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Abstract The use of traditional moment invariants in ob-
ject recognition is limited to simple geometric transforms,
such as rotation, scaling and affine transformation of the im-
age. This paper introduces so-called implicit moment invari-
ants. Implicit invariants measure the similarity between two
images factorized by admissible image deformations. For
many types of image deformations traditional invariants do
not exist but implicit invariants can be used as features for
object recognition. In the paper we present implicit moment
invariants with respect to polynomial transform of spatial
coordinates, describe their stable and efficient implementa-
tion by means of orthogonal moments, and demonstrate their
performance in artificial as well as real experiments.

Keywords Invariants · Implicit invariants · Moments ·
Orthogonal polynomials · Polynomial image deformation

1 Introduction

Recognition of objects and patterns that are deformed in var-
ious ways has been a goal of much recent research. There
are basically three major approaches to this problem—full
search, image normalization, and invariant descriptors. In
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the full search approach we search the space of all possi-
ble image degradations, which means that the training set
of each class should contain not only all class representa-
tives but also all their rotated, scaled, and deformed ver-
sions. Although this approach can be successful for small
deformations (Duda et al. 2001), in other cases it would lead
to extreme time complexity and would be practically inap-
plicable. In the normalization approach, objects are trans-
formed into a certain standard position before they enter
the classifier. This could be very efficient in the classifica-
tion stage but the object normalization usually requires to
solve complex inverse problems which are often ill posed.
The approach using invariant descriptors appears to be the
most promising one and has been used extensively. Its basic
idea is to describe the object by a set of features which are
not sensitive to particular deformations and which provide
enough discrimination power to distinguish among objects
belonging to different classes.

In 2-D object recognition, various moment invariants
have become classical descriptors during last forty years.
No doubt they are one of the most important and most fre-
quently used shape descriptors. Even if they suffer from
some intrinsic limitations (the most important of which is
their globalness, which prevents them from being used for
recognition of occluded objects), they frequently serve as
the “first-choice descriptors” and as a reference method for
evaluation of the performance of other shape descriptors.
Despite a tremendous effort and huge number of published
papers, there are still open problems to be resolved.

All moment invariants ever studied may be called explicit
invariants. From the mathematical point of view, an explicit
invariant is a functional (let us denote it as E) acting on the
space of image functions which does not change its value
if the image f undergoes certain deformation τ from the set
of admissible deformations, i.e. which satisfies the condition
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E(f ) = E(τ(f )) for any image f . Many systems of explicit
moment invariants have been described which are invariant
with respect to rotation, scaling, affine transform, contrast
changes, and linear filtering, more details are given in the
literature survey below. However, there are several classes
of image deformations which occur frequently in practice
but explicit moment invariants with respect to them are not
known or have even been proved not to exist. Typical ex-
amples are cylindrical and spherical projections, quadratic
transform, and other polynomial transforms of the image co-
ordinates.

To overcome this, we propose in this paper so-called im-
plicit invariants, which play a role of a distance or similarity
measure between two objects independently of their defor-
mations. Implicit invariant I is a functional defined on im-
age pairs such that I (f, τ (f )) = I (f,f ) = 0 for any image
f and deformation τ and I (f, g) > 0 for any f,g such that
g is not a τ -deformed version of f . According to this defi-
nition, explicit invariants are just particular cases of implicit
invariants. Clearly, if explicit invariant E exists, we can set
I (f, g) = |E(f ) − E(g)|. As we show later on in the paper,
there are many types of image deformations where explicit
moment invariants do not exist while implicit moment in-
variants do. If for instance the assumed deformation class is
not closed with respect to composition (i.e. the deformations
do not form a group) then explicit invariants to this class can-
not exist in principle. In those cases, implicit invariants can
be used as features for object recognition.

Unlike explicit invariants, implicit invariants do not pro-
vide description of a single image because they are always
defined for a pair of images. This is why they cannot be used
for shape encoding and reconstruction. Implicit invariants
were designed as a tool for object recognition and matching.
We consider I (f, g) to be a “distance measure” (even if it
does not exhibit all properties of a metric) between f and g

factorized by τ and we can, for each database template gi ,
calculate the value of I (f, gi) and then to classify f accord-
ing to the minimum. It should be noted that the word “im-
plicit” here has nothing common with implicit curves and
implicit polynomials. It just expresses the fact that there is
no explicit formula allowing to evaluate this invariant for a
given image. Deformation τ may generally influence image
graylevels and/or spatial coordinates but in this paper we
consider spatial deformations only.

The paper is organized as follows. After a brief survey of
moment invariants in Sect. 2 we define basic terms in Sect. 3.
In Sect. 4, we put traditional explicit moment invariants into
this context. The key idea how to construct implicit moment
invariants along with an illustrative example is presented in
Sect. 5. In Sects. 6–8, we propose a proper way how to work
with polynomials and how to actually implement the invari-
ants in 2-D to ensure numerical stability. The last section
demonstrates the performance of the implicit moment in-
variants in experiments.

2 State-of-the-Art in Brief

The history of moment invariants began many years before
the appearance of the first computers, in the 19th century
under the framework of the group theory and of the theory
of algebraic invariants. The theory of algebraic invariants
was thoroughly studied by famous German mathematicians
Gordan and Hilbert (Hilbert 1993) and in the 20th century it
was further developed in Gurevich (1964) and Schur (1968),
among others.

Moment invariants were firstly introduced to the pattern
recognition community in 1962, where Hu (1962) employed
the results of the theory of algebraic invariants and derived
his seven famous invariants to rotation of 2-D objects. Since
that time, numerous works have been devoted to various im-
provements and generalizations of Hu’s invariants and also
to its use in many application areas.

In Dudani et al. (1977) and Belkasim et al. (1991) an
application to aircraft silhouette recognition is described.
In Wong and Hall (1978), Goshtasby (1988) and Flusser
and Suk (1994b) the authors employed moment invariants
in template matching and registration of satellite images.
Mukundan and Ramakrishnan (1996), Mukundan and Ma-
lik (1993) applied them to estimate the position and the
attitude of the object in 3-D space. Additionally in Sluzek
(1995) it was proposed to use local moment invariants in in-
dustrial quality inspection and many authors used moment
invariants for character recognition (Belkasim et al. 1991;
El-Khaly and Sid-Ahmed 1990; Tsirikolias and Mertzios
1993; Khotanzad and Hong 1990; Flusser and Suk 1994a).
Maitra (1979) and Hupkens and de Clippeleir (1995) made
them invariant also to contrast changes, Wang and Healey
(1998) proposed illumination invariants particularly suitable
for texture classification. Li (1992) and Wong et al. (1995)
presented the systems of invariants up to the orders nine and
five, respectively. Unfortunately, no one of them paid atten-
tion to mutual dependence/independence of the invariants.
The invariant sets presented in their papers are algebraically
dependent. Most recently, Flusser has proposed a method
how to derive independent sets of invariants of any orders for
general objects (Flusser 2000, 2002) and for objects having
certain types of symmetry (Flusser and Suk 2006).

