International Journal of Approximate Reasoning 50 (2009) 385-413

Contents lists available at ScienceDirect

International Journal of Approximate Reasoning

journal homepage: www.elsevier.com/locate/ijar o

A reconstruction algorithm for the essential graph ™

Milan Studeny, Jifi Vomlel *

Instititute of Information Theory and Automation of the ASCR, Pod voddrenskou véZi 4, Prague, CZ 182 08, Czech Republic

ARTICLE INFO ABSTRACT
Article history: A standard graphical representative of a Bayesian network structure is a special chain
Received 31 October 2006 graph, known as an essential graph. An alternative algebraic approach to the mathematical

sgg‘;i"ed in revised form 10 September description of this statistical model uses instead a certain integer-valued vector, known as

a standard imset. We give a direct formula for the translation of any chain graph describing
Accepted 11 September 2008 . . .
Available online 1 October 2008 a Bayesian network structure into the standard imset. Moreover, we present a two-stage
algorithm which makes it possible to reconstruct the essential graph on the basis of the
standard imset. The core of this paper is the proof of the correctness of the algorithm.
© 2008 Elsevier Inc. All rights reserved.

Keywords:

Bayesian network structure
Chain graph

Essential graph

Standard imset

1. Introduction

The general motivation for this paper is learning Bayesian network structures. Some learning procedures require a unique
representative of each individual Bayesian network structure. The most popular graphical representative of a Bayesian net-
work statistical model is the essential graph of the respective equivalence class of acyclic directed graphs. It is a chain graph
describing shared features of acyclic directed graphs within the respective equivalence class. The term “essential” graph was
proposed by Andersson, Madigan and Perlman, who also gave a graphical characterization of graphs that are essential graphs
[1]. An alternative characterization of essential graphs, which is utilized in this paper, has recently been found in [18] and
independently in [15].

Another possible representative of a Bayesian network statistical model is a certain integer-valued vector, named the
standard imset. It is also a unique representative of a Bayesian network structure. To explain its advantage over graphical
representatives we recall here some results from Chapter 8 of [19]. Some of the methods for learning Bayesian network
structures are based on maximization of a quality criterion 2(G, D), which is a function of the structure, traditionally repre-
sented by a graph G, and of the database D. It is shown in Section 8.4 of [19] that if the criterion satisfies some commonly
accepted assumptions, namely that it is decomposable and score-equivalent (cf. [4,6,7]), then it has the form of an affine
function of the standard imset. More specifically, given a criterion 2 of this type and provided that u; denotes the standard
imset for G, one has

2(G,D) =52 — (t3,ug),

where s3 is a real number (depending on the database and the criterion) and tj a vector (of the same dimension as the stan-
dard imset uc), called data vector (relative to 2), and (x, ) denotes the scalar product. That means the usual task to maximize
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2(G,D) over G, if D is known, is equivalent to the task to minimize a linear function uw (t3,u) over the set of standard im-
sets! Thus, it is now evident that this algebraic point of view can simplify some existing methods for learning Bayesian net-
work structures. Actually, we believe this paves the way for future use of efficient linear programming methods in this area.

There are further theoretical advantages of standard imsets. For example, they allow one to characterize (algebraically)
the inclusion of Bayesian network statistical models. In particular, one can nearly immediately read from a pair of standard
imsets whether two respective Bayesian network structures are neighbors in the sense of inclusion neighborhood [10] (see
Section 8.4.1 of [19] for details). Another important fact is that standard imsets can be represented in the memory of a
computer with polynomial complexity in the number of variables (see Sections 2.3 and 8 for details). Of course, if a stan-
dard imset is obtained as the result of a minimization procedure then one is naturally interested in determining the
respective (essential) graph. That is why we think one needs some transition between the standard imset and the essential
graph.

The topic of this paper is the transition between these two representatives of a Bayesian network statistical model. The
transition from a graphical representative to the algebraic one is relatively simple. We give a formula for the standard imset
on the basis of any chain graph which defines the respective statistical model. The formula is fairly simple for chain graphs
without flags (=without certain special induced subgraphs). In particular, it can easily be applied to the essential graph as
well as to any acyclic directed graph in the respective equivalence class.

The inverse procedure is more complex. First, we introduce a series of characteristics of a chain graph equivalent to an
acyclic directed graph (=a chain graph defining the same statistical model as an acyclic directed graph). Some of these char-
acteristics appear to be shared by equivalent chain graphs and, moreover, they can all be identified on the basis of the respec-
tive standard imset. These characteristics allow us to design a reconstruction algorithm for the essential graph. The final
version of the algorithm has two parts. In the first stage, a certain sequence of sets of variables is obtained. The second stage
is the proper reconstruction procedure for the essential graph. The algorithm can be implemented with polynomial complex-
ity in the number of variables. A minor modification of the reconstruction algorithm gives a procedure for testing whether a
given imset is standard.

The aim of this theoretical (mathematical) paper is to present the proof of the correctness of the reconstruction algorithm.
Basic concepts and facts are recalled in Section 2 where we define the standard imset for an acyclic directed graph. A general
formula for the standard imset, applicable to any chain graph equivalent to an acyclic directed graph, is given in Section 3.
Then in Section 4, the above-mentioned characteristics of chain graphs are introduced. They are related to special algebraic
characteristics of the standard imset in Section 5. In Section 6 we formulate lemmas on which the reconstruction algorithm is
based. The algorithm is given in Section 7; the complexity issues are discussed in Section 8. In Conclusions we outline a pos-
sible future application of the algorithm. The proofs of crucial assertions are in Appendix.

All algorithms described in the paper were implemented as a suite of functions in R. R is a language for statistical com-
puting and graphics. It is available as free software under the terms of the Free Software Foundation’s GNU General Public
License in source code form. It compiles and runs on a wide variety of UNIX platforms, Windows and MacOS. See http://
www.r-project.org/. The suite of functions for imsets is available at http://staff.utia.cas.cz/vomlel/imset/.

2. Basic concepts
In this section we recall some of the concepts and facts commonly used in the paper.
2.1. Graphical notions

Graphs considered in this paper have a finite non-empty set of nodes N and two types of edges. An undirected edge, or a
line over N, is an unordered pair {a,b} where a,b € N, a # b; we will use the notation a — b then. A directed edge, or an arrow
over N, is an ordered pair (a,b) where a,b € N, a # b; we will use the notation a — b or b — a. Note that our notation is in
accordance with pictorial representations of edges.

In this paper, when we use (hybrid) graph over N we mean a graph H which has N as the set of nodes and has no multiple
edges, that is,

ifa—binH then —~(a« binH) and —(a—b in H).

We say that (an unordered) pair [a, b], a,b € N, a # b is an edge in a hybrid graph H over N if eithera — b in H,a — b in H or
a— binH.Ifa — binH, then a will be called a parent of b (in H); if a — b in H, a will be called a neighbor of b (in H). Given a set
of nodes A in H, the set of parents (in H) of nodes in A will be denoted by pa, (A), and the set of neighbors (in H) of nodes in A
that are not in A by ney(A).

An undirected path in H between nodes a,b € N is a sequence of distinct nodes cy,...,c,, n = 1suchthatc; =a,c, =band
¢i—Ciyp inHforeveryi=1,...,n— 1. A set of nodes C is connected in H if, for every a,b € C, there exists an undirected path
between a and b in H. Maximal connected subsets in H with respect to set inclusion are called components in H. Of course, the
components form a partition of the set N. The class of components in a hybrid graph H will be denoted by % (H).

If M C N is non-empty, then the induced subgraph of H for M is the graph Hy over M that has just those edges [a, b] in H for
which {a, b} C M; of course, the type of edges in H is kept in Hy.


http://www.r-project.org/
http://www.r-project.org/
http://staff.utia.cas.cz/vomlel/imset/

M. Studeny, ]. Vomlel/ International Journal of Approximate Reasoning 50 (2009) 385-413 387

2.1.1. Undirected graphs

An undirected graph is a hybrid graph having only undirected edges, that is, it has no arrows. Given a hybrid graph H over
N, its underlying graph is an undirected graph G over N such that a — b in G iff [a, b] is an edge in H. A set of nodes K in an
undirected graph H is named complete, if a — b in H for every a,b € K, a # b. A maximal complete set in an undirected graph
H with respect to set inclusion will be called a clique of H. A complete graph is an undirected graph such that the set of its
nodes N is complete, that is, it has just one clique.

An important concept is that of a decomposable (undirected) graph. There are several equivalent definitions of a decom-
posable graph (see Section 2.1.2 of [11]), one of them is that its cliques can be ordered into a sequence Kj,..., Ky, m > 1
satisfying the running intersection property (cf. Proposition 2.17(ii) in [11]):

Viz23k<i S=Kn <U1<j> CKy. 1)

j<i

It is a well-known fact that the collection of sets S;, 2 < i < m does not depend on the choice of an ordering that satisfies (1) -
see Lemma 7.2 in [19]. We will call these sets separators of the graph. Moreover, the multiplicity v(S) of a separator S, that is,
the number of indices i for which S = §;, also does not depend on the choice of an ordering that satisfies (1). Note that this
definition implies that the class of cliques is disjoint with the class of separators. Another important fact is that every in-
duced subgraph of a decomposable graph is decomposable - see Corollary 2.8 in [11].

Let #" denote the collection of all cliques of a decomposable graph H. A clique K of H will be called a leaf-clique or, briefly, a
leaf (of H) if either .#* = {K} or there exists K’ € 2"\ {K} such that K n{J(# \ {K}) CK'. Then the set R = K\ J(#"\ {K}) will
be called the residual of K; observe that it is necessarily non-empty. An equivalent definition of a leaf is that it is a clique
which can occur as the last clique in an ordering that satisfies (1) — see Lemma 9.3 in Section A.3.! In particular, at least
one leaf exists in 7.

2.1.2. Directed graphs

A directed graph is a hybrid graph having only directed edges, that is, it has no lines. A directed cycle in a hybrid graph Gis a
sequence Cy,...,Cn,Cns1 = €1, N = 3 of nodes in G such that ¢y, ..., c, are distinct and ¢; — ¢;,; in G fori=1,...n. An acyclic
directed graph is a directed graph which has no directed cycle. A well-known equivalent definition is that it is a directed
graph G such that all its nodes can be ordered into a sequence a;,...,a,, m > 1 such that if a; — g; in G then i <.

We understand a Bayesian network (structure) as a statistical model attributed to an acyclic directed graph. More specif-

ically, given an acyclic directed graph G over N we interpret the elements of N as variables. Moreover, if a collection X;, i € N
of individual sample spaces (that is, non-empty finite sets) for variables is fixed, then one can introduce the corresponding
class of probability distributions on [];_\X;, that is, a statistical model. The probability distributions in the class can either be
introduced as those which factorize recursively according to G or, equivalently, as those which satisfy conditional indepen-
dence restrictions given either by the moralization or by the d-separation criterion - see Section 3.2.2 of [11]. Detailed def-
initions of these concepts are not needed in this paper and are, therefore, omitted.
Terminological remark. Researchers in artificial intelligence usually introduce a Bayesian network, occasionally called a
Bayesian network model, as a pair: an acyclic directed graph G and a (discrete) probability distribution P which factorizes
according to G. That means, P belongs to the class of distributions attributed to G. To name shared features of distributions
in the class, they often use the phrase a “Bayesian network structure”, but they sometimes omit the word “structure”. Some
of them even use the phrase “Bayesian network” to name the graph G. On the other hand, researchers in statistics usually use
the word “model” to name a parameterized class of distributions. Thus, from a statistical point of view, it would be more
appropriate to name the class of distributions attributed to G, which can be nicely parameterized, by a Bayesian network mod-
el. But, as explained above, this phrase may have another meaning in computer science. In this paper, we make a compro-
mise. Since IJAR journal is read mainly by computer scientists we have decided to use the phrase Bayesian network structure,
but occasionally we also use the phrase Bayesian network statistical model.

2.1.3. Chain graphs

A semi-directed cycle in a hybrid graph H is a sequence cy,...,Cp, Cny1 = €1, 1 = 3 of nodes in H such that cy,...,c, are dis-
tinct, ¢c; — ¢, in H and either ¢; — ¢;;; in Hor ¢; — ¢;,1 in H for i = 2,...n. A chain graph is a hybrid graph without semi-di-
rected cycles. An important consequence of this definition is that every induced subgraph of a chain graph is again a chain
graph. Another useful observation is that if Cis a connected set in a chain graph H then there is no arrow in H between nodes
in C. In particular, Hc is an undirected graph and pa(C) is disjoint with C for any C € ¢(H).

The original definition of a chain graph is that it is a hybrid graph whose components can be ordered into a chain (see
Lemma 2.1 in [17]), that is, into a sequence Cy,...,Cy, m > 1 such that

eifa—binHthenaecC and b e C; withi<j.

1 Our terminology is motivated by another equivalent definition, namely a clique which can occur as a leaf in a junction tree of cliques - see Section 4.3 in [8]
for the concept of a junction tree.
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Fig. 1. An immorality and a flag.

It follows from this equivalent definition that every chain graph H has at least one terminal component, that is, a compo-
nent C € ¥(H) such that there is no arrow a — b in H with a € C. Clearly, every undirected graph and every acyclic directed
graph is a chain graph.

