “bad” features from the current set to obtain a new set of d − o features

at first, then adds o “good” ones to obtain a renewed set of d features. A “good” feature

may be defined as “a feature that being added increases the criterion value the most”. The

meaning of “bad” may be defined correspondingly (we do not define precisely what “good”

and “bad” means here as it is not necessary for understanding the overal algorithm principle).

The up-swing is simply a counterpart to the down-swing. Two successive opposite swings form

an oscillation cycle. Using this notion, the oscillating search consists of repeating oscillation

cycles. The value of o is denoted the oscillation cycle depth and should be set to 1 initially.

If the last oscillation cycle has not improved the working subset of d features, the algorithm

increases the oscillation cycle depth by setting o = o+1. Whenever any swing results in finding

a better subset of d features, the depth value o is reset to 1. The algorithm stops after the

value of o has exceeded a user-specified limit Δ (see Figure 2). The meaning of ADD and

REMOVE can be specified in different ways to get different versions of the OS algorithm. In

this paper we substitute “ADDing o features” by repeating successively the SFS step o times

and “REMOVEing o features” by o successive SBS steps.

The OS algorithm is principally a variant of the gradient method. Its most important

property when compared to the Floating Search is the ability to run in a randomised mode.

This may (in some cases) overcome the problem of practically all sequential feature selection

methods – the inclination to get stuck in local extremes. Another advantage of the oscillating
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search method is its ability to run not only as a stand alone search method, but also as a tuning

tool capable of improving results obtained in another way, e.g. by using the Floating Search.

For a detailed algorithm description see [14].

3 Empirical Evaluation

3.1 Feature Selection Methods Setup

To obtain results representative enough for drawing conclusions, we investigated different classi-

fier / feature selection criteria / subset search algorithm combinations. We set up the following

components:

• The SFFS subset search algorithm (see section 2.1). This is the forward version of the

floating search algorithm set to get through all subset sizes (from 1 to the total number

of features).

• The OS subset search algorithm (see section 2.2). We use the simplest and fastest se-

quential version with oscillation depth limit set to 2. The algorithm is called repeatedly

for each subset size starting from random initial feature subsets until 5 consecutive runs

have not led to result improvement.

• The Gaussian classifier (simple Bayesian classifier assuming the data distribution to be

normal) to be used both as a classifier and a subset evaluation criterion. For details on

classifiers see e.g.[5, 7].

• The 1–Nearest Neighbour classifier to be used both as a classifier and a subset evaluation

criterion.

• The Bhattacharyya probabilistic distance measure to be used as a subset evaluation cri-

terion. For details on all probabilistic measures mentioned here see e.g.[5, 7].

• The Divergence probabilistic distance measure to be used as a subset evaluation criterion.

• The Patrick-Fischer probabilistic distance measure to be used as a subset evaluation

criterion.

Our selection of algorithms and classifiers is affected by the expected computational complexity

of the problem. As the number of features gets higher (as high as 76 in one of the datasets

tested), more complex algorithms may require weeks of computational time. We believe the

algorithms we use constitute a reasonable compromise suitable for our purposes. The actual

computations on our PentiumIII-800MHz machines took altogether about a month, though.

The results obtained from testing the different combinations of the listed components are

described in section 3.3.

3.2 Datasets and Experimental Setup

Table 1 displays the characteristics of the datasets that have been be used to evaluate the

different feature selection methods. The Bene1 and Bene2 datasets were obtained from two
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major financial institutions in the Benelux (Belgium, The Netherlands and Luxembourg). For

both datasets, a bad customer was defined as someone who has missed three consecutive months

of payments [16]. The German credit and Australian credit datasets are publicly available at

the UCI repository (http://kdd.ics.uci.edu/).

Dataset Size Original Features
Total Continuous Nominal

Austr 690 14 6 8
Germ 1000 20 7 13
Bene1 3123 28 14 14
Bene2 7190 28 18 10

Table 1: Characteristics of the original datasets (containing nominal features).

The methods and functions we intend to employ and evaluate are currently defined for

continuous data only. For this reason, we had to transform the datasets to eliminate the

nominal features while preserving the information contained in them. We have adopted the

simplest way to do that – we replaced each nominal feature by a number of binary features

representing every possible nominal value that the original feature can take.

It should be noted that such a transformation has negative consequences. First, the overall

dimensionality of the problem increases with unchanged number of data samples. Second,

the new binary features are highly correlated. However, it will be shown that despite these

drawbacks the use of feature selection methods leads to reasonable results.

Dataset Size Transformed Features
Total in Class 1 in Class 2

Austr 690 307 383 38
Germ 1000 300 700 59
Bene1 3123 2082 1041 55
Bene2 7190 5033 2158 76

Table 2: Characteristics of the transformed datasets (continuous features only).

As so often with real world problems, we face the ’curse of dimensionality’ problem here. The

number of samples in datasets is relatively low in relation to the dimensionality. Nevertheless,

the number of samples in all cases is higher than ca. 10 times the dimensionality. According

to different studies (see e.g. [10]) and our experience this is enough to achieve our goals.