There is also a group of papers (Khotanzad and Hong
1990; Teague 1980; Wallin and Kubler 1995) that use
Zernike moments to construct rotation invariants. Their mo-
tivation comes from the fact that Zernike polynomials are
orthogonal on a unit circle and they can be evaluated by
recurrent formulae which prevents them from numerical in-
stability and overflow. However, Teague (1980) showed that
Zernike invariants of 2nd and 3rd orders are equivalent to
Hu’s ones when expressing them in terms of geometric mo-
ments. He presented the invariants up to eighth order in ex-
plicit form but no general rule how to derive them is given.
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Wallin and Kubler (1995) described an algorithm for a for-
mation of moment invariants of any order. Since Teague
(1980) as well as Wallin and Kubler (1995) were particu-
larly interested in reconstruction abilities of the invariants,
they did not pay much attention to the question of indepen-
dence.

At the beginning of the 90s, several authors (Flusser and
Suk 1993; Reiss 1991; Li 1992) contributed significantly to
the theory of moment invariants by correcting the Funda-
mental Theorem (Hu 1962) and by deriving invariants to
general affine transform. Later on, the Fundamental The-
orem in N -dimensional form was published by Mamist-
valov (1998) and the relationship between 2D affine moment
invariants and graphs was discovered by Suk and Flusser
(2004a).

Most recently, some authors dealt with moment invari-
ants to projective transform without reaching applicable re-
sults. Gool et al. (1995) proved the nonexistence of finite
projective moment invariants using the Lie group theory.
Their work can be extended to prove the nonexistence of in-
variants, that would have a form of infinite series with each
term equal to a finite product of moments of non-negative
indices. Finally, Suk and Flusser (2004b) proved the exis-
tence of projective moment invariants in a form of infinite
series containing moments with positive as well as negative
indices. However, the convergence of these invariants has
not been completely proved.

Several papers studied recognitive and reconstruction as-
pects, noise tolerance, discretization errors and other numer-
ical properties of various kinds of moment invariants, both
theoretically and experimentally (Pawlak 2006; Belkasim
et al. 1991; Prokop and Reeves 1992; Teh and Chin 1988;
Abu-Mostafa and Psaltis 1984; Liao and Pawlak 1996;
Pawlak 1992; Bailey and Srinath 1996). Moment invari-
ants were shown to be also a useful tool for geometric
normalization of images (Abu-Mostafa and Psaltis 1985;
Gruber and Hsu 1997). Large amount of effort has been
spent to find effective algorithms for moment calculation
(see Yang and Albregtsen 1996 for a survey).

A common denominator of all papers mentioned above
is that they did not break the restriction to linear transfor-
mation of spatial coordinates of the image. Under general
polynomial transformations, the moments change their or-
ders which seemingly makes any construction of invariants
impossible. In this paper, we extend the current theory of
moment invariants. We study the behavior of moments un-
der polynomial transformations and demonstrate that certain
moments can be used for recognition of deformed object
when considering implicit instead of explicit invariants.

A question of course arises if some other techniques dif-
ferent from moments can be used for recognition of objects
under polynomial transformation. There have been many pa-
pers on “elastic matching” and “deformable templates” (see

Kybic and Unser 2003 for an example and further refer-
ences), which are powerful in recognition but usually slow.
Most of them essentially perform an exhaustive search in the
parameter space of functions approximating the deformation
and looking for an extremum of some similarity or dissim-
ilarity measure. Various splines as approximating functions
and cross-correlation and mutual information as a similarity
measure are popular choices. Even if the authors speed-up
the search by pyramidal image representation and/or sophis-
ticated optimization algorithms, these methods still perform
relatively slow because they do not use any invariant repre-
sentation.

In the literature, one can find many papers on “non-
linear” invariants (see Mundy and Zisserman 1992 for a sur-
vey and other references). Most of them are limited to pro-
jective transformation, which is the simplest nonlinear trans-
form, and their main goal is to find local invariant descrip-
tors allowing recognition of partially occluded objects (see
for instance Weiss 1988; Pizlo and Rosenfeld 1992). Since
this problem is different from the one we deal with in this
paper, those methods cannot be (at least not easily) adopted
for our purpose.

3 General Moments

Definition 1 Let p0,p1, . . . , pn−1 be some basis functions
defined on a bounded D ⊂ RI N and let f be an image func-
tion having a finite integral. By a general moment of f we
understand the functional

μj (f ) =
∫

D

f (x)pj (x)dx.

If N = 1 and pj (x) = xj , we speak about standard mo-
ments.

Using a matrix notation we can write

p(x) =

⎛
⎜⎜⎜⎝

p0(x)

p1(x)
...

pn−1(x)

⎞
⎟⎟⎟⎠ and

(1)

μ(f ) =

⎛
⎜⎜⎜⎝

μ0(f )

μ1(f )
...

μn−1(f )

⎞
⎟⎟⎟⎠ .

Let r : D → D̃ be a transformation of the domain D into
D̃ and let f̃ : D̃ → RI be another image function which sat-
isfies

f̃ (r(x)) = f (x) (2)
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for x ∈ D and f (x̃) = 0 for x̃ ∈ D̃ \ r(D). (This means that
image f̃ is a spatially deformed version of f .)

We are interested in the relation between the moments
μ(f ) and the moments

μ̃(f̃ ) =
∫

r(D)

f̃ (x̃)p̃(x̃)dx̃ =
∫

D̃

f̃ (x̃)p̃(x̃)dx̃

of the transformed function with respect to some other ñ

basis functions

p̃(x̃) = (
p̃0(x̃) p̃1(x̃) . . . p̃ñ−1(x̃)

)T

defined on D̃. By substituting x̃ = r(x) into the definition
of μ̃(f̃ ) and by using the composite function integration we
obtain the following result.

Theorem 1 Denote by Jr (x) the Jacobian of the transform
function r . If

p̃(r(x))|Jr (x)| = Ap(x) (3)

for some ñ × n matrix A then

μ̃ = Aμ. (4)

The power of this theorem depends on our ability to
choose the basis functions so that we can, for a given trans-
form r , express the left-hand side of (3) in terms of the basis
functions p and thus construct the matrix A. This is always
possible for a polynomial r by choosing polynomial bases
p(x) and p̃(x̃).

4 Explicit Moment Invariants

Let us assume that the transformation r depends on a finite
number, say m, m < ñ, parameters a = (a1, . . . , am). Tra-
ditional explicit moment invariants with respect to r can be
obtained in two steps.