2.1.4. Special graphical concepts

Two types of configurations of three nodes in a graph will play an important role in the paper. An immorality in a chain
graph G is an induced subgraph for a set T = {a, b, c}, in which a — ¢ «— b and [a, b] is not an edge in G. A flag in G is an induced
subgraph for T, in which a — ¢, ¢ — b and [a, b] is not an edge. Fig. 1 illustrates these two concepts.

A set of nodes AC N in a chain graph will be named an ancestral set? if it is closed under parents and neighbors:

VaceA, beN,if [b—ainHorb—ainH|thenbeA.

The moral graph of a chain graph H over N is an undirected graph H™" over N obtained as follows: a — b in H™ iff either [a, b]
is an edge in H or a, b are distinct elements of pa,(C) for a component C € 4(H). Note that like every acyclic directed graph
every chain graph can be interpreted as a statistical model. The concept of the moral graph (and the concept of an ancestral
set) plays a crucial role in the corresponding graphical criterion for determining the respective conditional independence
restrictions — see Section 3.2.3 in [11]. Again, the criterion is omitted in this paper because it is not needed here.

Nevertheless, we will utilize the following special concept. If Cis a component in a chain graph H then by the closure graph
for C we will understand the moral graph of the induced subgraph for the set D = C U pay(C). The closure graph for C will be
denoted by H(C). Obviously, given a,b € D, one has a — b in H(C) if either [a, b] is an edge in Hp or a, b are distinct elements of
pay(C).

When we say a super-terminal component in a chain graph H over N we mean a component C which is a complete set in Hc
anda — binHforeverya € N\ C, b € C. Evidently, every component of this kind is terminal and if a chain graph has a super-
terminal component then this component is uniquely determined. Actually, if a chain graph H has a super-terminal compo-
nent then it is a unique terminal component in H.

2.2. Equivalence and essential graphs

Two chain graphs are called Markov equivalent if they represent the same statistical model. In standard situations,? this
requirement is equivalent to the condition that the graphs are independence equivalent, that is, they define the same collection of
conditional independence restrictions. Verma and Pearl [25] gave a direct graphical characterization of equivalent acyclic direc-
ted graphs: they are independence equivalent iff they have the same underlying graph and the same collection of immoralities.
Note that Frydenberg [9] achieved an analogous result for chain graphs, but his characterization is more complex since chain
graphs define a wider class of structural models. On the other hand, the same equivalence characterization as for acyclic direc-
ted graphs holds for chain graphs without flags - see Lemma 2 in [18].

An equivalence class % of acyclic directed graphs over N can be described by the essential graph of ¥ which is a hybrid
graph G" over N defined as follows:

ea—bin G iffa— bin G for every G € ¥,
e a— b in G iff there are G;,G, € 4 such that a — b in G; and a «— b in G,.

We say that a graph H over N is an essential graph over N if there exists an equivalence class ¢ of acyclic directed graphs
over N such that H = G".

Example 1. An example of the essential graph of an equivalence class of acyclic directed graphs is given in Fig. 2.

The original graphical characterization of essential graphs was given by Andersson, Madigan and Perlman - see Theorem
4.1 in [1].

2 Note that it is sometimes called an anterior set by other authors [9].

3 We mean those situations when, for every chain graph, the respective statistical model contains at least one perfectly Markovian distribution. In our case,
this can be ensured by the assumption that every individual state space (cf. Section 2.1.2) has at least two distinct states. For further explanation see Section 6.1
of [19].
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Fig. 2. An example of an essential graph.

Lemma 2.1. A graph H over N is an essential graph over N iff it is a chain graph without flags, every induced subgraph Hc for
C € ¥(H) is decomposable and every arrow a — b in H belongs to (at least) one of four induced subgraphs from Fig. 3.

The lemma has the following simple consequence.
Corollary 2.1. Let H be an essential graph over N and M C N is a set closed under parents in H. Then the induced subgraph Hy, is an

essential graph over M.

Proof 1. We know that every induced subgraph of a chain graph without flags is a chain graph without flags. As an induced
subgraph of a decomposable graph is decomposable, the induced subgraphs for components in Hy, are decomposable as well.
The last condition is also fulfilled for Hy: if a — b in Hy, then a — b in H belongs to one of the four configurations from Fig. 3.
As {a,b} C M the assumption on M implies that c € M, respectively, c1,c, € M. Thus, one of those configurations occurs in Hy
aswell. O

In this paper, we will utilize an alternative characterization of essential graphs based on a special operation of component
merging. Let H be a chain graph without flags and C,, C, be two components in H. We say that these two components can be
legally merged if the following two conditions hold:

{i} pa,(C,) nC, is a non-empty complete set in H,
{ii} pay(Co)\ Cu = pay(Cu).

The situation is informally illustrated in Fig. 4. The following result was proven as Theorem 2 in [18], and also as Theorem
13 in [15].

Lemma 2.2. A graph H over N is an essential graph over N iff it is a chain graph without flags such that Hc is decomposable for
every component C in H and no pair of components in H can be legally merged.

Another useful fact is the following one - see Lemma 3 in [18].

Lemma 2.3. A chain graph H without flags is equivalent to an acyclic directed graph iff, for every component C of H, the induced
subgraph Hc is decomposable.

Folobe

Fig. 3. Four configurations.

Cy

Fig. 4. Legal merging of components.



390 M. Studeny, ]. Vomlel / International Journal of Approximate Reasoning 50 (2009) 385-413
2.3. The concept of a standard imset

An integer-valued function on the power set {A;A C N} of N will be called an imset over N. It can be viewed as a vector
whose components are integers indexed by subsets of N. Given A C N, the symbol 4 will denote an imset identifying this set:

1 ifB=A
oa(B) = ’
4(B) {0 otherwise.

However, to describe Bayesian network structures, it is suitable to consider only a certain subclass of the class of imsets.
Given an acyclic directed graph G over N, the standard imset for G is given by the formula

Ug = S8 — 8 + Y _{Spagia) — Stayupaga)}- (2)
aeN
The point is that the standard imset is a uniquely determined representative of a Bayesian network statistical model. The
following result is proven as Corollary 7.1 in [19].

Lemma 2.4. Two acyclic directed graphs G and H are independence equivalent iff uc = uy.

The reader may have some doubts whether the standard imset, which is of an exponential length in the number of vari-
ables n = |N|, can be represented in the memory of a computer. However, it is evident from (2) that any standard imset has at
most 2n non-zero values.* One can keep in the memory only its non-zero values. The consequence is that the memory demands
for representing the standard imset are polynomial in the number of variables, cf. Section 8 for further details.

The phrase “a standard imset” (over N) will mean an imset which can be obtained as the standard imset u; for an acyclic
directed graph G over N. To avoid potential misunderstanding let us emphasize that throughout this paper standard imsets
always correspond to Bayesian network structures. The following remark is to explain the motive for our terminology.

Remark 1. In [19] a much wider class of structural imsets was introduced. These imsets allow one to describe quite a big class
of conditional independence structures, including all (discrete) probabilistic structures. However, it may happen that two
different structural imsets are independence equivalent, that is, they describe the same conditional independence structure.
Then a natural question arises: is there a suitable unique representative of the independence equivalence class of structural
imsets? We are obviously interested in a representative which exhibits some elegant properties and can, therefore, serve as a
“standard” representative of the equivalence class. The question has the desired positive answer in the framework of
Bayesian network structures - see Section 7.2.1 of [19]. The corresponding “standard” representative is the imset given by
(2). Note that one can also establish the concept of a standard imset for a decomposable (undirected) graph, but this appears
to be a special case of the standard imset representing a Bayesian network structure — see Section 7.2.2 of [19] for details.

3. General formula

In this section we give a formula for the standard imset on the basis of any chain graph H over N which is equivalent to an
acyclic directed graph. Note that the concept of the standard imset for such a chain graph has reasonable sense owing to Lem-
ma 2.4: it is the (shared) standard imset u¢ for any acyclic directed graph G equivalent to H.

It is a well-known fact that all closure graphs H(C) = (Hcupa, )™ for components C € 4(H) in such a graph are decom-
posable - see Proposition 4.2 in [2]. Let #'(C) denote the collection of cliques of H(C) and #(C) the collection of separators of
H(C). Further, let v(S) denote the multiplicity of a separator S in H(C). The standard imset for H is given by the following
formula:

U =N =30+ Y a0 — D g+ > Ve(S) -5 - 3)

Cet(H) KeA'(C) Se7(C)

If H= G is an acyclic directed graph, then (3) obviously gives the same result as (2). The point is that the formula (3) gives the
same result for equivalent chain graphs. The following result is proven as Proposition 20 in [22].

Lemma 3.1. Let G and H be equivalent chain graphs such that there exists an acyclic directed graph equivalent to them. Then
Ug = Uy.

Note that the proof is based on the idea of a certain “feasible” merging operation for components in a chain graph.® Thus,
Lemma 3.1 has the following consequence.

Corollary 3.1. Let G be an acyclic directed graph and H the essential graph of the respective equivalence class. Then the formula (3)
gives the standard imset for G.

4 The formula has 2n + 2 terms. Moreover, at least one a* € N exists with pag(a’) = 0. Thus, the terms —d; and +0pac(a+) €ancel each other.
5 This merging operation is different from the legal merging mentioned in Section 2.2 above Lemma 2.2.
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Table 1

The standard imset for the essential graph from Fig. 2

A subset of N The respective value
{a,b,c.d,e.f,g} +1
0 +1
{a,b,c} -1
{d.f.g} -1
{a,b,d} -1
{a,e} -1
{b} -1
{e.f} -1
{a,b} +2
{d.f} +1
{e} +1
Other subsets of {a,b,c,d,e,f,g, h} 0

Example 2. In Table 1 we give the standard imset for the essential graph from Fig. 2.

4. Graphical characteristics

The formula (3) can be simplified for chain graphs without flags. In this section, we introduce some characteristics of these
graphs that will be used in the simplified formula given in Section 5.1. Some of these characteristics appear to be invariants of
independence equivalence classes of chain graphs, that is, they are shared by all graphs in such an equivalence class.

4.1. Initial components: i(H)

A component C € ¥(H) in a chain graph H such that pa,(C) = ( will be called an initial component in H. Actually, it is a
counterpart of the concept of a terminal component. Let us denote by i(H) the number of initial components in H. Note that
this number is the same for equivalent chain graphs - this is proven as Proposition 17 in [22]. Obviously, i(H) > 1 for any
chain graph H.

Example 3. The chain graph H in Fig. 2 has two initial components; namely {b} and {a,e,f}. In particular, i(H) = 2.

4.2. Core and core-components: core(H), € core(H)
We will say that a set B of nodes in a chain graph H over N is idle if the following two conditions hold:®

(i1) Vby,by € B, by # by, [b1,b,] is an edge in H,
(i2) Vae N\B,Ybe B, a—binH.

The condition (i2) implies that every component in a chain graph H intersecting an idle set B is contained in B; that is,
every idle set is a union of some components.

One can easily show that every chain graph H over N has a unique maximal idle set of nodes (which may be empty) - see
Lemma 18 in [22]. Moreover, Proposition 19 in [22] says that the largest idle set is the same for mutually equivalent chain
graphs.

Let us call the complement N \ B of the largest idle set B in N the core of H and denote it by core(H). It follows from the
definition that it is an ancestral set. The class of core-components, that is, the components in H contained in core(H), will be
denoted by %.ore(H). Observe that if core(H) # () then every initial component of H is a core-component.

4.3. Cliques and separators (for core-components): # (C), &(C)

According to Lemma 2.3, if H is a chain graph without flags equivalent to an acyclic directed graph then each of its core-
components C € % (H) induces a decomposable graph Hc. Let us denote by .#°(C) the class of cliques of H¢, by .#(C) the
collection of its separators, and by v¢(S) the multiplicity of S € #(C) in Hc.

Example 4. The chain graph H from Fig. 2 has two idle sets, namely () and {h}. The maximal idle set is {h}. In particular, the
core is core(H) = {a,b,c,d,e,f,g}. The core-components are C; = {a,e,f}, C; = {b}, C3 = {c}, C4 = {d} and C5 = {g}. All these

6 Note an explanation for this terminology: the meaning of these two conditions is that no variable in B is involved in a non-trivial conditional independence
restriction given by H. That is why B is called idle.
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components except for C; have only one clique and no separator in the respective induced subgraph. The set of cliques of Hc,
is #°(C1) = {{a,e},{e.f}} and the set of its separators is (C;) = {{e}}; the multiplicity of the separator {e} is 1.

The following basic observation will be utilized later.

Lemma 4.1. Let H be a chain graph over N without flags which is equivalent to an acyclic directed graph. If Y € 2 (C) u & (C) for
some C € Gcore(H), then § # Y C Y U pay(C) C core(H).

Proof 2. If C € %cre(H) and K € #°(C) is a clique of H, then K # () by definition. Moreover, the fact that core(H) is an ancestral
set implies K U pay(C) C C U pay(C) C core(H). Assume for a contradiction that K U pay(C) = core(H). This implies K = C
because C \ K is a subset of core(H) disjoint from K U pay (C). The assumption that H has no flags implies that a — b for every
b € K and a € pay(C). This fact allows one to show that KU (N \ core(H)) is an idle set, which contradicts the fact that
N\ core(H) is the largest idle set in H.