3.3 Results

The results are presented in five graphs per dataset (see Figures 3,4,5,6). The two main graphs

show the best achieved classification rates for all subset sizes while the three small graphs show

the maximal probabilistic distance measure values found. We do not include full listings and

description of selected feature subsets because of the extent of the complete list.
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It can be noted that some values are missing – this is either because of unreasonably

high computational complexity of certain cases or because of numerical problems. Occasional

numerical problems follow apparently from sparseness of the feature space as well as from the

use of correlated binary features we have created during the dataset transformation. Numerical

problems can be observed especially for subsets obtained by the Filter approach and tested

using the Gaussian classifier. Also, according to the definition all Bhattacharyya, Divergence

and Patrick-Fischer graphs should be monotonically ascending with increasing subset size what

is not the case for larger subsets with all the tested datasets.

Austr Germ Bene1 Bene2

Best Gaussian
Classification Rate 0.926 0.838 0.739 0.753

Corresponding Subset Size 10 (14) 22 14 23

Best FS Procedure OS rand. (SFFS) OS rand. OS rand. OS rand.
(Gaussian rate as criterion) Wrapper Wrapper Wrapper Wrapper

Best 1–NN
Classification Rate 0.913 0.784 0.727 0.710

Corresponding Subset Size 13 19 25 11

Best FS Procedure SFFS OS rand. SFFS OS rand.
(1–NN rate as criterion) Wrapper Wrapper Wrapper Wrapper

Full Set Gaussian
Classification Rate num.err. num.err. num.err. num.err.

Full Set 1–NN
Classification Rate 0.670 0.557 0.599 0.648

Full Set Size 38 59 55 76

Table 3: Best achieved results. Comparison of sub-set and full set classification results.

The graphs confirm that only a fraction of features is sufficient to achieve the maximum

classification rate. Moreover, in all cases the full set of features yields worse results than a

selected subset or is not usable at all due to numerical problems (see Table 3). In terms of the

original feature set this means that many continuous features can be omitted. In case of the

nominal features some of their values carry more important information than others. It can

also be seen that the number of used features can be further significantly reduced at a cost of

only slight decrease of the classifier performance. In case of all tested datasets, it is possible to

select only about 5–10 features to achieve classification rates almost as good as the best ones.

The results show an overall superiority of Wrappers over Filters. The best results have been

always obtained using the Wrapper approach. A very interesting observation is that there is a

weaker than expected connection between Filter based subset preference and final classification

rate with all datasets and practically all measure / classifier combinations.

The results also illustrate how differently the principally different classifiers can behave.

Although practically all the highest classification rates were achieved using the Gaussian clas-

sifier, the 1-NN proved to be much less vulnerable to dimensionality or numerical problems.

This can be clearly seen e.g. on Figure 5 for feature subsets of more than ca. 20 features as
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well as on Figures 3 and 4 for subsets of high number of features.

3.3.1 ’Austr’ Results

The two classifiers perform comparably well on this dataset. For subset sizes close to the

full dimension the performance deteriorates rapidly. The Filter results are very bad with the

gaussian classifier. The explanation is offered in section 4. Only with the 1-NN classifier the

Filter results show some dependence of classification rate on the measure values (notably in

case of Patrick-Fischer). The results are inferior to those obtained by the Wrapper approach

though.

3.3.2 ’Germ’ Results

The gaussian classifier outperforms the 1-NN classifier in this case except for subsets of more

than ca. 50 features. Almost no dependence between classification rate and probabilistic

distance measure values can be observed here. The subsets selected using the Filter approach

perform poorly with both classifiers. There seems to be almost no relation between the Filter

and gaussian classifier subset performance. Only the Patrick-Fischer measure seems to perform

slightly better than the two others in conjunction with the 1–NN classifier.

For the ’Germ’ dataset, we include a complete description of the original and best selected

features (see Table 4).

3.3.3 ’Bene1’ Results

The gaussian classifier yields generally better results, however it is more vulnerable to numerical

problems with sparse datasets than the 1-NN classifier (here for feature set sizes > ca. 30).

The partially chaotic behaviour of Filter results clearly shows the problems of weak principal

connection between the search and classification processes as stated above. The additional

graphs of distance measure values show the problem of difference in meaning of particular

distance measures. Although due to monotonicity of the probabilistic measures we cannot

simply identify the best subset size according to measure value, the graphs demonstrate certain

effects. First, the Bhattacharyya shows rapid increase for subsets of ca. 10 features, what is

different from the Divergence (starts to rise at ca. 25–30) and Patrick-Fischer (ca. 30–35).

Second, the graphs help to identify the point from where the numerical problems begin. The

Divergence and Patrick-Fischer graphs decline for subset sizes of above ca. 35 features, what

indicates numerical problems as the monotonicity is breached. This point of decline corresponds

with what can be seen at the upper two graphs – the SFFS with 1-nn collapsed there and the

SFFS with the gaussian classifier reached an unchanging state.