1. Eliminate a = (a1, . . . , am) from the system (4). This
leaves us ñ − m equations which depend only on the two
sets of general moments (and on the choice of the basis
functions, of course). We call it a reduced system.

2. Re-write these equations equivalently in the form

qj (μ̃) = qj (μ), j = 1, . . . , ñ − m (5)

for some functions qj . Then the explicit moment invari-
ants are E(f ) = qj (μ(f )).

The way of deriving invariants outlined here is very trans-
parent and is called in the literature “normalization ap-
proach”. Although for various (mostly technical) reasons
some authors used different techniques like tensor algebra,

Lie groups, complex moments, graph theory, etc. to derive
invariants (see refs. in Sect. 2), they all can be equivalently
rewritten by means of normalization.

To demonstrate deriving explicit invariants in a simple
case, consider a one-dimensional case with a linear trans-
form r(x) = ax + b, a > 0, and choose the standard powers
pj (x) = p̃j (x) = xj , j = 0,1,2,3 (here n = ñ suffices). We
have Jr (x) = a and

A = a

⎛
⎜⎜⎝

1 0 0 0
b a 0 0
b2 2ba a2 0
b3 3b2a 3ba2 a3

⎞
⎟⎟⎠ .

Solving the first two equations (4) with this matrix A for a

and b gives

a = μ̃0

μ0
and b = μ̃1μ

2
0 − μ̃0μ

2
1

μ̃0μ
2
0

and, after substituting these into the remaining two equa-
tions and some manipulation, we obtain two equations in
the form (5) with

q0(μ) = μ2μ0 − μ2
1

μ4
0

and

q1(μ) = μ3μ
2
0 − 3μ2μ1μ0 + 2μ3

1

μ6
0

.

As another example consider, again for one-dimensional
standard powers, the transform r(x) = ax2. We now have
Jr (x) = 2ax and (for ñ = 2 we need n = 4)

A = 2a

(
0 1 0 0
0 0 0 a

)
.

The first of equations (4) gives

a = μ̃0

2μ1

while the second equation rewrites, after substitution, as

μ̃1

μ̃2
0

= μ3

2μ2
1

which cannot be rewritten in the required form (5). This
shows that explicit invariants do not exist for this type
of transform (and, similarly, for all other transformations
which do not preserve the order of the moments and/or do
not form a group).

5 Implicit Invariants—An Introductory Explanation

The second example of the previous section shows that, for
some transforms, we may be able to eliminate the transform
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parameters in the quest of finding moment invariants, while
the second step—finding the explicit forms qj —may not be
possible. Introducing implicit invariants can overcome this
drawback.

Consider the equations obtained from the system (4) by
eliminating the parameters specifying the transformation r .
This reduced system is independent of the particular trans-
formation. For classifying of an object, we traditionally
compare the values of its descriptors (explicit moment in-
variants) with those of the database images, that is we look
for such database image, that (5) are satisfied. However, it is
equivalent to checking for which database image the above
reduced system is satisfied.

So we can, in case we are not able to find explicit moment
invariants in the form (5), use this system as a set of implicit
invariants. More precisely, we arrange each equation of the
system in the form having zero on its right-hand side. The
magnitude of the left-hand side then represents one implicit
invariant; in case of more than one equation the classifica-
tion is performed according to the �2 norm of the vector of
implicit invariants. In other words, the images are classified
according to the minimum error with which the reduced sys-
tem is satisfied.

We will demonstrate the above idea of implicit moment
invariants on a 1-D example. Consider the transform

r(x) = x + ax2,

where a ∈ (0,1/2], which maps interval D = [−1,1] on in-
terval D̃ = [a − 1, a + 1]. As m = 1 and we want to show
two implicit invariants we need ñ = 3 and n = 6. The Jaco-
bian is Jr (x) = 1 + 2ax and for standard powers for both p

and p̃ we would get

A =
⎛
⎝1 2a 0 0 0 0

0 1 3a 2a2 0 0
0 0 1 4a 5a2 2a3

⎞
⎠ .

However, now we have to evaluate the moments of the trans-
formed signal over the domain D̃ which depends on the un-
known parameter a. To resolve this problem, one can imag-
ine a shifted power basis

p̃j (x̃) = pj (x̃ − a), j = 0,1, . . . , ñ − 1.

Then we have, after the shift of variable x̃ = x̂ + a,

μ̃j (f̃ ) =
∫ a+1

a−1
f̃ (x̃)p̃j (x̃)dx̃ =

∫ 1

−1
f̃ (x̂ + a)pj (x̂)dx̂

which is now independent of a as f̂ (x̂) = f̃ (x̂ + a) has do-
main [−1,1]. Note that in order to calculate moments of
transformed image f̃ we do not have to consider the shifted
basis p̃. For p as standard powers and p̃ as defined above,

we obtain a different transform matrix

A =
⎛
⎝ 1 2a 0 0 0 0

−a 1 − 2a2 3a 2a2 0 0
a2 2a(a2 − 1) 1 − 6a2 4a(1 − a2) 5a2 2a3

⎞
⎠ .

Another way to resolve this problem without imagining dif-
ferent power basis is by assuming such r(x), which maps in-
terval D on itself. Both approaches are equivalent and they
do not restrict applicability of implicit invariants. To bet-
ter understand this, consider classification tasks in practice.
We usually segment objects we want to classify from im-
ages. Without loss of generality one can assume that the
segmented objects are defined on the same domain, which
implies that the transform inscribes D̃ in D.

The first of equations (4) gives

a = μ̃0 − μ0

2μ1

while the two reduced equations rewrite, after substitution,
as

2μ2
1(μ̃1 − μ1) = μ1(3μ2 − μ̃0)(μ̃0 − μ0)

+ μ3(μ̃0 − μ0)
2,

4μ3
1(μ̃2 − μ2) = 4μ2

1(2μ3 − μ1)(μ̃0 − μ0) (6)

+ μ1(5μ4 + μ̃0 − 6μ2)(μ̃0 − μ0)
2

+ (μ5 − 2μ3)(μ̃0 − μ0)
3.

Note that parameter a was eliminated and is not present in
both implicit invariants. Thanks to this, the method does not
require its knowledge.

We want to show how these two implicit invariants can
identify a 1-D signal after such quadratic transformation.
As testing data (database templates) we use the rows of the
256 × 256 Lena image scaled to [−1,1]. As the query sig-
nal we use the row No. 135, which we have transformed by
r(x) = x + ax2 for three different values of the parameter
(a = 0.125, a = 0.175, and a = 0.225, respectively). In Ta-
ble 1 we list the moments of selected rows of the image. In
Table 2 we show the moments of three modifications of the
query signal.