If C € Gcore(H) and S € #(C) then there exists K € #'(C) with S C K. Hence, S U pay (C) C K U pay(C), which has been shown
to be a proper subset of core(H). Observe that the fact that C is connected implies S # () for any S € &(C). Indeed, if K4, ..., Kpn,
m > 2 is an ordering of elements of »#'(C) satisfying (1), then the hypothesis S, = 0 implies that there is no edge in Hc
between Uj mK; and Ky,. In particular, there is no undirected path between nodes of these two sets, which contradicts the
fact that Cis connected. Another observation is that the set C’ = [ JI";'K; is also connected because every section of a path in
Hc between nodes of C’ with internal nodes in Ky, \ Sy can be shortened by an edge in Sy,. This allows us to use an inductive
argument to show S; # @ fori=m,...,2. O

Note that Lemma 4.1 need not hold for graphs with flags. This is illustrated by the following example.

Example 5. Let us consider the graph H over {a,b,c,d} on the left-hand side of Fig. 5, which has a flag a - c—d. It is
equivalent to the acyclic directed graph in the middle of Fig. 5. Consider the component C = {c,d} and observe that Hc has
just one clique K = C. Thus, K U pay(C) = {a,b,c,d} = core(H).

The closure graph H(C), which is shown on the right-hand side of Fig. 5 has two cliques, namely {a, b, c} and {b, ¢, d}. Thus,
the example also shows that the cliques of Hc need not correspond to cliques of the closure graph H(C). On the other hand, in
the case of a chain graph without flags these classes of cliques are in a one-to-one correspondence - cf. the formula (3) with
its later simplification (4).

4.4. Parent sets (for core-components): Pcore(H)
A set P C N will be called a parent set in a chain graph H if it is non-empty and there exists a core-component C € % (H)

with P = pay(C). The multiplicity T(P) of a parent set P is the number of C € €.r.(H) with P = pa,(C). Let us denote the col-
lection of parent sets in H by Z.(H).

Example 6. The parent sets for the chain graph H from Fig. 2 are Z¢.r.(H) = {{a, b}, {d,f}}. The multiplicities are t({a,b}) = 2
and t({d,f}) = 1.

Lemma 4.2. Let H be a chain graph over N without flags which is equivalent to an acyclic directed graph. Then every P € P (H)
is a non-empty proper subset of core(H).

Proof 3. The requirement P # () is a part of the definition of a parent set. Assuming P = pa,(C) for C € %o (H), the fact that

core(H) is an ancestral set implies P ¢ C U P C core(H). The first inclusion is strict because C is non-empty and disjoint from
P. O

5. Algebraic characteristics

In this section we introduce some algebraic characteristics, more specifically, characteristics that can be read from the
standard imset. Then we relate them to graphical characteristics from Section 4.

5.1. Simplified formula

For this purpose we first need to derive a special formula for the standard imset in the case of a graph without flags.

Fig. 5. Graphs from Example 5.
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Lemma 5.1. Let H be a chain graph without flags which is equivalent to an acyclic directed graph. If core(H) = () then uy = 0. If
core(H) # 0 then the standard imset for H has the form

Uy = 6core(H) - Z Z 5KupaH(C) + Z Z VC(S) : 5SupaH(C) + Z T(P) : 61’ + {l(H) - 1} : 5@‘ (4)

Ce%core(H) Kex'(C) Ce%core(H) Se7(C) PePcore(H)
In particular, uy # 0 iff core(H) # 0.
The proof is moved to the Appendix - see Section A.1. Lemma 5.1 has the following notable consequence.

Corollary 5.1. Let u be a non-zero standard imset over N. Then the union M of all sets L C N with a non-zero imset value u(L) # 0
also has a non-zero imset value.” The set M is non-empty and u(M) = +1. In fact, M = core(G*) where G* is the respective essential
graph.

Proof 4. Assume u = ug for an acyclic directed graph G over N and put M = core(G). By Lemma 5.1, M is non-empty and the
formula (4) holds for H = G. It follows from Lemmas 4.1 and 4.2 that any other set L C N with u(L) # 0 is a proper subset of M.
Finally, recall that the core is the same for equivalent chain graphs: core(G) = core(G"). O

5.2. Classes of positive and negative sets (for a standard imset)

If u is a non-zero standard imset over N, then by the core of u will be meant the largest set M C N with u(M) # 0, whose
existence was proven in Corollary 5.1. It will be denoted by core(u). Recall that Corollary 5.1 says core(u) = core(H) for the
respective essential graph H. If core(u) = N then u will be called adapted (to N).

The class of negative sets in u is the following class of sets:

Ty ={LCN;u(L) < 0},

while by the class of positive sets in u will be meant the class
Ly ={LCN; u(L) > 0,0 # L c core(u)}.B

If u = 0 then we accept the convention that core(u) = ¢ and 7, = £, = 0.
The point is that, in the case of a non-trivial essential graph H, the terms in the formula (4) from Lemma 5.1 do not cancel
each other.

Lemma 5.2. Let H be an essential graph over N such that the corresponding standard imset is non-zero: uy # 0.° Then, for every
L C N, exclusively one of these six options applies:

(a) L = core(H) and uy(L) = +1,

(b) L =Kupay(C) for K € #(C), C € Gcore(H) and uy(L) = —1,

(c) L=SuUpay(C) for S € #(C), C € €core(H) and uy(L) = v¢(S) > 0,
(d) L=P for P € Zcre(H) and uy(L) = ©(P) > 0,

(e) L=0and uy(L) =i(H)—1 >0,

(f) none of above cases occurs and uy(L) = 0.

Moreover, for every set L of the type (b) only one pair C € Gcore(H), K € #°(C) exists such that L = K U pay(C), and an analogous
statement holds for sets of the type (c).

The proof is shifted to the Appendix - see Section A.2. Observe that Lemma 5.2 implies that if u = uy # 0 for an essential
graph H then the class of negative sets in u takes the form

Ty ={KUpay(C);K € #(C),C € Geore(H)} = #'n (3)
and the class of positive sets in u has the following form:!°
Ly =SuUPere(H), where 9y = {SUpay(C);S € (C),C € Geore(H)}. (6)

Thus, it follows from Corollary 5.1 and Lemma 5.2 that, given a non-zero standard imset (for an acyclic directed graph), one
can immediately determine the core of the respective essential graph H, the number of its initial components, the class .7’y
and the class %y U Zcore (H).

7 In other words, the class of sets with non-zero imset value has the largest set M.

8 The reader may wonder why we have excluded the core and the empty set from the class #,. This is because these two sets play a different special role
both in our classification of sets in Lemma 5.2 and in the later reconstruction algorithm in Section 7.

9 Recall that, by Lemma 5.1, this is equivalent to the condition core(H) # 0. Actually, it follows from (3) and later Lemma 6.1 that it is also equivalent to the
condition that H is not a complete undirected graph.

10 Recall that core(u) = core(H) and that both () and core(u) are excluded from the class %, of positive sets.
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G: @ H: @

Fig. 6. Graphs from Example 7.

Note that if we analogously introduce the classes of sets #'¢c and %c U 2o (G) for any chain graph G equivalent to an acy-
clic directed graph then they need not be invariants of independence equivalence as the Example 7 below shows. Thus, the
set 7, and .#, determined by the imset u are related by the relations (5) and (6) only to the respective essential graph; these
relations need not hold for other chain graphs in the same equivalence class:

Example 7. Consider graphs G and H from Fig. 6. These are equivalent chain graphs without flags. However, .# ¢ consists of
three sets, namely, {a}, {b} and {b,c} while »#'y has only {a} and {b,c}. Analogously, %¢c U Zr.(G) contains {b} but
t(/)H @] :(/)core(H) is empty

6. Theoretical basis for the reconstruction

Lemma 5.2 is the basis of a two-stage reconstruction algorithm for the essential graph H based on the standard imset
u = uy. The main idea is to transform the problem to a simpler one by reducing the cardinality of the class of negative sets
T4 (= #'n). Indeed, the reconstruction procedure is trivial if |7,| = 0 because then u = 0.

Lemma 6.1. Let u = 0 be a zero standard imset over N. Then the respective essential graph is the complete undirected graph over N.

Proof 5. The first step is to show that the largest idle set BC N (see Section 4.2) in an essential graph H over N is a component
in H, which necessarily consists of one clique. Thus, assume for contradiction that Hp has at least two components and order
them into a chain Cy,...,Cy, k = 2. Then put C, = C,_, C, = C; and observe that the conditions {i} and {ii} from Section 2.2
are fulfilled: pay(C,) N C, = C, = C_ is non-empty complete in H and pa,(C,) \ C, = core(H) U U]’ijj = pay(Cy). In particu-
lar, C, and C, can be legally merged, which contradicts, by Lemma 2.2, the assumption that H is an essential graph.

Now, by Lemma 5.1, u = 0 means core(H) = 0, that is, N is an idle set. In particular, it is a component in H. Therefore, H is
an undirected graph consisting of one clique. O

Another partial step is an adaptation of a standard imset, that is, a restriction of the imset to subsets of its core.

Lemma 6.2. Let u = uy be the standard imset corresponding to an essential graph H over N with () # core(u) = M C N. Then the
restriction w of u to subsets of M is an adapted standard imset over M. Moreover, provided G denotes the essential graph for w, the
graph H can be obtained from G as follows:

L] HM:G,
eVxeM,Vye N\M, x—yinH,
e V.Y, EN\M,y; #Y,, ¥1— -y, inH.

Proof 6. By Corollary 5.1 we know that M is the core of H. It was shown in the proof of Lemma 6.1 that the largest idle set
N\ M consists of one component in H. Moreover, M is an ancestral set in H and this implies, by Corollary 2.1, that Hy is an
essential graph over M.

Let B be the largest idle set in Hy. Observe that B = () for otherwise BU (N \ M) would be an idle set in H, which would
contradict the assumption that N \ M is the largest idle set in H. Recall that the fact B = () means core(Hy) = M. Let w be the
standard imset (over M) corresponding to Hy;. Because core(w) = core(Hy ) = M, wis adapted to M. The formula (4) from Lemma
5.1 applied to H and Hy, implies that u and w have the same values for subsets of M, while u vanishes for sets that are not subsets
of M. Since N \ M is a complete idle set in H the graph H can be obtained from G = Hy as described in Lemma 6.2. O

The main step of the reconstruction procedure is the reduction of the class of negative sets in u, which is accompanied
with the respective reduction of the set of variables. Let us assume for simplicity that the imset u is adapted, that is,
core(u) = N. The idea is to “remove” at least one set T from the class 7, which is known by (5) to have the form

Tu={KUpay(C); Ce ¥¢(H), K€ #(C)} = Ay.
Nevertheless, not every set T in this class can be removed immediately.!' The sets in 7, that can simply be removed have a

special form. For example, the reduction procedure is possible if T has the form T = K U pay (C) where Cis a terminal component
in H and K is a leaf-clique of Hc. It is clear that a set of this kind always exists in .#'y = 7.

1 Note that we wish to have a “removal” of a type such that the resulting “reduced” imset is again a standard imset over a (strict) subset of the set of
variables.
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Later in this paper we consider a slightly weaker condition, which can, moreover, be formulated in terms of the algebraic
characteristics of u from Section 5.2. More specifically, the condition that C is a terminal component can be replaced by a
weaker requirement that there is no arrow in H from the residual of the clique K. Formally, we have in mind the following
condition (see Fig. 7 to illustrate):

T =KuUpa,(C) where C € 4(H),
K € #°(C) is a leaf-clique of Hc
and there is no arrow in H fromR=K\ | K.
K'ex (O\{K}
Here is the respective result.

Lemma 6.3. Let u be an adapted standard imset over N and H the respective essential graph. Assume that T € 7, has the form (7)

and R = K\ U crcp iK' is the respective residual. Then there is no edge in H between R and N\ T. Let us put M = N\ R. The
imset

W=1U—Jy—0ng+ 07+ u

vanishes for sets that are not subsets of M. The restriction w of W to subsets of M is a standard imset over M and the respective
essential graph is Hy.

The proof of Lemma 6.3 is moved to the Appendix - see Section A.3. Note that the resulting imset w need not be adapted
(to M) as the following example shows.

Example 8. Let H be the graph over N = {a,b,c,d,e} from Fig. 8. It is easy to see that H is an essential graph over N. The
respective standard imset is u in Table 2. The set T = {a,c,e} has the form (7), namely C = K = {e} and pay(C) = {a,c}.
Therefore, R = {e} and M = {a, b, c, d}. The respective imset w over M is also shown in Table 2. Evidently, core(w) = {a, b, c}.

Thus, all we need for performing the reduction procedure described in Lemma 6.3 is to find T € 7, satisfying (7) and
determine the respective residual R. The following lemma says how to determine them on the basis of the standard imset u.

cECl

QK

N

i

C3

Fig. 7. A leaf-clique K of Hc with the residual R such that there is no arrow from R.

Fig. 8. The essential graph from Example 8.

Table 2

The standard imsets from Example 8

A subset of N u w over {a,b,c,d}
{a,b,c.d,e} +1 0
{a,b} -1 -1
{b,c} -1 -1
{a,b,c,d} -1 0
{a,c,e} -1 0
{b} +1 +1
{a,b,c} +1 +1
{a,c} +1 0

Other subsets of {a,b,c,d, e} 0 0
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Lemma 6.4. Let u be an adapted standard imset over N and H the respective essential graph. Let us denote by W, the set of nodes
which belong to at least two negative sets for u:

Wy,={xeN; I, T ¢ 7,, T#T withxcTnT}.