3.3.4 ’Bene2’ Results

For all datasets, the OS algorithm proves to be able to outperform the SFFS. However, with

this dataset and this configuration, the OS not only showed to be computationally expensive,
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but also failed to yield reasonable results for subsets of more than ca. 35 features. A depen-

dence between the Bhattacharrya and Divergence values and corresponding gaussian classifier

performance for subsets from 1 to ca. 20 can be observed. In contrary, for bigger subsets the

dependence between the probabilistic measures and classification rate becomes practically ran-

dom. However, the Filters yield better performing subsets than in case of the other datasets.

Similarly to the ’Bene1’ dataset, there is a point (subset size ca. 58) from which on the numer-

ical errors become overriding.

4 Conclusions

For the four credit scoring datasets, we have achieved slightly better classification results than

published before. Moreover, we have identified subsets of features (and particular values in

case of nominal features) that are sufficient to accomplish the classification task.

Besides the known fact that dimensionality reduction may lead not only to computational

(and data acquisition) cost savings but also to performance and accuracy gain, we have demon-

strated other less obvious factors that may affect the classification process. In many cases the

process of dimensionality reduction proved to be necessary to enable classification at all due to

numerical problems with larger feature subsets.

If numerical problems should emerge, then the Filter approach seems to be likely more

vulnerable. This can be explained simply by the fact that unlike the Wrapper approach (which

employs only the classifier related computations) the Filter approach employs both the classifier

related and probabilistic distance related computations.

The obvious conclusion regarding the usability of probabilistic distance measures is that

they should be used to evaluate feature subsets only if there is no other choice. We have

demonstrated that different measures may lead to considerably different results depending

on data and on what further processing is to take place (classifier choice). The explanation

may be in the fact that the underlying probability distributions of datasets do not fulfill the

assumptions implicitly hidden behind the use of probabilistic measures as the feature selection

criterion. There is no way of stating a general recommendation which measure is generally

the most preferable. The best recommendation we can give is that dimensionality reduction

should take place as part of classification tasks and that it should be principally connected to

the functioning of the classifier (i.e. Wrappers are preferable to Filters).

The results also show a problem of practically all sequential subset search algorithms – the

inclination to follow similar deterministic paths through the feature space that often end up

in similar local extremes. The sequentiality as a property is thus a restricting concept in a

sense. The randomisation employed in the OS algorithm initialisation phase partly overcomes

this problem and gives a chance (but does not guarantee) to find different and possibly better

extremes in the feature space. The results shown here illustrate the advantage clearly as all the

best classification rates have been obtained using the simplest OS version with randomisation

in contrary to the sophisticated but deterministic SFFS.
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Nr Name Type Explanation

1 Checking account nominal 1: < 0 DM; 2: ≥ 0 and < 200 DM;

3: ≥ 200 DM/salary assignments
for at least one year;
4: no checking account

2 Term continuous
3 Credit history nominal 0: no credits taken/all credits

paid back duly; 1: all credits at this bank

paid back duly; 2: existing credits paid

back duly till now; 3: delay in paying off

in the past; 4: critical account/

other credits (not at this bank)
4 Purpose nominal 0: car (new); 1: car (old);

2: furniture/equipment; 3: radio/television

4: domestic appliances; 5: repairs;
6: education; 7: vacation; 8: retraining
9: business; 10: others

5 Credit amount continuous
6 Savings account nominal 1: < 100 DM; 2: ≥ 100 DM and

< 500 DM; 3: ≥ 500 and
< 1000 DM; 4: ≥ 1000 DM;
5: unknown/no savings account

7 Present employment nominal 1: unemployed; 2: < 1 year;

since 3: ≥ 1 year and < 4 years;

4: ≥ 4 and < 7 years; 5: ≥ 7 years

8 Installment rate continuous
(% of disposable income)

9 Personal status and sex nominal 1: male,divorced/separated;

2: female, divorced/separated/married;
3: male, single; 4: male, married/
widowed; 5: female,single

10 Other parties nominal 1: none; 2: co-applicant; 3: guarantor
11 Present residence since continuous
12 Property nominal 1: real estate; 2: if not 1: building

society savings agreement/life insurance;
3: if not 1/2: car or other;

4: unknown/no property
13 Age continuous

14 Other installment plans nominal 1: bank; 2: stores; 3: none

15 Housing nominal 1: rent; 2: own; 3: for free

16 Number of existing credits continuous
at this bank

17 Job nominal 1: unemployed/unskilled-non-resident;
2: unskilled-resident; 3: skilled employee/
official; 4: management/self employed/
highly qualified employee/officer

18 Number of dependents continuous

19 Telephone nominal 1: none; 2: yes, registered
under the customer name

20 Foreign worker nominal 1: yes; 2: no

Table 4: Feature description for the German credit dataset. The features and values that have
been selected as important to achieve the best classification rate in this experiment (83.8%) are
underlined.
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Figure 4: Results on the ’Germ’ dataset.
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Figure 5: Results on the ’Bene1’ dataset.
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Figure 6: Results on the ’Bene2’ dataset.
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