We now substitute each of the three sets in Table 2 and
each of the 11 sets in Table 1 into (6) and look which com-
binations conform to these equations best. As a measure we
take the relative difference between the left and right hand
sides, that is

ρ1(μ̃,μ) = 1 − μ1(3μ2 − μ̃0)(μ̃0 − μ0) + μ3(μ̃0 − μ0)
2

2μ2
1(μ̃1 − μ1)

,

ρ2(μ̃,μ) = 1 − (μ5 − 2μ3)(μ̃0 − μ0)
3

4μ3
1(μ̃2 − μ2)



Int J Comput Vis

Table 1 Moments of selected
rows of the original Lena image Row Moments using standard powers on interval [−1,1]

number μ0 μ1 μ2 μ3 μ4 μ5

104 194.224 11.156 67.909 7.494 42.759 6.611

120 194.561 16.232 66.559 8.044 41.957 6.293

128 181.298 12.879 66.678 8.329 42.255 6.585

132 167.522 10.819 64.851 8.379 40.973 6.768

134 169.773 11.710 64.118 7.768 40.382 6.050

135 170.886 12.324 63.965 7.729 40.340 5.923

136 175.122 13.120 64.515 8.074 40.741 6.209

138 186.388 14.541 67.174 9.485 42.595 7.663

142 190.122 18.626 69.841 12.645 45.045 10.365

150 193.918 28.174 71.122 18.305 46.221 14.612

166 196.741 32.371 76.960 22.021 50.030 17.326

− 4μ1(2μ3 − μ1)(μ̃0 − μ0)

4μ2
1(μ̃2 − μ2)

+ (5μ4 + μ̃0 − 6μ2)(μ̃0 − μ0)
2

4μ2
1(μ̃2 − μ2)

.

The results in the form of relative differences in the first
and second implicit moment invariants of the transformed
query row against selected row in the data set are summa-
rized in Table 3. We have deliberately chosen both close
and distant rows in the image. We observe that each of the
implicit invariants, even on its own, perfectly identifies the
query row independently of the steepness of the quadratic
transformation.

Once the query signal has been recognized, we can—just
for illustration, this is not required for recognition—estimate
the deformation parameter as

â = μ̃0 − μ0

2μ1

which gives â = (0.1242,0.1761,0.2310). When calculat-
ing the relative errors |â − a|/a, we get (0.0064,0.0063,

0.0267), which proves a reasonable accuracy.
The aim of this illustrative experiment was to show how

to construct implicit moment invariants and how they can
be used for signal identification. Moreover, we showed that
even in such a simple case of the transform and the basis
functions, certain care of the signal support has to be taken.

6 Constructing Matrix A in 1-D

In the examples above it was straightforward to derive the
transform matrix A for simple transformations r and small
number of moments. For reasons of programming complex-
ity and numerical stability, this intuitive approach cannot
be used for higher-order polynomial transform r and/or for

Table 2 Moments of the query signal after quadratic transformation
with three different values of coefficient a

a μ̃0 μ̃1 μ̃2

0.125 173.947 14.768 64.592

0.175 175.227 15.762 64.724

0.225 176.580 16.529 64.941

more invariants. In this section we present an algorithm to
obtain matrix A for any polynomial transform r and any
polynomial bases p and p̃.

To get numerically stable method it is important to use
suitable polynomial bases, such as orthogonal polynomi-
als, without using their expansions into standard (monomial)
powers. Our implementation is based on the representation
of polynomial bases by matrices with special structure (see
Golub and Kautsky 1983; Kautsky and Golub 1983 for de-
tails). We present only the main points of the process here.

Theorem 2 Polynomials pj (t) of exact degree j , j =
0,1, . . . , n, satisfy

tp(t) = Jp(t) + βnpn(t)en, (7)

where en is the n-th column of the identity matrix, βn �= 0
and J = {αj,k} is an n × n matrix such that αj,j+1 �= 0 and
αj,k = 0 for k > j + 1; such matrix is called a proper lower
Hessenberg matrix. On the other hand, given such a ma-
trix, non-zero p0 and βn, the polynomial bases is fully de-
termined by (7).

This Theorem expresses in matrix form the consequence
of the simple fact that tpj (t), being a polynomial of degree
j + 1, is a linear combination of polynomials p0, . . . , pj+1.
The construction of the polynomial bases from p0 and J is
by the recurrence
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Table 3 Relative differences in
the first and second implicit
moment invariants of the
transformed query row against
selected row in the data set

Row Query row: 135, x2 coefficient:

number a = 0.125 a = 0.175 a = 0.225

ρ1 ρ2 ρ1 ρ2 ρ1 ρ2

104 1.239 0.114 1.142 0.098 1.057 0.085

120 0.568 −0.013 0.532 −0.016 0.493 −0.017

128 0.540 0.013 0.495 0.005 0.447 −0.001

132 −0.247 −0.036 −0.258 −0.036 −0.287 −0.032

134 −0.048 −0.008 −0.049 −0.008 −0.065 −0.006

135 −0.002 0.000 0.001 −0.000 −0.010 0.001

136 0.169 0.006 0.163 0.003 0.146 0.002

138 0.579 0.037 0.540 0.029 0.499 0.022

142 0.462 0.029 0.432 0.020 0.395 0.012

150 −0.273 0.003 −0.240 −0.003 −0.229 −0.007

166 −0.204 −0.028 −0.189 −0.037 −0.194 −0.046

pj (t) = 1

αj,j+1

(
tpj−1(t) −

j∑
k=1

αj,kpk−1(t)

)
,

j = 1, . . . , n − 1

and similarly for pn(t). Alternatively, we can solve the sys-
tem

(tI − J )x = en

from which p(t) = p0x/x1 which may be numerically more
stable, particularly if t is not close to any eigenvalue of J .
Once the values of p(t) are available it is straightforward
to approximate the generalized moments μ(f ) by a suitable
quadrature formula.

We use matrix J to represent our polynomial base; in
fact, all computations with polynomials can be done effi-
ciently and stably using this matrix only. We can, for exam-
ple, calculate the values of p(t) for any given t by forward
substitution in (7) using the known value of p0.

There are many interesting properties which can be de-
rived from (7). For the purpose of this paper it is important
to mention just the following generalization of (7).

Theorem 3 Let s(t) = ∑d
k=0 σkt

k be a polynomial of de-
gree d . Then

s(t)p(t) = s(J )p(t) + βnpn(t)

d∑
k=1

sk(t)J
k−1en, (8)

where we denoted

sk(t) =
d∑

j=k

σj t
j−k.

For monomial s(t) = td the proof is by induction from
which the general case follows by combining the relevant
terms.

The simplest example of a polynomial base of increasing
exact degree is that of standard powers pj (t) = tj when J =
S = {δj,k−1}, the shift matrix.

For numerical stability we prefer to work with orthogonal
polynomials. In that case matrix J is tri-diagonal; a useful
example is J = S + ST which is the recurrence matrix for
2nd Chebyshev polynomials on the interval [−2,2] (orthog-
onal with respect to the weight function

√
4 − t2).