Then W, coincides with the union |J %, of the class of positive sets (for u). Moreover, given a negative set T € 7, the condition (7)
is equivalent to the condition

T\W,#0 and {either TNW,=00r TNW, € Z,}. (8)
If this condition holds, then the respective residual from (7) takes the form R =T\ W,.
The proof is shifted to the Appendix - see Section A.4. Lemma 6.4 has the following simple consequence.

Corollary 6.1. Let u be a non-zero standard imset and W, = |J %,,. Then there exists T € 7, such that Tn W, € £, U {0} and
R=T\ W, #0.

Proof 7. Let us assume without loss of generality that u is adapted (see Lemma 6.2). As explained before Lemma 6.3, at least
one T € 7, exists which satisfies (7). By Lemma 6.4 it also satisfies (8). O

Lemma 6.3 has not completely answered the question of how to get the essential graph H on the basis of Hy and T. It says
that the only edges to nodes in R are those within T but it does not say what are the types of these edges. The following exam-
ple shows that these edges cannot be determined solely on the basis of the partition of Tinto T \ R and R. It also indicates that
the specification of these edges is not a local problem, in the sense that the edges cannot be determined simply on the basis
of Hng or on the basis of the restriction of u to subsets of T.

Example 9. Let us consider the graphs G and H shown in Fig. 9. It is easy to verify using Lemma 2.1 that they are both
essential graphs over N = {a,b,c,d,e,f,g}. The respective standard imsets are given in Table 3. They are quite similar. For
example, the sets W, from Lemma 6.4 are as follows: W, = {b,c,e.f} and W,, = {b,c,f}.

Consider the set T = {b, c,f,g}. It belongs to the class of negative sets for both standard imsets in Table 3 and satisfies the
condition (8); the respective residual is R = {g} (in both cases). Moreover, the induced subgraphs of both essential graphs for
T\ R = {b,c.f} coincide. On the other hand, Hy differs from Gr because one has f —gin Hand f — g in G.

The restrictions of considered standard imsets to subsets of T are identical - see the lower part of Table 3. This certainly
does not directly indicate what type the edge should be between f and g.

Nevertheless, although the problem of reconstruction of the essential graph H is not local, H can be obtained on the basis
of Hy and T. The following lemma allows us to distinguish two basic cases, namely whether T \ R is a parent set or not.

Fig. 9. The essential graphs from Example 9.

Table 3

The standard imsets for the essential graphs from Fig. 9

A subset of N ug UH
{a,b,c.d.e.f.g} +1 +1
{a,b,c} -1 0
{a,b} 0 -1
{b,e} -1 0
{c,d} -1 -1
{b,c,e,f} =1l =1l
{b,c,e} +1 0
{b,c.f,g} -1 -1
{b,c.f} el el
{b,c} +1 +1
{b} 0 0
0 +1 +1

Other subsets of {a,b,c.d,e,f,g} 0 0
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Lemma 6.5. Let u be an adapted standard imset over N and H be the respective essential graph. Assume that C € ¥(H) and
T = Kupay(C), K € o (C) satisfies the condition (7). Let R denote the respective residual K \ |J(#"(C) \ {K}); put M = N\ R. Then
exclusively one of the following two cases applies:

(p) T\ R = pay(C),
(s) T\R=Supay(C) for S € (C).

Moreover, again under the assumption (7), the second case (s) is equivalent to the condition:

T\ R+# 0 and Hr\g has a complete component X such that pay, (X) =T\ (RUX). 9)

If (9) holds then S = X.

The proof is moved to Appendix - see Section A.5.

7. Reconstruction algorithm

The reconstruction algorithm for the essential graph on the basis of the standard imset is presented in this section. We
first introduce basic steps of the algorithm. Then we describe it in the form of a recursive procedure. This is because it is
easier to prove its correctness in this form. Later we formulate the algorithm in the form of a two-stage non-recursive pro-
cedure and illustrate it by means of an example. Finally, we give a modification of the recursive procedure that can be used to
test whether a given imset is standard.

7.1. Basic subroutines

In the algorithm, we distinguish three cases: that of a zero imset, a non-zero non-adapted imset, and an adapted (non-
zero) imset. Let us describe and comment on subroutines which are used if the imset is non-zero. We start with the
adaptation step based on Lemma 6.2, which will be used in the case of a non-zero non-adapted imset. It is described
in Table 4.

The subroutine is formulated in such a way that it works for any non-zero imset. However, Corollary 5.1 says that ifu is a
non-zero standard imset then the set M found in line 1 of Table 4 is uniquely determined; it is the core of u. Thus, if u is
adapted then w = u and if u is not adapted then w is the “restricted” standard imset mentioned in Lemma 6.2.

In the crucial case of an adapted standard imset, the imset is reduced on the basis of Lemma 6.3 (and Lemma 6.4). This is
described in Table 5.

Table 4

Subroutine Adapt(u over N|M,w over M)

Input: u ...a standard imset over a non-empty set of variables N

Output: M ...a subset of N
w ...an adapted standard imset over M

1 find a maximal set M C N with respect to inclusion with u(M) # 0;
put w = the restriction of u to the class of subsets of M;

3 return M, w;

Table 5

Subroutine Reduce(u over N|T, M, w over M)

Input:
Output:

..an adapted standard imset over a non-empty set of variables N
..a proper subset of the set of variables N

..a proper subset of N such that MUT=Nand T\ M # 0

..a standard imset over M

put 7 = {LCN;u(L) < 0};
Z ={Lc N;u(l) >0, L#0}

TXTE

w=2;
find (one arbitrary) T € 7 such that T\W # @ and TnW € 2 U {0};
put R=T\W;

M=N\R;

W =1U— 0N+ 0m + 01 — On\Rs
w =the restriction of w to the class of subsets of M;
return T,M,w;

OOy U A WN =
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Table 6
Subroutine Extend(G over M,T|H over MUT)
Input: G ...a chain graph over a non-empty set of variables M
T ...a set of variables with T\ M # 0
Output: H ...a chain graph over MUT
1 put L=TNM,;
2 R=T\M;
3 Z=0;
4 if L # () then choose a terminal component X in G, and
5 if X is a complete component in G; and pag(X) =L\ X then put Z =X;
6 determine the edges in H as follows:
7 Hy =G,
8 Vy eL\Z VzeRincludey — zin H,
9 Vx € RUZ,z € R, x # z include x—z in H;
10 return H;
Table 7
Recursive algorithm Reconstruct(u over N|H over N)
Input: u ...a standard imset over a non-empty set of variables N
Output: H ...a chain graph over N
1 if u =0 then put H = a complete undirected graph over N;
2 return H;
3 if u+#0and u(N) =0 then Adapt(u over NM,w over M);
4 Reconstruct(w over M|G over M);
5 Extend(G over M, N|H over N);
6 return H;
7 if u(N) # 0 then Reduce(u over N|T,M,w over M);
8 Reconstruct(w over M|G over M);
9 Extend(G over M, T|H over N);
10 return H;

Note that Corollary 6.1 implies that if u is an adapted non-zero standard imset then there exists a set T satisfying the con-
dition given in line 4 of Table 5.'% It is easy to see that this condition is simply the condition (8) from Lemma 6.4, which is
known to be equivalent to the condition (7) from Lemma 6.3. Let us emphasize that the set T chosen in line 4 is also an output
of the subroutine; it will play an important role in the reconstruction of the essential graph. Note that every T € 7 is a proper
subset of N due to Corollary 5.1 and the resulting imset w is a standard imset according to Lemma 6.3.

A procedure dual to both of the above-specified ones is the extension step based on Lemma 6.5. It is used to reconstruct an
essential graph over N on the basis of its induced subgraph for a subset M C N, and a special set TCN with MUT = N.
Depending on the situation, the procedure either extends an existing component by adding a new clique to it or creates a
new component consisting of one clique. It is formally described in Table 6.

The procedure Extend is formally introduced and works for any chain graph on the input, but in the context of the rou-
tines which call it in this paper, it is always applied to an essential graph G. In this case, the set X satisfying the condition in
line 5 of Table 6 has to be the super-terminal component in G; because G has no flags. Note that the condition in line 5 is
equivalent to the condition (9) from Lemma 6.5. The condition implies that X has to be the unique terminal component
in G;; therefore, it does not matter which terminal component X has been chosen in line 4 of Table 6.

Lemma 7.1. Let G be a chain graph over M c N and T C N such that T\ M # ¢ and MU T = N. Then the graph H over N resulting
from the procedure Extend(G, T|H) is a chain graph as well. Moreover, if G is an essential graph then H is an essential graph, too.

The proof is shifted to Appendix - see Section A.6.
7.2. Recursive formulation

In this subsection we formally introduce the entire reconstruction algorithm in a recursive form and formulate a result on
its correctness. The procedure is described in Table 7.

Clearly, at least one of the cases from lines 1, 3 or 7 of Table 7 has to occur for a given standard imset u. Another obser-
vation is that the sets T and M resulting from the subroutine Reduce applied in line 7 satisfy MUT = N and T\ M # (. The
latter fact implies that the subroutine Extend in line 9 results in a graph over N. The main result is then formulated as
follows.

12 The subroutine will not work for input imsets that are not standard imsets unless we introduce an additional stopping rule - for details see Section 7.4.
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Table 8

The first stage Decompose (u over N|t over N)

Input: u ...a standard imset over a non-empty set of variables N
Output: 7...an ordered sequence of subsets of N

1 put Y=N;

2 T = empty list;

3 if u=0 then append Y as the last item in 7;

4 return T;

5 if u# 0 and u(Y) =0 then Adapt (u over Y|M,w over M);
6 append Y as the last item in 7;
7 go to 11;

8 if u(Y) # 0 then Reduce (u over Y|T,M,w over M);

9 append T as the last item in 7;

10 go to 11;

11 put Y =M;

12 u=w;

13 go to 3;

Table 9

The second stage Compose (T over N|H over N)

Input: 7 ...an ordered sequence Tq,..., Ty, n > 1 of subsets of N satisfying (10)
Output: H ...a chain graph over M

1 put M =Ty;

2 H = a complete undirected graph over M;

3 G=H;

4 forj=n-—1,...,1 do Extend (G over M, T;|H over M UT;);
5 M=MUT;;

6 G=H;

7 return H;

Theorem 1. Let u be a standard imset over N. Then the result of the recursive algorithm from Table 7 is the respective essential
graph H over N.

The proof is moved to Appendix - see Section A.7.
7.3. Non-recursive formulation

In this subsection we formulate the reconstruction algorithm in a non-recursive way. There are two reasons for this ap-
proach. First, we believe that the non-recursive formulation is more transparent from the algorithmic point of view because
it describes the actual order in which the subroutines are applied. Therefore, it can be easily illustrated by an example. Sec-
ond, the non-recursive formulation reveals possible relationships of standard imsets and essential graphs to other potential
ways of representing Bayesian network structures (see the Conclusions and [23] for more discussion).

To establish a non-recursive version of the algorithm we first need to recall the recursive formulation. It can be deduced
from its description in Table 7 that in order to be able to reconstruct the desired essential graph we must remember the or-
der in which subroutines Extend were applied and what their input sets were.!> This is the main idea behind the non-recur-
sive formulation of the reconstruction algorithm. We simply let the reconstruction algorithm run without applying the
subroutines Extend and keep the record of their input sets instead. This is a decomposition phase. Then, in the second phase,
we repeatedly apply the subroutine Extend to compose the essential graph. The decomposition phase of the algorithm is de-
scribed in Table 8.

The result of the first phase is a sequence of input sets for Extend subroutines in the desired order. Observe that the
resulting sequence 7: Tq,..., Ty, 1 > 1 is such that'*

R =T; T;#0 fori=1,...,n and nT,-:N. (10)
J
i=1

j>i

The second stage of the reconstruction algorithm is presented in Table 9.

13 Recall that the input graph for the first application of Extend has to be a complete undirected graph.

14 The reason for T; \ Uj»iTj # 0 is this: if we append T = T; as the provisional last item in 7 (either in line 6 or in line 9 of Table 8 then the sets appended later
to 7 are contained in the respective set M obtained by calling the preceding subroutine (either in line 5 or in line 8). However, if Adapt subroutine is called then
M is a proper subset of T =Y while if Reduce subroutine is called then one has T\ M # §) - cf. Table 5.
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The intention here is that the input sequence of sets 7 is the output of the first stage. Elements in the sequence 7 are pro-
cessed in reverse order. As explained above, it follows from comparison with the recursive procedure Reconstruct from Ta-
ble 7 that the two-stage procedure gives the same result. In particular, Theorem 1 gives the following consequence.

Corollary 7.1. Let u be a standard imset over N. If the procedure Decompose from Table 8 is applied to u and the procedure
Compose from Table 9 is applied to the resulting ordered sequence t, then the overall result is the respective essential graph H over
N.

An additional observation is that the result of the composition phase is always an essential graph.

Corollary 7.2. Let T be an ordered sequence of subsets of a non-empty set of variables N such that condition (10) is satisfied. Then
the result of the procedure Compose from Table 9 is an essential graph over N.

Proof 8. We can prove this result by induction on the length n of the sequence 7. Since the first “iteration” is the complete
undirected graph over T,, which is an essential graph according to Lemma 2.1, the induction hypothesis is valid. The induc-
tion step follows from Lemma 7.1. O

Remark 2. By Corollary 7.2, the procedure Compose results in an essential graph; Corollary 7.1 implies that every essential
graph can be obtained in this way. In particular, a necessary and sufficient condition for a graph to be an essential graph over
N is that it can be obtained by the procedure Compose applied to a sequence of sets satisfying (10). Nevertheless, this obser-
vation cannot be directly used to compute the exact number of essential graphs over N because there is no one-to-one cor-
respondence between sequences of sets satisfying (10) and essential graphs over N. Indeed, two different sequences may
result in the same essential graph as this example shows: put N = {a,b}, 71 : Ty = N and 7, : T; = N, T, = {a}. The resulting
graph is a complete undirected graph over N in both cases.

Let us illustrate the overall procedure by means of examples.

Example 10. Let us consider the standard imset from Table 1 and apply the procedure Decompose from Table 8. As u is non-
empty and non-adapted, in the first round of the procedure the subroutine Adapt is applied. Thus, N = {a,b,c,d,e,f,g,h}
becomes the first item T; in 7.

In the second round, the input imset wy is already adaptedto Y = {a,b,c,d,e,f,g} - see the respective column in Table 10.
Now, the subroutine Reduce is applied. Note that two sets from the class .7~ satisfy the condition in line 4 of Table 5, namely
{a,b,c} and {d,f,g}. Let us choose the set {a,b,c} as the second item T, in 7. The resulting imset w, is again adapted to
Y=M={a,b,d,e,f,g} - see Table 10.

In the third round, the reduction procedure is repeated and the only candidate for the set Tis {d,f, g}. Thus, it becomes T3
in 7 and the resulting imset is w3 from Table 10, which is again adapted.

Thus, in the fourth round, subroutine Reduce has to be applied. We have two candidates for the last item in 7, namely
{a,b,d} and {e,f}. Let us choose {a,b,d} as the set T4. The resulting imset is wy in the next column of Table 10.

As wy is adapted to Y = {a, b, e,f}, again Reduce is called in the fifth round and there are even three options for the set T:
{a,e}, {b} and {e,f}. Let us choose {a,e} as Ts in 7.

In the sixth round, when ws is processed, there are two options for the set T in the reduction procedure, namely {b} and
{e,f}. Note that in both cases TN W is empty unlike in the preceding rounds. If we choose {b} in the role of Tg then the
resulting imset wg is the zero imset over {e,f} - see the last column in Table 10.

Table 10
Standard imsets from Example 10

Imset wq Wy w3 Wy Ws wg over {e,f}
{a,b,c.d.e.f,g} +1 0 0 0 0 0
{a,b,d.e.f,g} 0 +1 0 0 0 0
{a,b.,d,e,f} 0 0 +1 0 0
{a,b,e.f} 0 0 0 +1 0 0
{b,e.f} 0 0 0 0 +1 0
0 +1 +1 +1 +1 +1 0
{a,b,c} -1 0 0 0 0 0
{d.f,g} -1 -1 0 0 0 0
{a,b,d} -1 -1 -1 0 0 0
{a,e} -1 -1 -1 -1 0 0
{b} -1 -1 -1 -1 -1 0
{e,f} -1 -1 -1 -1 -1 0
{a,b} +2 +1 +1 0 0 0
{d.f} +1 +1 0 0 0 0
{e} +1 +1 +1 +1 0 0
Other subsets of Y 0 0 0 0 0 0
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Finally, in the seventh round we just append Y = {e,f} as the last item T; in 7. The resulting sequence is as follows.

T, ={a,b,c,d,e,f,g, h}

T, ={a,b,c}

T ={d.f,g}

T, ={a,b,d} (11)
Ts = {a,e}

Te = {b}

T; = {e,f}

The composition phase of the reconstruction algorithm is illustrated by means of a separate example.

Example 11. Let us consider the sequence of sets of variables from (11). Observe that it satisfies the condition (10) with
N ={a,b,c,d,e,f,g, h}. The sequence is processed by the procedure from Table 9 in the reverse order.

Thus, we begin with T; = {e,f} and the starting “iteration” will be the complete undirected graph over {e,f} - see the
graph G in Fig. 10. Then, the subroutine Extend is applied to this graph and the set Tg = {b}. This time the set L in line 1 of
Table 6 is empty and no edge is included in steps 8 and 9 of the subroutine Extend. The resulting graph is G> from Fig. 10.

Now, the extension procedure is applied to that graph and Ts = {a,e}. This time L = {e} is non-empty and the condition in
line 5 of Table 6 is fulfilled with X = {e}. For this reason we include a line between a and e in the resulting graph G* over
{a,b,e,f}.

The next set to be processed is T4 = {a, b, d}. In subroutine Extend one has L = {a,b} and the induced subgraph for L has
two terminal components. In particular, the condition in line 5 of Table 6 is not satisfied and all included edges are arrows
directed towards d. A similar situation occurs when processing T3, T» and T;. The overall resulting graph G° is the graph from
Fig. 2, which was expected.

7.4. Testing whether an imset is standard

The reconstruction algorithm can be modified to get a procedure for testing whether a given imset is a standard one. The
modification is described in this subsection. We base it on the recursive version of the algorithm from Section 7.2. The basic
idea is that the subroutines Adapt and Reduce are extended by suitable stopping rules. A further change is that the subrou-
tine Extend is omitted. The output of the whole testing procedure is a logical variable.

GS G°

O—0||®

i

Fig. 10. Graphs from Example 11.
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Table 11
Subroutine Adapt* (u over N|y,w over M)
Input: u ...an imset over a non-empty set of variables N
Output: 7 ...alogical variable
w ...an imset over a set M () # M C N)
1 find a maximal set M C N with respect to inclusion with u(M) # 0;
2 if 3QCNQ\M#0,u(Q) # 0 then y = FALSE and return y;
3 put 7 = TRUE;
4 w = the restriction of u to the class of subsets of M;
5 return ), w;
Table 12
Subroutine Reduce*(u over N|y, w over M)
Input: u ...an imset over a non-empty set of variables N
Output: 7 ...alogical variable

w ...an imset over a set M () # M c N)

1 put 7 = {LCN;u(L) < 0};

2 ¥ ={LcN;u(l) >0, L#0};

3 w=y<;

4 ifu(N)#1or[VTe 7 T\W=0 Vv TnW ¢ £U{0}] then y = FALSE and return y;
5 choose T € 7 suchthat T\W #0and TnW € 2 U {0};

6 put R=T\W;

7 M =N\R;

8 W =1U— 0N+ m +0r — Ong;

9 if 3QCN Q\M # 0,w(Q) # 0 then y = FALSE and return };
10 put y = TRUE;

11 w = the restriction of w to the class of subsets of M;

12 return y,w;

Table 13

Recursive algorithm Testing(u over N|y)

Input: u ...an imset over a non-empty set of variables N

Output: 7 ...a logical variable

1 put y = TRUE;

if g nlu(S)| > 2|N| then y = FALSE and return y;
if Yo nU(S) #0or [Fie N g jescnU(S) # 0] then y = FALSE and return 7;
if u=0 then return Y -
if u+#0and u(N) =0 then Adapt® (u over N|y,w over M);
if y then Testing (w over M|y);
if u(N) # 0 then Reduce* (u over N|y,w over M);
if 7 then Testing (w over M|y);

O oo~ U A~ WN

return p;

The modification of the adaptation subroutine is described in Table 11. Note that the input imset for Adapt* subroutine
will always be a non-zero imset u over N such that u(N) = 0 and > ¢_yu(S) = 0. In particular, any maximal set M C N with
u(M) # 0 chosen in line 1 of Table 11 satisfies § # M C N. B

The respective modification of the reduction subroutine is described in Table 12. Note that Reduce* will be applied to an
imset u over N with u(N) # 0. Since we exclude the case u(N) # 1 in line 4 of Table 12, one has T c N for any set T € .7 chosen
possibly in line 5 of Table 12. Such a set T exists because the other test was passed in line 4 of the procedure. Owing to the
choice in line 5 we have R # () in line 6. In particular, the set M defined in line 7 is a non-empty proper subset of N (realize
that 0 # N\ T C M).

The entire testing procedure is described in Table 13.

Theorem 2. Let u be an imset over (a non-empty set) N. Then the value of the logical variable 7y obtained as the result of the
procedure from Table 13 is TRUE iff u is a standard imset.

The proof of this result is analogous to the proof of Theorem 1; it is moved to the Appendix - see Section A.8.

8. Remarks on complexity

The aim of this section is to explain how the procedures presented in this paper can be implemented with polynomial
complexity in the number of variables. We only give plain arguments based on our (experience with the) implementation
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Fig. 11. An essential graph, whose standard imset has the maximal number of non-zero values.

in R. It is possible that one could derive better upper bounds on the complexity of the reconstruction algorithm than we give
here.

First, let us discuss memory demands for internal computer representation of a standard imset u over N with [N| =n > 2.
It has already been mentioned in Section 2.3 that u has at most 2n non-zero values. The idea is that u can be represented by a
list of pairs [L,u(L)], where LC N is a set of variables and 0 # u(L) € Z is the corresponding non-zero value. This list has at
most 2n items. Clearly, a subset L of N can be encoded with n bits. Moreover, it follows from Lemma 5.2 that one has
u(l) € {-1,0,1,...,n—1} for every LCN.'>

Thus, if u(L) # 0 then it can only take one of n distinct values, which implies that n bits is enough to encode u(L).'® Con-
sequently, every item [L,u(L)] in the list can be encoded with 2n bits and the whole imset u with 4n? bits.

An essential graph over N can be represented by means of a zero-one N x N-matrix, c.f. Section 2.1.1 in [11]. It means that
it can be encoded with n? bits. Thus, the memory demands for computer representation of a standard imset and an essential
graph are alike.!”

Note that one can possibly adjust the internal computer representation of (standard) imsets so that (most of) the steps in
our subroutines from Section 7 can be done with minimal computational cost. For example, one can have u represented in
the form of two separate lists of items [L, u(L)]: one with u(L) > 0 and the other with u(L) < 0. These lists, moreover, can be
ordered so that the size of L is reflected: we put [L, u(L,)] before [L,, u(L,)] whenever |L;| > |L,|. This way of (memory) orga-
nization makes the step 1 in subroutine Adapt and steps 1 and 2 in subroutine Reduce practically immediate.

The reader may wonder whether the number of edges in the essential graph, viewed as a “complexity” characteristic of
the respective Bayesian network structure, is somehow reflected in the number of non-zero values of the respective standard
imset, which can perhaps be interpreted as its “complexity” characteristic. The biggest Bayesian network statistical model is
described by the complete undirected graph over N and this essential graph corresponds to the “simplest” standard imset,
namely the zero imset over N. On the other hand, the “simplest” essential graph, namely the empty graph over N for
n = |N| > 2, corresponds to the imset

U:5N+(”—1)'5w—z5{a},
aeN
which has n + 2 non-zero values. However, this is not the standard imset with maximal possible number of non-zero values
for n > 3. The simplest example of an essential graph whose respective standard imset achieves the maximum 2n of non-
zero values is given in Fig. 11. Thus, there is no monotonic relation between the “complexity” of the essential graph and the
“complexity” of the respective standard imset. Note there is a direct formula for the number e of edges (in the essential
graph) in terms of the standard imset u:

e:n-(nz—U_Z |5\(|~2§‘_1)u(5)

SCN

The formula follows from Lemma 7.1 and Proposition 4.3 in [19].

We will now show why the transition from the essential graph H to the standard imset uy is of polynomial complexity in
the number of variables n = |[N|. We base our consideration on formula (4) from Lemma 5.1. It follows from Lemma 5.2 that
no terms in (4) cancel each other. In particular, (4) has at most 2n terms and it suffices to show that each of them is iden-
tifiable with polynomial complexity. The basic step is to identify components in H. This is a step of polynomial complexity
because it can be transformed to the task of finding components in an undirected graph.'® To determine core(H) it is enough
to find a terminal component in H and check whether it is an idle set.'® Both these procedures are clearly polynominal in n.
Finally, for every core-component C € %..(H) one has to determine pay,(C) and cliques and (multiplicities) of separators of
the induced subgraph Hc. However, H¢ is decomposable by Lemma 2.1 and one can apply well-known polynomial graphical
procedures for determining an ordering of its cliques satisfying the running intersection property (1). For example, one can
use the maximum cardinality search algorithm [8] for this purpose.

5 If u # 0 then the minimal value for u(L) is —1 and the maximal value is achieved for L satisfying one of the conditions (a), (c), (d) and (e). In the case (c),
given a component C, the number of cliques of (decomposable graph) Hc is at most |C| < n, which implies the sum of multiplicities of separators of H is at most
n— 1. In cases (d) and (e) realize that the number of non-initial components is at most n — 1 and the number of initial ones at most n.

16 Actually, u(L) can be encoded with [Inyn] bits.

7 Our basic memory demands comparison leaves aside the question of addressing variables, which depends on a particular implementation.

8 Indeed, consider provisional removal of arrows in H.

19 It is shown in the proof of Lemma 6.1 that if H is an essential graph and core(H) c N then the largest idle set N \ core(H) is the super-terminal component in
H, in particular, the unique terminal component in H.
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Finally, we give an upper bound on the complexity of the reconstruction algorithm.

Theorem 3. Both the recursive algorithm Reconstruct from Table 7 and its non-recursive version consisting of procedures
Decompose and Compose from Tables 8 and 9 can be implemented with complexity (at most) O(n*).