Matrix A, as introduced in the Theorem 1, represents
the relation between the moments of the original and trans-
formed signals. We will now assume that we use polynomial
bases p and p̃ of degrees n − 1 and ñ − 1 determined by re-
currence matrices J and J̃ , respectively. Thus, besides (7),
we also have

t̃p̃(t̃) = J̃ p̃(t̃) + β̃ñp̃ñ(t̃ )eñ. (9)

It is important to show that matrix A can be constructed
from the available information, that is from the transform r

and from the matrices J and J̃ only. Theorem 3 is applied to
r(t) and also to r ′(t) to obtain relations for matrices A and
B , satisfying p̃(r(x)) = Bp(x), from which the conclusions
follow by comparing terms with equal powers.

Theorem 4 Let r be a polynomial of degree d mapping in-
terval D ⊂ RI onto interval D̃. Let p0, J , βn and p̃0, J̃ ,
β̃ñ represent polynomial bases on D and on D̃, respectively,
where the degrees satisfy

n = ñd. (10)

Then the matrix A for which p̃(r(x))r ′(x) = Ap(x) (see (3)
in Theorem 1) is given by

A = Br ′(J ) (11)
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where the matrix B satisfies

eT
1 B = p̃0

p0
eT

1 ,

(12)
Br(J ) = J̃B + eñb

T

from which the rows of matrix B , and, if desired, the vector
b, can be calculated by a recurrence.

We have thus given an explicit construction of the matrix
A in terms of a polynomial transform function r(t) and of
the matrices J and J̃ representing chosen polynomial bases
for the original and transformed domains. We have also
shown how to calculate moments of the original and trans-
formed function with respect to such bases, again using only
the matrices representing the polynomial bases. Using sym-
metric matrices J and J̃ with spectra covering the domains
greatly enhances numerical stability of all calculations.

For proofs of Theorems 2, 3, and 4 see Appendix.

7 Constructing Matrix A in 2-D

The approach described in the previous section for 1-D do-
mains can be extended to the 2-D cases. For brevity, we will
point out only the main steps of one such extension.

We will assume that the two-dimensional domain D is a
rectangle and we use product polynomials

pj,k(x, y) = pj (x)qk(y)

where pj and qk are univariate polynomials of exact degree
j and k, respectively.

We want to order the two dimensional polynomial basis
by increasing degree

p(x, y) = (
π0(x, y) π1(x, y) . . . πλ(x, y)

)T

where π l(x, y) is a vector of pj,k(x, y) of the same degree l.
Two popular choices what to consider as degree of a multi-
variate polynomial are l = j + k or l = max(j, k) and there
are good reasons to use either of them; we choose the for-
mer so that, ordering the product polynomials by decreasing
degree in x,

π l (x, y) = (
pl,0(x, y) pl−1,1(x, y) . . . p0,l(x, y)

)T
.

The length of vector p(x, y) is

n = 1 + 2 + · · · + λ − 1 = 1

2
λ(λ + 1).

As in one dimension there exist n×n matrices Jx and Jy

such that

xp(x, y) = Jxp(x, y) + T ,
(13)

yp(x, y) = Jyp(x, y) + T ,

where we use (and will use) T to denote a generic “tail”, that
is a matrix with non-zero elements involving higher degree
polynomials only in last few rows.

Using (13) we derive, as in (8),

s(x, y)p(x, y) = s(Jx, Jy)p(x, y) + T (14)

for a (low degree) 2-D polynomial function s(x, y). Note
that terms containing both x and y in the polynomial s(x, y)

give an ambiguity in defining s(Jx, Jy); due to the above
mentioned structure of Jx and Jy the difference due to com-
muting these matrices in products can, however, be hidden
in the tail T .

We now want to apply this methodology to transformed
2-D images. As in Sect. 6 we need polynomial bases for both
domains D (p(x, y)) and D̃ (p̃(x̃, ỹ)).

The transform is now given by a D → RI 2 function

(
x̃

ỹ

)
= r(x, y) =

(
rx(x, y)

ry(x, y)

)

with (see Theorem 1)

Jr (x, y) = det

(
∂rx(x,y)

∂x
∂rx(x,y)

∂y
∂ry(x,y)

∂x

∂ry(x,y)

∂y

)
.

Applying (14) to s(x, y) = Jr (x, y) shows that matrix A

satisfying (3) will have the form

A = BJr (Jx, Jy)

where, using (14) again for both components of r(x, y), B

must satisfy

Brx(Jx, Jy)p(x, y) = J̃xBp(x, y) + T ,

Bry(Jx, Jy)p(x, y) = J̃yBp(x, y) + T

from which we conclude that

Brx(Jx, Jy) = J̃xB,
(15)

Bry(Jx, Jy)) = J̃yB.

This is again sufficient to determine B row by row.

8 Implementation of the Implicit Invariants

Depending on r , the elimination of the m parameters of the
transformation function from the ñ equations of (4) to ob-
tain a parameter-free reduced system may require numeri-
cal solving of nonlinear equations. This may be undesirable
or impossible. Even the simple transform r used in the ex-
perimental section would lead to cubic equations in terms
of its parameters. Obtaining a neat reduced system may be
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very difficult. Furthermore, even if successful, we create an
unbalanced method—we have demanded some of the equa-
tions in (4) to hold exactly and use the accuracy in the result-
ing system as a matching criterion to find the transformed
image. We therefore propose another implementation of the
implicit invariants. Instead of eliminating the parameters, we
calculate the “uniform best fit” from all equations in (4). For
a given set of values of the moments μ and μ̃, we find val-
ues of the m parameters to satisfy (4) as best as possible in
�2 norm; the error of this fit then becomes the value of the
respective implicit invariant.

Our actual implementation of the recognition by implicit
invariants can be described as follows.

1. Given is a library (database) of images gj (x, y), j =
1, . . . ,L, and a deformed image f̃ (x̃, ỹ) which is as-
sumed to have been obtained by a transform of a known
polynomial form r(x, y,a) with unknown values of m

parameters a.
2. Choose the appropriate domains, polynomial bases p and

p̃, and the recurrence matrices Jx , Jy , J̃x and J̃y for eval-
uation of the polynomials.

3. Derive a program to evaluate the matrix A(a). This criti-
cal error-prone step is performed by a symbolic algorith-
mic procedure which produces the program used then in
numerical calculations. This step is performed only once
for the given task. (It has to be repeated only if we change
the polynomial bases or the form of transform r(x, y,a),
which basically means only if we move to another appli-
cation.)