The proof, which comes from our R implementation, can be found in the Appendix - see Section A.9, where we also give
arguments why the testing algorithm Testing from Table 13 can be implemented with ©(n*), too. Let us conclude this section
with a remark on a potential alternative algorithm.

Remark 3. A careful reader familiar with the literature in the field may wonder why we have not tried (instead of proposing
a new algorithm) to utilize existing algorithms for our goal. Indeed, in [12] a reconstruction algorithm for the essential graph
was proposed, which can use as its input the (complete) list of represented conditional independence (CI) statements.

Moreover, there are ways to check whether a given CI statement is represented in a given structural imset*’: the
theoretical basis for this algebraic method is described in Section 6.3 of [19]. The trouble is that practical computer testing of
this independence implication is still an open research topic. Although some promising and effective algorithms have been
proposed recently [5], it is still unclear how they would work with a high number of variables. Our hypothesis is that testing
whether a CI statement is represented in a general structural imset has (at least) an exponential complexity in the number of
variables.?! On the other hand, although we conjecture that testing whether a CI statement is represented in a standard imset
could be verified (algebraically) with polynomial complexity, we have not proven it. Therefore, we prefer to have a direct
polynomial algorithm (for reconstructing the essential graph on the basis of the standard imset) which does not need to recover
the respective list of CI statements. Actually, we believe that it will work better than a potential polynomial algorithm based on
the reconstruction of the respective CI structure.

9. Conclusions

In the paper, we have established a connection between essential graphs and standard imsets, which are both unique rep-
resentatives of Bayesian network statistical models. Note that the algorithm presented here was already mentioned (without
the proof of its correctness) in [23]. In that paper we gave further motivational details and described (in Section 8 of [23]) the
relationship of these two representatives to the third possible way of representing Bayesian network statistical models,
namely to hierarchical junction trees [14].

To outline potential future application of the algorithm presented in this paper let us discuss our motives in more detail. It
has already been mentioned in the Introduction that we hope the algebraic view can simplify some existing methods for
learning Bayesian network structures. We have in mind procedures based on the maximization of a quality criterion 2. A
popular method for tackling this task is the method of local search. Let us describe it informally (see also Section 8.2 of
[19]). The idea is that one introduces a specific search space, which consists of the collection of states and the collection
of moves between states. The states are representatives of (Bayesian network) statistical models, typically graphs, and the
moves are pre-defined “local” shifts towards “neighboring” states, typically introduced as graphical transformations. That
means every particular version of the local search method has a pre-defined neighborhood structure in the class of represen-
tatives (cf. Section 4.3 in [4]). The goal of the method is then to find a local maximum of a quality criterion 2 with respect to
the corresponding neighborhood structure.

There are some theoretical reasons why researchers in this area consider the inclusion neighborhood (see [13,6] for those
arguments). This concept is motivated by the conditional independence interpretation of Bayesian network statistical struc-
tures [10,3]. A standard example of the local search method is the greedy equivalence search (GES) algorithm proposed in [13].
This algorithm was modified in [7], where the states are represented by essential graphs and the moves are graphical trans-
formations that together exhaust the inclusion neighborhood.

The GES algorithm, as described in [7] has one (minor) weak point: the description of the moves in terms of graphical
transformations is complicated. Every move is realized as applying a special complex graphical operator to the essential
graph and then running two graphical transformational algorithms: one of them transforms the resulting hybrid graph to
an acyclic directed graph and the other the directed graph back into a chain graph.

The algebraic view can simplify the method. If a Bayesian network structure is represented by the respective standard
imset then the move towards a neighboring state in the sense of the inclusion neighborhood corresponds to adding, or sub-
tracting, a certain elementary imset, called a differential imset in Section 8.4.2 in [19]. This imset is very simple, it only has
four non-zero values. Moreover, it has a conditional independence interpretation: it corresponds to a statement a-Lb|C,
where a, b € N are distinct and CC N\ {a, b}.?? In the paper [20] the whole inclusion neighborhood of a given Bayesian network
structure is characterized. More specifically, given the respective essential graph, all the moves towards its inclusion neighbors
are described there. They are described in the form of triplets a-L b|C defining differential imsets.

20 This is a wider class of imsets — see Remark 1 concluding Section 2.3.

21 Note that structural imsets are able to describe all probabilistic CI structures and the number of these CI structures grows super-exponentially with the
number of variables - see Corollary 2.7 in [19].

22 Note that A[LB|C means A is conditionally independent of B given C.



M. Studeny, ]. Vomlel/ International Journal of Approximate Reasoning 50 (2009) 385-413 405

Thus, one can come with the following hybrid method, which can be interpreted as a modification (simplification) of the
GES algorithm. Every Bayesian network structure can be represented by a pair of representatives: by the essential graph and
the standard imset. As explained above, the essential graph allows one to find all possible moves (in the sense of the inclu-
sion neighborhood) represented uniquely in the form of differential imsets. The maximization of the increase in the criterion
9 gives the “optimal” move. Then the standard imset representing the neighboring structure will be obtained by adding or
subtracting the respective differential imset. Finally, the algorithm described in this paper provides the respective essential
graph and the “greedy” search can continue. Actually, this modification of GES has already been described in [24], where
some preliminary experiments were also reported.

A topic of future research can be the development of a fully algebraic method for learning Bayesian network structures. By
this we mean a modification of the procedure described above in which every Bayesian network structure will be repre-
sented only by the respective standard imset. The advantage of that potential future method would be its methodological
clarity. However, what is needed for this purpose is to characterize the inclusion neighborhood in terms of the standard im-
set. This is one of our open problems to be solved. Perhaps the algorithm presented in this paper can give a clue for dealing
with that problem.

On the other hand, the algebraic point of view offers other options for the neighborhood structure, different from the
inclusion neighborhood. In [21], we have introduced the concept of the geometric neighborhood that allows one to find
the global maximum (of a score equivalent decomposable criterion) using the greedy search approach. Note that another
method for finding the global optimum, motivated by dynamic programming, was presented in [16].
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Appendix A
A.1. The proof of Lemma 5.1

The first step is to show that, for a graph of the considered type, there is a correspondence between cliques of the closure
graph for a component and cliques of the respective induced subgraph. Note that this need not be true if the graph has flags -
see Example 5.

Lemma 9.1. Let H be a chain graph without flags which is equivalent to an acyclic directed graph. Then, for every C € ¢(H), the
collection of cliques #°(C) of the closure graph has the form {K upay(C); K € 2 (C)}. Moreover, #(C) = {SuUpay(C); S € #(C)}
and Vc(SUpay(C)) = ve(S) for every S € &#(C). In particular, one has

Uy = oy — & + Z {5paH Z Okupay(C) + Z Ve(S) - Isupay( )} (12)
)

Ce%(H Kex(C Ses(C)

Proof 9. The facts that pag(C) is complete in H(C) and H has no flags imply that whenever L is complete in H(C) then
LuUpay(C) is complete in H(C). In particular, every clique of H(C) contains pay(C). The same two arguments imply that
K C C is complete in Hc iff K U pag(C) is complete in H(C). This allows us to observe that the collection of cliques of H(C)
is the class {K U pay(C); K € #°(C)}. By Lemma 2.3, the graph H¢ is decomposable and the class of its cliques can be ordered
into a sequence K1,...,Ky,, m > 1 satisfying (1). Put K; = K; U pay(C) for i = 1,...m and observe that K;,...,K,, m > 1 sat-
isfies the running intersection property as well. Since the collection of separators and their multiplicities do not depend on
the choice of an ordering of this type, this implies that .7(C) = {S; U pay(C); 2 < m} with S; = Ki 0 (J;;K;). Therefore,
Ve(SUpay(C)) = ve(S) for every S € &(C). The formula (12) now easily follows from the formula (3). O

Now, the proof of Lemma 5.1 follows.

Proof 10. We start with the formula (3) and rewrite it into three special sums as follows:

ur=0on+ Y, {0 Z o + Z ve(S (13)

Ceb(H)\%core(H) Kex'(C Se7(C
UPRCD SUED SRt .
Cebeore(H)  KeA(C) Se7(c
—0t Y o y
Ce%beore(H)

The first step is to show that the expression on the right-hand side of (13) equals to dcerem). Let B be the largest idle set in H.
Then € (H) \ %core(H) consists of components in H contained in B. If B = () then the statement is evident. If B # () then the fact
that Hp is a chain graph implies that ¥(H) \ %.or(H) can be ordered into a chain Cy,...,Cy, k > 1. The fact that H is a chain
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graph and the conditions (i1) and (i2) from Section 4.2 imply that pay,(C;) = core(H), pay(Ci1) = CiUpay(C;) for
i=1,....,k—1 and C,Upay(Cy) = N. Moreover, for every i=1,...,k, the closure graph H(C;) consists of one clique
C; U pay(C;) which implies > k) Ok = Ociupan(c 5 and Z(C;) = 0. In partlcular the expression in (13) has the form

k
N+ Y Spay(c) — dcipay(cy-
i=1

In this expression, all terms except for dpq,(c,) = dcore) Cancel each other.

To show the first claim of Lemma 5.1 assume core(H) = (). The above observation then implies that the expression in (13)
is +Jy. Because %core(H) = 0, the expression in (14) is 0 and the expression in (15) is —d;. In particular, core(H) = ) implies
ug = 0.

Now, assume core(H) # (. It follows from Lemma 9.1 that, for every C € %ore(H), the expression in braces in (14) has the

form
- Z Oxupay () + Z Ve(S) « Ostpay(c)-

Kex(C Ses(C

Thus, to verify the formula (4) for uy in the case core(H) # () it remains to show that the expression in (15) has the form

> T(P)-op+ {i(H) — 1} - 8.

P€Pcore(H)

This follows easily from the fact that, in this case, every initial component is in %..(H) and the definition of parent sets,
including their multiplicities.

Finally, if core(H) #  then, by Lemmas 4.1 and 4.2, the term Jcre(v) Cannot be cancelled by any other term in the formula
(4). In particular, uy # 0 then. O

A.2. The proof of Lemma 5.2

We first prove an auxiliary observation, which will also be utilized later.

Lemma 9.2. Let H be an essential graph over N and u = uy the respective standard imset. Assume that C € %core(H) and
L =X Upay(C) where X C C is non-empty and complete in H. Then L ¢ Pcore(H); if L € &, then X € &(C).

Proof 11. Assume for a contradiction that L € 2, (H), that is, L = pa,(C') # () for C' € €core(H). Let us put C, = C, C, = C and
observe that the conditions {i} and {ii} from Section 2.2 are fulfilled: pa,(C,) " C, = pay(C)NnC =LnNC = X is a non-empty
complete set in H and pay(C;) \ C, = L\ C = pay(C) = pay(Cy). Thus, the components C, and C, can be legally merged which,
by Lemma 2.2, contradicts the assumption that H is an essential graph.

Therefore, if L€ #,, that is, u(L) >0, 0 #L cC core(u), then the formula (4) in Lemma 5.1 together with facts
core(u) = core(H) (see Section 5.2) and L ¢ Zcore(H) implies L = SU pay(C') for C' € ere(H) and S € &(C'). Note that S #
by Lemma 4.1. As H; is a chain graph without flags the facts L = S U pay(C'), S C C' imply that S is a super-terminal component
in Hy, while the facts L = X U pay(C), X C C imply the same conclusion for X. The uniqueness of a super-terminal component
in H; implies S = X. The observation S = X gives C = C'. Thus, X =S¢ #(C). O

Now, the proof of Lemma 5.2 follows. It is based on the formula (4) from Lemma 5.1.

Proof 12. The cases (a)-(e) from Lemma 5.2 correspond to terms in the formula (4). Therefore, it is enough to show that the
cases (a)-(e) exclude each other - the case (f) is the complementary case then. What are the values of uy(L) in respective
cases then follows from the formula (4).

By Lemma 5.1, uy # 0 implies core(H) # 0 and, by Lemmas 4.1 and 4.2, all sets of the form (b)-(d) are proper subsets of
core(H). Thus, the case (a) for a set L C N excludes the cases (b)-(e) for L. Lemmas 4.1 and 4.2 also imply that the case (e),
namely L = (), is incompatible with the cases (b)-(d). The next step is to show that the case (d) and the cases (b) and (c)
cannot occur simultaneously for a set L C N. However, this follows from Lemma 9.2 using Lemma 4.1.

The last step is to show that if L is of type (b)-(c) then there exist unique C € Gcore(H) and Y € #(C) U #(C) with
L =Y Upay(C). This, together with the fact #°(C) N #(C) = 0 (see Section 2.1.1), means that the cases (b) and (c) exclude each
other. It also implies the last statements in Lemma 5.2.

Thus, assume for a contradiction that one has two distinct “decompositions” of L, namely Y U pay(C) =L =Y’ Upay(C)
for C,C' € Geore(H), Y € #(C)Uu&(C) and Y € #(C)u(C). Observe that C and C are distinct for otherwise we
immediately get Y =Y'. Let us choose x € Y CC. As CNC' = () observe that x € L\ C' = pay(C’) and find y € C’ with x — y
in H. Analogously, choose x' € Y' C C', observe X' € pay(C) and find y’ € C with ¥ — ¥’ in H. As both C and C’ are connected
there exists a semi-directed cycle x -y —---—x' —y — ... —x in H, which contradicts the assumption that H is a chain
graph. O
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A.3. The proof of Lemma 6.3

We first need an auxiliary result on leaf-cliques (introduced in Section 2.1.1).