4. Calculate the moments μ(gj ) of all library images
gj (x, y).

5. Calculate the moments μ̃(f̃ ) of the deformed image
f̃ (x̃, ỹ).

6. For all j = 1, . . . ,L calculate, using an optimizer, the
values of the implicit invariant

I (f̃ , gj ) = min
a

‖μ̃(f̃ ) − A(a)μ(gj )‖ (16)

and denote

M = min
j

I (f̃ , gj ).

The norm used here should be weighted, for example rel-
atively to the components corresponding to the same de-
gree.

7. The identified image is gk for which I (f̃ , gk) = M . The
ratios

I (f̃ , gj )

I (f̃ , gk)
, j �= k,

where I (f̃ , gj ) is the second minimum, may be used as
confidence measures of the identification. We may accept
only decisions the confidence of which exceeds some
threshold.

9 Numerical Experiments

As we have shown earlier, the implicit moment invari-
ants can be constructed for a very broad class of image
transforms including all polynomial transforms. Here we
will demonstrate the implementation and the power of the
method on images transformed by the following function
(

x̃

ỹ

)
= r(x, y) =

(
ax + by + c(ax + by)2

−bx + ay

)
, (17)

that is, a rotation with scaling (parameters a and b) followed
by a quadratic deformation in the x̃ direction (parameter c).
We have chosen this particular transform for our tests for the
following reasons:

– It is general enough to approximate many real-life situ-
ations, for instance deformations caused by the fact that
the photographed object was drawn/printed on a cylindri-
cal or conical surface like a bottle, a can or a cornet.

– It is sometimes used by web designers to warp images
in order to reach desirable visual effect. Very often this
is an unauthorized act violating the copyright. It is impor-
tant for the copyright owners to have a tool for identifying
such images.

– Explicit invariants to this kind of transforms cannot exist
because they do not preserve the moment orders and do
not form a group.

This transformation maps D = [−2,2]2 into D̃ =
[−σ(1 − cσ ), σ (1 + cσ )] × [−σ,σ ] where we denoted
σ = 2(|a| + |b|) the scaling factor due to the rotation. We
need to restrict |c| ≤ 1

2σ
to have a one-to-one transform.

To illustrate the performance of the method, we carried
out the following three sets of experiments. In the first set,
we evaluated robustness of the implicit invariants with re-
spect to noise and proved experimentally their invariance
to image rotation and quadratic warping. This experiment
was done on artificial data. The second experimental set was
aimed to demonstrate that the implicit invariants can be used
as a shape similarity measure of real objects and that this
technique can be used for recognition of distorted images.
This test was done on a standard benchmark database of
Amsterdam Library of Object Images (ALOI) (Geusebroek
et al. 2005). The last experimental set was done on real im-
ages taken in a lab. It illustrates good performance and high
recognition power of the implicit invariants even in the case
where theoretical assumptions about the degradation are not
fulfilled.

9.1 Invariance and Robustness

In order to demonstrate numerical behavior of the proposed
method, we conducted an experiment on standard Lena im-
age, which was artificially deformed and corrupted by addi-
tive noise.
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First, we applied the geometric transform in (17) on orig-
inal Lena. We did not introduce any scaling, so the trans-
form then became a two-parameter one fully determined
by rotation angle (parameters a and b in the original trans-
form constrained by a2 +b2 = 1) and quadratic deformation
(parameter c). To have one-to-one mapping, c must be re-
stricted to the interval |c| ≤ 1/(2σ), where σ = 2(|a| + |b|).
For the sake of simplicity, we used a normalized parameter
q = 2σc, that lies always in the interval (−1,1), in the fol-
lowing discussion. The range of parameter values we used in
the test was from −40◦ to 40◦ with a 4◦ step for rotation an-
gle and from −1 to 1 with a 0.1 step for q (see Fig. 1 for an
example of a deformed image). For each deformed image
and the original Lena, we calculated the values of six im-
plicit invariants according to (16). This was implemented as
a numeric optimization in the parameter space. In Fig. 2(a),
we plotted �2 norm of the vector of implicit invariants. One
can observe that it is more or less constant and very close
to zero, irrespective of the degree of geometrical deforma-
tion. (The norm is slightly bigger when the rotation angle
approaches ±40◦ because of resampling errors.) This illus-
trates a perfect invariance w.r.t. both rotation and quadratic
deformation.

Then we performed a similar experiment. We fixed the
rotation angle to zero and added white noise n to the trans-
formed images f̃ , where the noise level was measured in
dB as a signal to noise ratio SNR = 10 log(var(f̃ )/var(n)).
For each deformed image and each noise level, ten realiza-
tions of noise were generated. Figure 2(b) shows again the
�2 norm of the vector of implicit invariants for quadratic de-
formation q between ±1 and SNR from 50 (low noise) to 0
(high noise) dB. Like in the previous case, the graph is very
flat. Up to 10 dB no disturbing slope is visible. Only for
severely corrupted data with SNR around 0 dB (the noise
variance is equal to the image variance) the norm starts to
increase. This experiment proved high noise robustness of
the implicit invariants, which is a direct consequence of the
robustness of moments. It should be, however, noted that the
vulnerability of the moments increases slowly as the mo-
ment order increases and the same is true for implicit invari-
ants as well.

9.2 Classification Experiment

The aim of the second experiment was to test the discrim-
inative power of the implicit invariants. We took 100 im-
ages from the commonly used benchmark database ALOI
and deformed each of them by the warping model (17) (see
Fig. 3 for some examples). The coefficients of the deforma-
tions were generated randomly; q from the interval (−1,1)

and the rotation angle from (−40◦,40◦), both with uni-
form distribution. Each deformed image was then classi-
fied against the undistorted database by two different meth-
ods: by implicit invariants according to minimal norm and

Fig. 1 One of the deformed and noisy images used in the experiment

by affine moment invariants (AMI) proposed by Suk and
Flusser (2004a) using the minimum-distance rule. In both
cases, six invariants were used. We picked the AMI’s for a
comparison because they are similar to the new technique
in their nature (both of them are based on moments) and
because they are a traditional, well-established reference
method in pattern recognition.

We run the whole experiment several times with differ-
ent deformation parameters. In each run the recognition rate
we achieved was 99 or 100% for the implicit invariants and
from 34 to 40% for the AMI’s. These results illustrate two
important facts. First, the implicit invariants can serve as an
efficient tool for object recognition in case when the object
deformation corresponds to the assumed model. Secondly,
in case of nonlinear distortions the implicit invariants sig-
nificantly outperform the affine moment invariants, which
corresponds to our theoretical expectation—if q is close to
zero, the nonlinear term is negligible, the distortion can be
approximated by affine transform and the AMI’s have a rea-
sonable chance to recognize the object correctly. However,
for larger q such an approximation is very rough and the
AMI’s naturally fail.

In case when only rotation is present, both methods
should be equivalent. To prove this, we run the experiment
once again but we fixed q = 0. Then the recognition rate of
both methods was 100% as expected.

9.3 Character Recognition on Real Images

The last two experiments illustrate the applicability of the
implicit invariants to classification of real images in situa-
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Fig. 2 Properties of the implicit invariants: (a) dependence of the im-
plicit invariants on rotation angle and quadratic warping coefficient q;
(b) dependence of the implicit invariants on the noise level (SNR) and
quadratic warping coefficient q . Note that both graphs are almost con-
stant and close to zero

tions where the image deformation is not known and, more-
over, is not exactly polynomial. Such a situation occurs
in practice when we want to recognize for instance letters
or digits which are painted/printed on curved surfaces like
balls, cans, bottles, etc.

With a standard digital camera (Olympus C-5050), we
took a photo of letters printed on a label which was glued to
a bottle, see Fig. 4 (left). The letters were organized in a 4 ×
3 mesh with “A”s, “B”s, “V”s and “X”s each printed three
times in a row. After a simple segmentation, the letters were
labeled from left to right A1, A2, A3, B1, . . . , V1, . . . ,X1,
X2, and X3. Due to the curvature of the bottle surface, the
letters appear distorted in the horizontal direction and the
distortion grows to the right. A1 does not exhibit any visible
distortion while A3 is the most distorted one and likewise for

Fig. 3 The original images from the ALOI database (top) and their
deformed versions (bottom)

the other three letters. The task was to recognize (classify)
these letters against a database containing the full English
alphabet (26 undistorted letters of the same font).

In an “ideal” case when the camera is in infinity the image
distortion can be described by orthogonal projection of the
cylinder onto a plane, i.e.
(

x̃

ỹ

)
=

(
R sin( x

R
)

y

)
,

where R is the bottle radius, x, y are the coordinates on the
bottle surface and x̃, ỹ are the coordinates on the acquired
images. In our case the object-to-camera distance was finite,
so small perspective effect also appears. Although in this
case we would be able to measure the camera-to-object dis-
tance and the radius R, we did not do that. We intentionally
approached this experiment as a blind one, without employ-
ing any model/parameter knowledge.

We assumed the actual (unknown) image deformation
can be approximated by a quadratic polynomial in x direc-
tion. Although it is clear that such approximation cannot be
very accurate, we demonstrate that it is sufficient for our
purpose.

We classified all deformed letters by means of the im-
plicit invariants in the same way as in the previous experi-
ment. Table 4 summarizes the classification results. Implicit
invariants provided a perfect recognition rate as all deformed
letters were classified correctly with high confidence (see
the definition of the confidence in (g), Sect. 8). This may be
a bit surprising with respect to the rough approximation of
the transformation model we have used. It indicates some
degree of robustness of the implicit invariants to the type of
the image deformation.

The set-up of the last experiment was similar to the previ-
ous one. Again, we photographed a bottle with printed capi-
tal letters “M”, “N”, “E” and “K” but this time the label was
intentionally tilted by a random degree of rotation (Fig. 4
right). We repeated this for different positions of the label
which resulted in six differently deformed instances of each
letter; see Fig. 5. One can see that, apart from the deforma-
tion induced by the cylindrical shape of the bottle, rotation
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Table 4 Classification of four letters (each having three different degrees of distortion) by implicit invariants (first row) with a confidence measure
in the second row

A1 A2 A3 B1 B2 B3 V1 V2 V3 X1 X2 X3

Classified as A A A B B B V V V X X X

Confidence 65 29 15 64 186 69 96 62 80 35 98 19

Fig. 4 The bottle images used in the experiment: the letters without
rotation (left) and with rotation (right, one sample)

and slight perspective is present. Scaling must be also con-
sidered, since the size of the captured letters and database
templates may not match.

We assume the deformation can be approximated by lin-
ear polynomials in x and y directions, which model the sim-
ilarity transform, and a quadratic polynomial in x direction
approximates cylinder-to-plane projection. This leads to a
class of geometric transforms of the shape (17) for which
we have built implicit invariants.

As in the previous experiment, after segmentation of the
deformed letters we used six implicit invariants to clas-
sify them against the undistorted alphabet of 26 letters. The
recognition was quite successful—only the most deformed
letter “N” (in Fig. 5, 2nd row, 6th column) was misclassified
as “H”, all other letters were recognized correctly.

For comparison, we also tried to recognize the letters by
two other methods. First, we employ the affine moment in-
variants similarly as in the experiment with the ALOI im-
ages with a similar result—the AMI’s failed in many cases
because they are not designed to handle nonlinear defor-
mations. Then we employed spline-based elastic matching
proposed in Kybic and Unser (2003). This method searches
the space of parameters of cubic B-spline deformation of
the templates, calculates the mean square error as a mea-
sure of dissimilarity between the images and finds the min-
imum of this error function using hierarchical optimization.
This method was designed in medical imaging for recogni-

Fig. 5 The letters on the bottle exhibit distortion due to tilting and the
cylindrical shape of the bottle. Images were cropped and stacked

tion of templates undergoing elastic deformations and was
proved to be very powerful (Kybic and Unser 2003). We
used the original implementation of the method kindly pro-
vided by J. Kybic. The recognition rate was 100%, which
is not surprising—the method performs in fact exhaustive
search in the space of deformations while working with full
uncompressed representation of each template.

It is interesting to compare the methods in terms of their
speed and confidence. The computational cost of both meth-
ods is of vastly different magnitude. On a computer with the
Intel Pentium Core Duo T2400 processor, the time required
to classify all 24 deformed letters against 26 letters in the
database was in the case of elastic matching over one hour.
On the other hand, it took less then one minute when using
implicit invariants. Such a significant difference was caused
mainly by the fact that elastic matching works with full im-
age representation while implicit invariants use a big com-
pression into few moments. The efficiency of the implicit in-
variants could be further improved by using fast algorithms
for moment calculation, particularly in case of binary im-
ages.

Surprisingly, the use of different amount of data did not
lead to different confidences. The confidence rates of both
methods are not very high but similar; see Table 5. It is in-
teresting to notice that extremely low confidence (close to 1)
is frequent for letter “M” often having the second closest
match “N”. The explanation is that quadratic deformation of
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Table 5 Classification
confidence of four letters (each
having six different degrees of
distortion) using the implicit
invariants (top) and the
spline-based elastic matching
(bottom). Arrangement of the
confidence measures in the table
is the same as the arrangement
of the letters in Fig. 5 (MC
means misclassified letter)

Imp-inv. confidence

M 9.4 1.3 2.3 6.4 1.1 1.6

N 28.5 11.9 1.3 9.7 10.9 (MC)

E 5.8 2.2 10.4 5.5 3.3 3.0

K 12.1 10.0 2.1 5.4 6.4 2.6

Elastic reg. confidence

M 11.5 1.7 1.9 9.8 10.5 1.4

N 8.3 3.9 2.5 9.3 6.8 2.5

E 6.4 3.1 2.2 5.3 3.8 2.0

K 10.8 3.0 1.9 5.0 3.4 2.2

“M” can merge the right diagonal line with the right vertical
line and thus creating an impression of letter “N”.