Lemma 9.3. Let G be a decomposable graph over N and %" the system of its cliques. Then the following two conditions are
equivalent for K € x:

e K is a leaf-clique of G,
o there exists an ordering Ki,...,Kn, m > 1 of elements of - satisfying the running intersection property (1) such that
K =K.

Let & denote the systems of separators of G and v(S') the multiplicity of S € & in G. Let K € " be a leaf-clique of G and

=K\ U\ {K}) the residual of K. If |.#"| = 2 then the graph Gy\r has o\ {K} as the system of cliques and S = K \ R belongs
to the system ¥ of separators of G. If v(S) = 1 then Gy\r has & \ {S} as the system of separators; if v(S) > 2 then & is the system of
separators of Gy\g. Moreover, the multiplicity of S’ € %\ {S} in G is v(S') and if v(S) > 2, then the multiplicity of S in Gy is
v(S) - 1.

Proof 13. The requirement K = K, for an ordering K1, ...,K,, m > 2 satisfying (1) is clearly sufficient for the existence of
K' e o\ {K} with Kn{J(# \ {K})CK'. If m=1 then #" = {K} and K is also a leaf-clique.

To verify the necessity of the condition we first show that if K € ¢ is a leaf and |#7| > 2 then #” = »# \ {K} is the
collection of cliques of Gy\g, where R = K\ |J #” is the residual. Of course, every K’ € #” is disjoint from R. As K’ is complete
in Gy\r there exists a clique L of Gy\g with K’ C L. However, L is complete in G, which implies K’ = L and, therefore, K’ is a
clique of Gy\g. Conversely, assume that K is a clique of Gn\g. As it is complete in G, there exists K’ € . with K CK'. We can
assume without loss of generality that K’ # K, for otherwise the assumption that K is a leaf implies the existence of K" € %"
such that KCK\R=Kn U#" CK”, and K = K’ can be replaced by K”. However, we already know that every K’ € #” is a
complete subset in Gyg. As K is a clique of Gy it implies K = K’ and K € "\ {K}.

Now, since Gy is a decomposable graph, the system of its cliques .#”" can be ordered into a sequence K, ..., Kp_1,m > 2
satisfying the running intersection property. We put K, = K and obtain an ordering of .#" satisfying this property.

The statement concerning the separators is now easy to see. Let us consider an ordering K1, ...,Kp,, m > 2 of elements of
o satisfying (1) and K, = K. Because Kj,...,Ky_; is an ordering of cliques of Gy satisfying the running intersection
property, the sets S; = K; N J;;Kj, i < m are both separators of Gy\z and G. Moreover, Sm = Km N U;.,K; is a separator of G;
and obviously S, =KnU#"=K\R O

Now, the proof of Lemma 6.3 follows.

Proof 14. To verify the first claim in Lemma 6.3 consider a € R and b € N such that [a, b] is an edge in H and show b € T.
The assumption (7) implies that no arrow in H is directed out of R and therefore, —=(a — b in H). The next step is to
show

acR, beN, a-binH = beKCT. (16)

Indeed, a € RC K C C implies that {a, b} is a complete set in Hc. Thus, there exists K € #(C) with {a,b} C K. However, by the
definition of the residual R = K \ Uy () i, K’ we can derive K = K which gives b € K and (16) is verified. Finally, if a — b in
H then a € RCK CC implies b € pay(C) CT. Thus, the first claim in Lemma 6.3 has been verified.

The fact that there is no arrow in H from R also implies that M = N \ R is closed under parents. In particular, by Corollary
2.1, Hy is an essential graph. Let w be the standard imset corresponding to Hy; and W its zero extension to subsets of N.2* Qur
aim is to show

u_WzéN_éM_5T+5T\R~ (17)

This fact already implies the remaining statements of Lemma 6.3.24 The first step to show (17) is to characterize the class of
components in Hy. We show that

e %(Hy) = %(H)\ {C} if Cn'M =0, and
e ¢(Hy) = {CNM}U%(H)\ {C} otherwise.

Indeed, the fact (16) implies that ney(R) C K is a complete set in Hcyv. Therefore, every undirected path in Hc between two
nodes in C N M which hits R can be shortened to an undirected path in Hcy. This implies that the set C 1 M is connected in
Hy. Since every C' € (H) \ {C} is a connected set in Hy and {C' " M; C' € %(H)} is a partition of M, it is the class of compo-
nents in Hy, except for the case CnM = {, in which case C N M has to be removed.

23 That means we put w(Q) = w(Q) if QCM and w(Q) =0if QCN, 0 # Q \ M.
24 Indeed, (17) means that the imset W coincides with the imset W introduced in the formulation of Lemma 6.3.
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The second step to show (17) is to utilize the formula (12) from Lemma 9.1. It says that

U=uy=0y—0+ Z { pay(C') — Z 5K’upa C’)+ Z VC/ 5SupaH( )}7 (18)
)

Ce%(H K'ex(C') Ses(C')

where v (S) is the multiplicity of S € &(C'). If (12) is applied to H = Hy?° then it gives

W= dy —d + Z {pa,\c, - Z 5l<’upa © + Z ve(S 5Supaﬁ(C’)}7 (19)
e X (C

C'ee(H se7(C)

where the hat in y/(C’), Z(C) and ¢ indicates that they correspond to H = Hy,. Obviously, for every C' € %(H) \ {C} one has
pay(C') =pa_(C') and (H)» = He. Therefore, the respective terms in (18) and (19) coincide and cancel each other in u — w.
Hence, only itIerms én, ou and the terms corresponding to C € ¥(H) and possibly CNM e f/( ) (if CNM # @) remain in the
formula for u — w.

Thus, if CN M = 0, then R = K = C, which gives #'(C) = {K}, #(C) = and no term corresponding to CNM € ¢(H) is
present in (19). In particular, one has

U =W = 0N + {Ipay(©) — Okupay(c)} — Om-

As KUpay,(C) =T and pay(C) =T\ K =T \R it gives (17).
In the case CN M # ) we know that pay(C) = pa_(Cn M)?® and, therefore,

u-— W = 5N + Z 6I<’upa,., + Z VC 5SupaH C)
K'ex(C Ses(C
—om — {— Z 61(’upa,ﬁ(CmM) + Z Veam(S) - 5Supuﬁ(CmM) }

K'e X (CnM) Se 7 (CnM)

We thus need to explicate the terms corresponding to CNM =C\R. Lemma 9.3 applied to G=Hc implies that
(CﬂM) #°(C)\ {K} and that the separators of Heom = Hew are obtained from the separators for Hc by “reducing”
the multiplicity of K \ R by 1. Thus, nearly all terms in the above formula cancel each other and we have

U—W =y + {—dkupay(©) + dk\Riupay(©)} — OM = On — dm — O + Ong,
because (K \ R) Upay(C) = (KU pay(C)) \ R=T \ R. This completes the proof of (17). O

AA4. Proof of Lemma 6.4

Throughout the proof we utilize the observations from Section 5.2, namely (5) and (6). Recall that we also assume in Lem-
ma 6.4 that u is adapted for which reason one has % (H) = ¥(H) for the respective essential graph H.

Proof 15. 1. The first claim is that |y £, = W,,.

If a € | Z, then there exists L € %, with a € L. The condition (6) implies there exists C € ¢(H) such that either a € pay(C)
or a €S for some S € #(C). If a € pay(C) then consider C' € ¥(H) with a € C, find K’ € 27 (C") with a € K’, choose K € #(C)
and observe that a € TNT where T = K U pay(C) and T' = K’ Upay(C'). By (5) T,T' € 7, T # T’ and, thus, a € W,,. If a € S for
S € #(C) then there exist two distinct cliques K,K’ € #°(C) such that S = KN K. In particular,a € TN T' where T = K U pay(C)
and T' = K’ U pay(C), and (5) gives a € W,,.

Conversely, if ac W, then, by (5), there are C,C'c%H), Kex(C) and K € #(C"), K#K' such that
a € (Kupay(C)) n (K upay(C)). If a € pay(C) Upay(C') then a €L for some L € Peore(H) and L€ £, by (6). If ac KNK’
then necessarily C = C'. Now, the intersection of two different cliques of a decomposable graph has to be a subset of a
separator of the graph. Therefore, there exists S € #(C) with KNnK' CS and, by (6), a € SCSuUpay(C) € #,. Thus, in both
cases a € |J Zu.

II. A further useful observation is that pay(C) C W, for every C € ¢(H).

The statement is evident if pay(C) =0. If pay(C)# 0 then pay(C) € Peore(H) because core(H) = N. Then, by (6),
pay(C) € £y, that is, pay(C) C J Ly = W, by Step L.

III. Assume T = K U pay(C), C € 4(H), K € #°(C) has the form (7) and show R =T\ W,.

25 Recall that w is the zero extension of w which means that formulas for w and w formally coincide; what is different is that in the case of w a wider domain is
considered, namely the power set of N.
26 Recall that H has no flags.
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Ifae R=K\J(x(C)\ {K}) then a € T and it suffices to show that a ¢ W,. Assume for contradiction a € W, and consider
T ¢ 7,, T # Twitha e T, where T' = K’ U pay(C') for C' € ¢(H), K' € 2 (C'). If a € K’ then necessarily C = C' and K # K'. The
facts a € R and a € K’ then contradict each other. If a € pay(C') then there is an arrow in H from a € R which contradicts (7).
We have thus shown RC T\ W,,.

If a € T\ W, then assume for contradiction a ¢ R. As T = K U pay(C) and pay(C) C Wy, by Step II, necessarily a € K. Then
ae K\R=KnU(x(C)\ {K}) implies the existence of K’ € #'(C), K’ # K with a € K'. Hence,a € T' = K’ Upay(C), T # T and
a € Wy, which contradicts the assumption. Thus, we have shown T\ W, CR.

IV. Now, we are ready to verify (7) = (8) for T € 7.

The condition (7) involves the requirement that K is a leaf of Hc and has non-empty residual. Thus, Step III gives
T\Wy=R#0 and TnW, =T\ R= (KUpay(C))\R= (K\R)Upay(C). To verify (8) it remains to be shown that if
TnWy#0thenTnW, € Z,. If K\R=0then® # TnW, =pay(C) € Peore(H) C £y, by (6). If K\ R+# 0 then |#(C)| > 2 and
Lemma 9.3 applied to G = H¢ implies S = K\ R € &(C). Hence, TN W, = SUpay(C) € ¥y C ¥, by (6). In both cases, we have
verified (8).

V. The last step is to show that (8) = (7) for T € 7.

The condition (5) says T = K U pay(C), where C € ¥(H) and K € #'(C). Step II implies that there is no arrow in H from
nodes in K\ W, and that the assumption T\ W, # § from (8) means K\ W, # (. Let us distinguish two cases, namely
KnWy, =0and KnW, # 0.

If KN W, = 0 then observe #(C) = {K}. Indeed, if we assume for contradiction |#’(C)| > 2 then there exists a separator
Se %(C) such that SCK. By (6) and Step [, SC |J %, =W, for any S e &(C). However, according to Lemma 4.1,
0 # S C K n Wy, which contradicts the assumption. Thus, #°(C) = {K} implies that K is a leaf of Hc and we already know that
there is no arrow in H from R = K = K \ W,,. In particular, (7) holds.

If KNnWy #0 then L=TnW, € &, by (8). Step II gives pay(C) C Wy, which implies L = (K nW,) Upay(C). Thus, the
assumptions of Lemma 9.2 with X = K n W, are fulfilled. Hence, X € &(C) is a separator of Hc and there exist at least two
cliques of Hc containing X. In particular, there exists K' € #°(C)\ {K} with XCK'. The definition of W, gives
KnK' cKnU#(O)\ {K}) CKnW, =X CKnK', which implies that K is a leaf of Hc and Kn{J(#'(C) \ {K}) = KN W,. In
particular, the residual R of K has the form R = K\ (K n W) = K\ W,. We already know, by Step II, that there is no arrow in H
from K\ W, = R. Thus, the condition (7) was verified in this case as well. O

A.5. Proof of Lemma 6.5

Proof 16. Recall that the assumption is that T = K U pay(C) where C € ¢¥(H), K € ' (C) satisfies (7). The respective residual
R=K\ (¥ (C)\ {K}) is a subset of C, which implies

L=T\R=(K\R)Upay(C).

Now, if |.#(C)| = 1 then K\ R = 0 gives L = pay(C); that is, the condition (p). On the other hand, if | #'(C)| > 2 then Lemma
9.3 applied to G = Hc¢ gives K\ R € #(C), that is, the condition (s). The conditions (s) and (p) exclude each other by Lemma
5.2: the cases (c) and (d)-(e) are incompatible.

The next step is to verify (9) = (s). It suffices to show that the condition (p) is not valid. The assumption (9) gives directly
T\ R # ( and it remains to verify L ¢ Z...(H). The condition (9) also says that H; has a complete component X such that
pay,, (X) =L\X. By (7) there is no arrow in H from R=N\M and this gives pay, (X)=pay(X). In particular,
L=XU(L\X)=XuUpay(X), that is, L = X Upay(C") where C' € ¥(H) is the component in H containing X. Thus, Lemma 9.2
says L ¢ Pcore(H) and (s) holds. We have Su pay (C) = L = X U pay(C'). This, together with the fact that H has no flags, allows
us to show that both S and X are super-terminal components in H; and, therefore, C = C’ and S = X.