10 Conclusion

In this paper we introduced a new method for recognition
of objects undergoing unknown elastic deformation. The
method is based on so-called implicit invariants which are
quantities that do not change under certain class of spa-
tial transformations. The implicit invariants described in the
paper are functions of image moments (preferably but not
necessarily of orthogonal moments). We demonstrated how
to derive implicit moment invariants with respect to gen-
eral polynomial transformation of the spatial coordinates. It
should be emphasized that this idea is much more general,
it is not restricted to invariants from moments and to spatial
transformations. Implicit invariants are general tools which
can help in solving many classification tasks where explicit
invariants do not exist. They are particularly useful when the
transformations in question do not form a group.

We explained that any implicit invariant can be viewed
as a distance measure between two images factorized by ad-
missible transformation. However, implicit invariants need
not be a metric in a strict sense. For polynomial transform r

and for moment invariants defined in this paper, only some
properties of a metric are fulfilled. For any f and g we have
I (f, g) ≥ 0 and I (f,f ) = I (f, r(f )) = 0. If I (f, g) = 0
for invariants of all moments, then g = r(f ). This property
follows from the uniqueness theorem of moments of com-
pactly supported functions and holds in ideal infinite case
only. It is not guaranteed in practice, when always working
with a (small) finite set of moments. Since nonlinear poly-
nomials are not invertible on the set of polynomials, I is not
symmetric, i.e. I (f, g) �= I (g,f ). This is why in practical

applications we have to consider carefully the “direction” of
the transform and construct the invariants accordingly. Tri-
angular inequality I (f, g) ≤ I (f,h) + I (h, g) is also not
guaranteed.

All moment invariants—explicit as well as implicit—
suffers from high vulnerability to occlusion. This is an
intrinsic property because they are calculated by integra-
tion over the whole image domain and small local image
change/occlusion may significantly influence the moment
values. It has been proven many times that moment invari-
ants cannot be directly used for recognition of occluded ob-
jects. Our implicit invariants are not an exception. Some au-
thors have made explicit moment invariants “local” in the
following way. They divide the object into stable parts (most
often this division was based on inflection points or vertices
of the boundary) and describe each part separately by mo-
ment invariants. The whole object is then characterized by
a string of vectors of invariants and recognition under oc-
clusion is performed by maximum substring matching. This
approach could be in principle adopted in case of implicit in-
variants too but due to the non-linear deformations it would
be more difficult to find stable regions.

In the process of deriving implicit moment invariants
with respect to general polynomial transforms we have ex-
hibited an explicit algorithmic method for employing or-
thogonal polynomials without loosing their superior nu-
merical stability. Finally, there is a wide variety of poten-
tial applications—apart form the above mentioned images
printed on curved surfaces we envisage applications in om-
nidirectional vision (using this technique, objects might be
classified directly without any re-projection into a plane) and
in recognition of images taken by fish-eye lens camera.

Appendix

In this Appendix we present the proofs of Theorems 2, 3,
and 4.
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Proof of Theorem 2 As tpj−1(t) is a polynomial of degree
j we can expand it in terms of our basis polynomials as

tpj−1(t) =
j∑

k=0

αj,k+1pk(t) j = 1,2, . . . , n (18)

where αj,j+1 �= 0 and αj,k are some constants. This, with
βn = αn,n+1, establishes the matrix identity

tp(t) = Jp(t) + βnpn(t)en (19)

where J is a lower Hessenberg matrix with elements αj,k .
On the other hand, given J and p0, we can establish pj (t),
j = 1,2, . . . , from a recurrence obtained by eliminating
pj (t) from (18). This can be also expressed in matrix form
as solving the system

(L − tST )p(t) = β0p0e1 (20)

where eT
1 L = β0e

T
1 for some β0 �= 0 (choose β0 = 1 or

β0 = 1
p0

) and the rest of matrix L comprises the first n − 1
rows of J . Matrix L is thus a lower triangular matrix and the
recurrence determining the values p(t) is a forward substi-
tution on (20). �

Proof of Theorem 3 We first prove by induction that

tkp(t) = J kp(t) + βnpn(t)

k∑
j=1

tk−j J j−1en. (21)

For k = 0 we just have p(t) = p(t). Assume it holds for
k ≥ 0 and calculate, using (18):

tk+1p(t) = t (tkp(t))

= t

(
J kp(t) + βnpn(t)

k∑
j=1

tk−j J j−1en

)

= J k(Jp(t) + βnpn(t)en)

+ βnpn(t)

k∑
j=1

tk−j+1J j−1en

= J k+1p(t) + βnpn(t)

k+1∑
j=1

tk+1−j J j−1en

as required for the induction step.
Equation (8) is now a linear combination of (21) for

s(t) = ∑d
k=0 σkt

k . �

The shifted polynomials sk can be obtained from s recur-
rently by

s0 = s and sk+1(t) = sk(t) − sk(0)

t
.

Note that sd = σd .

Proof of Theorem 4 The composite polynomial p̃j (r(t)) has
degree jd and the degree of p̃ñ−1(r(t))r

′(t) is (ñ − 1)d +
d −1 = n−1 which determines (10). There is a ñ×n matrix
B such that

p̃(r(t)) = Bp(t). (22)

Substitute t̃ = r(t) into (9) and, using (22) and also

β̃ñp̃ñ(r(t)) = bT p(t)

for some vector b, we obtain

r(t)Bp(t) = (J̃B + eñb
T )p(t). (23)

On the other hand, use (8) with s(t) replaced by r(t) and
pre-multiply it by B to get

r(t)Bp(t) = Br(J )p(t) + βnpn(t)

d∑
k=1

rk(t)BJ k−1en.

The last term must vanish as there are no other terms of
degree at least n so that, comparing with (23), we obtain
the second equation in (12). The first one is obvious as
p̃0(r(t)) = p̃0 is still a constant. Using a similar notation
for the elements of J̃ as we did for J the j -th row of (23)
gives the recurrence

β̃je
T
j+1B = eT

j Br(J ) −
j∑

k=1

α̃j,ke
T
k B

for j = 1,2, . . . , ñ − 1 (if required, vector b can also be ob-
tained by using j = ñ). To complete the construction use (8)
again, but with s(t) = r ′(t), to obtain, using (3), (22) and
(8),

Ap(t) = s(t)Bp(t) = Bs(t)p(t)

= Bs(J )p(t) + βnpn(t)

d−1∑
k=1

sk(t)BJ k−1en

from which (11) follows by comparing terms with the same
powers of t . �
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