The last step is to show (s) = (9). Let us assume T \ R = SUpay(C) with S € #(C). By Lemma 4.1, S is a non-empty
complete subset of C. Thus, T \ R # 0 and (s) implies that S is a complete component in Hr\g. Moreover, as H is a chain graph
without flags the fact that pay(C) \ M = pay(C) NR = ¢ implies pay,, (S) = pay(C) = (SUpay(C))\S= (T\R)\S=T\ (RUS).
Thus, the condition (9) holds with X =S. O

A.6. Proof of Lemma 7.1

Proof 17. To show that H is a chain graph, assume for a contradiction that a semi-directed cycle in H exists. As G is a chain
graph, the cycle has to contain a node in the set of “new” nodes R = T \ M. The only edges between nodes in M and R are
arrows from L\ Z directed to R and possibly lines between Z and R. Every section of the cycle with internal nodes in R
between nodes in Z = X can be shortened by a line in X; every section in R fromy € L\ Z to z € Z = X can be replaced by a
path of the form y — x—z in G, or by an arrow y — z; this follows from the condition in line 5 of Table 6. Thus, a semi-directed
cycle in G is obtained, which contradicts the assumption that G is a chain graph.

To show the second statement of the lemma we use the characterization of essential graphs from Lemma 2.2. We already
know that H has to be a chain graph and we are going to verify that H satisfies the other three conditions in Lemma 2.2. The
assumption that G is an essential graph implies that it has no flags. Therefore,y — zin G for every y € L \ Z and z € Z owing to
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the condition in line 5 of Table 6 (where Z = X). In particular, since the procedure Extend just adds lines between Z and R and
within R and arrows from L\ Z to R it does not create a new flag in the resulting graph H. Thus, H has no flags.

The next goal is to show that induced subgraphs for components in H are decomposable. The difference between the
components in G and H is that either R becomes a new complete component in H or the component Cin G containing Z = X is
enlarged by R (this happens if the condition in line 5 of Table 6 is valid). In the latter case, C UR becomes a component in H,
K =Z UR becomes a clique of the induced subgraph H¢ r and the intersection of K with the other cliques of Hc y is just Z.
Thus, RUZ can be placed as the last clique in an ordering of those cliques satisfying the running intersection property. This
argument allows us to show what is desired (see Section 2.1.1).

To show that no pair of components in H can be legally merged (see Section 2.2) we distinguish the same two cases. If the
condition in line 5 of Table 6 is fulfilled then R just enlarges an “old” component in G. Because there is no arrow in H directed
out of nodes in R, one has pay(C) = pa;(C n M) for every C € ¥(H). Hence, two components in H can be legally merged only if
the corresponding components in G can be legally merged. Thus, by the assumption about G, they cannot be legally merged.
If the condition in line 5 of Table 6 is not valid then Z = () and R becomes a “new” complete component in H and there are no
arrows in H directed out of R. We can analogously observe that no pair of “old” components can be legally merged. It remains
to be verified that R cannot be legally merged with another component in H. Assume the opposite for a contradiction. Thus,
there must be a component C in G such that if we put C, = C and C, = R then the conditions {i}-{ii} from Section 2.2 hold.
Observe that then the condition in line 5 of Table 6 is valid with X = pay(R) nC and L = pay(R), which contradicts the
assumption. 0O

A.7. Proof of Theorem 1

Proof 18. This can be proven by induction on N. If [N| = 1 then H is the only possible graph over N. It can be viewed as a
complete undirected graph over N. By formula (3), u = 0 and the subroutine Reconstruct has to return H in line 2 of Table 7.

If IN| > 2 then we already use the induction hypothesis: if the procedure Reconstruct is applied to a standard imset w
over ) # M C N then it returns the respective essential graph. Now, we distinguish three cases.

If u = 0 then Lemma 6.1 says that the respective essential graph is a complete undirected graph over N, which is just the
graph returned in line 2 of Table 7.

If u # 0 is not adapted to N then () # core(u) = M by Corollary 5.1; Lemma 6.2 says that the restriction w of u to the power
set of M C N is the standard imset for the induced subgraph Hy. It was already explained in the text above Table 4 that the
result of the subroutine Adapt is just w. Therefore, according to the induction hypothesis, the graph G obtained in line 4 of
Table 7 is simply Hy. The fact that w is adapted gives core(G) = core(w) = M, which means G has no super-terminal
component. Therefore, if the subroutine Extend is applied to G and T = N then the condition in line 5 of Table 6 is not
fulfilled.?” In particular, the graph H returned by the subroutine is obtained from G by “adding” a super-terminal component
N\ M and Lemma 6.2 implies it coincides with the respective essential graph over N.

If u is an adapted standard imset, then Lemma 6.3 describes how to obtain the standard imset w over a (special)
proper subset M C N, which corresponds to the induced subgraph Hy, of the respective essential graph H. This is exactly
what is described in subroutine Reduce from Table 5. Recall that the condition (7) from Lemma 6.3 is replaced in line 4 of
Table 5 with an equivalent condition (8) from Lemma 6.4, which also says R =T \ W. Note that M # () because it contains
N\Tand T c N for every T € 7, by Corollary 5.1. By the induction hypothesis, the induced subgraph G = Hy is obtained
in line 8 of Table 7. Now, realize that the output sets M and T from Reduce are input sets for Extend. In particular, the set
R has the same meaning in both subroutines and L =T\ R. Moreover, by Lemma 6.4, R is the residual of K from the
condition (7) and has the same meaning in Lemma 6.5. The fact that the subroutine Extend in line 9 of Table 7 results in
the desired essential graph H follows from Lemma 6.5: indeed, if the condition in line 5 of Table 6 holds then (9) is
fulfilled, which is equivalent to the condition (s) from Lemma 6.5. Because H is a chain graph without flags, the condition
(s) corresponds to the case that K = SUR = X UR becomes a super-terminal component in Hr with T\ (RUX) as the set of
parents in H. This is what is described in lines 7-9 of Table 6 with L = T\ R and Z = X. On the other hand, if the condition
in line 5 of Table 6 does not hold then (9) is not valid, which is equivalent to the condition (p) from Lemma 6.5. This
corresponds to the case that R becomes a super-terminal component in Hr with L =T \ R as the set of parents in H. The
respective reconstruction step is also described in lines 7-9 of Table 6, this time with Z = (. In particular, due to the fact
there is no edge in H between R and N\ T (see Lemma 6.3), in both cases the essential graph H is returned in line 10 of
Table 7. O

A.8. Proof of Theorem 2

Proof 19. First, note that a basic necessary condition for a standard imset u over N is that the sum of absolute values of its
values Y s y[u(S)| is at most 2n. This follows directly from the formula (2) in Section 2.3 and the observation that the term

27 This follows from the fact that G = G; has no super-terminal component. Indeed, as explained in the text above Lemma 7.1, if G = Hy is an essential graph
then the set X in line 5 of Table 6 has to be the super-terminal component in G, = G.
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—dy in (2) cancels with +0,4. () for some a* € N. Thus, if the condition in line 2 of Table 13 is valid then u is not standard.
Further necessary conditions on a standard imset u over Nare Y s yu(S) =0andVie N > ;s yu(S) = O: realize that if one
has u = u¢ where uc is given by the formula (2) in Section 2.3 then u satisfies these two conditions. Hence, if one of the
conditions in line 3 of Table 13 is valid then u is again not standard.

We prove the desired statement by induction on N. If [N| = 1 then the only imset over N which is not excluded in line 3 is
the zero imset. However, this imset is known to be a standard imset (see Lemma 6.1); therefore, the procedure gives the right
answer in this case.

If [IN| > 2 then we can use the induction hypothesis. It says that if the procedure Testing is applied to an imset w over
0 # M C N then it gives the right answer. We distinguish three cases. If u = 0 then u is a standard imset and the same answer
is given in line 4 of Table 13.

If u # 0 but u(N) = 0 then the adaptation subroutine from Table 11 is applied. If u is a standard imset then Corollary 5.1
implies that the largest set M c N with u(M) # 0 exists. Thus, the set chosen in line 1 of Table 11 coincides with this largest
set M then; moreover, u(Q) = 0 whenever Q C N, Q \ M # 0. In particular, if the condition in line 2 of Table 11 is valid then u
is not a standard imset. On the other hand, if the condition in line 2 is not satisfied then the difference between u and the
resulting imset w over M is just in their domains: u is the “zero” extension of w to subsets of N. By the induction hypothesis,
the result of recursively calling of Testing in line 6 of Table 13 is correct; that is, y = TRUE iff w is a standard imset over M.
We need to show that u is a standard imset iff w is a standard imset. One implication is given by Lemma 6.2; the converse
implication can be verified as follows. If w is a standard imset over M and G the respective essential graph (over M), then by
the construction described in Lemma 6.2 a graph H over N is obtained. Clearly, by Lemmas 2.1 and 2.3, it is a chain graph
without flags equivalent to an acyclic directed graph. Since w is adapted by construction, M = core(w) = core(G). The
construction of H is such that N\ M is a super-terminal components in H. Therefore, core(H) = M and the formula (4) in
Lemma 5.1 for uy gives the same values as for w with the proviso that u has zero values for sets that are not subsets of M.
Hence, u = uy is a standard imset over N.

If u(N) # 0 then the subroutine Reduce* is applied in line 7 of Table 13. If u is a standard imset then u(N) = 1 by Corollary
5.1 and, by Corollary 6.1, there exists T € 7 = .7, satisfying the condition in line 5 of Table 12. In particular, if one of the
conditions in line 4 of Table 12 holds then u is not a standard imset. However, if none of those conditions holds then one can
find the respective set T in line 5 of Table 12. If u is standard, then, by Lemma 6.4, the set T chosen in line 5 has the form (7).
Therefore, the assumptions of Lemma 6.3 are fulfilled, which implies that if we perform the steps in lines 6-8 of Table 12
then we get an imset w that vanishes for sets that are not subsets of M. In particular, if the condition in line 9 is fulfilled then
u is not a standard imset.

On the other hand, if conditions in lines 4 and 9 of Table 12 are not valid then the relation between u and the resulting
imset w over M from line 11 of Table 12 is that the imset W given in line 8 of Table 12 is the “zero” extension of w to all
subsets of N. By the induction hypothesis, the result of recursively calling of Testing in line 8 of Table 13 is correct. Thus,
y = TRUE iff w is a standard imset over M. It remains to show that u is a standard imset iff w is a standard imset. One
implication is given by Lemma 6.3; the converse can be shown directly. If w is a standard imset over M then consider the
respective essential graph G over M and construct a graph H over N as follows: Hy = G,Vy € T\ Rand z € Rincludey — zin H
and Vzq,z; € R z; # z; € Rinclude z; — z; in H. Then, by Lemmas 2.1 and 2.3, H is a chain graph without flags equivalent to an
acyclic directed graph: the only difference between G and H is that R is an additional terminal component with a single
clique. In particular, formula (12) in Lemma 9.1 applied to both G and H implies that the relation between uy and the “zero”
extension w of w = ug is this: uy — W = oy — op — 91 + dng. In particular, u = uy and u is a standard imset, which was the
desired conclusion. O

A.9. Proof of Theorem 3

In our R implementation, we have not tried to achieve the best possible theoretical computational efficiency. Instead, we
tried to utilize the routines that are already available in R. In the implementation, we represent every imset by an environ-
ment, which consists of a collection of variables. Each subset L of N is ascribed a unique natural number code defining the
name of the corresponding (integer-valued) variable. The imset value u(L) is kept as the value of that variable corresponding
to L. Only subsets with non-zero values are represented in the environment (of variables). We have used the hash function
available in R for efficient addressing of variables in the environment.

In the proof, an additive operation with two integers (summation, subtraction, comparison) is regarded as elementary,
that is, of constant complexity ¢(n°). The test whether two nodes a,b < N coincide will be considered to be of constant com-
plexity as well. Thus, testing whether a € L for a € N, L C N with |N| = n, is of linear complexity ¢(n') and, given two subsets
A, B of N, the usual set operations (creating AN B, A\ B, AU B and testing whether A = B or A C B) are considered to be oper-
ations of quadratic complexity ¢(n?). Transition from a subset L C N to its natural number code (and setting up the corre-
sponding integer-valued variable) will be considered of quadratic complexity ¢(n?). Since the comparison of two integers
is 0(n°), once subsets A,BC N have set up their codes (and variables) testing whether A = B, u(A) > 0 or u(B) < 0, respec-
tively, can already be done with constant complexity @(n°). A hybrid graph over N is represented by an incidence matrix
in our implementation. Thus, given a pair of nodes a, b € N, testing whether a—b, a — b or a — b in the graph is also consid-
ered as the operation of constant complexity @(n°).



412 M. Studeny, ]. Vomlel / International Journal of Approximate Reasoning 50 (2009) 385-413

Proof 20. In the following considerations we implicitly use the fact that if an imset u is an input for subroutines Adapt or
Reduce (Tables 4 and 5) then it satisfies the following conditions:

> [uS) <2INJ=2n and > u(S)=0. (20)

SCN SCN

This is because the input for these subroutines is always a standard imset over (a subset of) N (c.f. Sections A.7 and A.8). The
condition (20) implies that the complete list of sets L with u(L) 0 has at most 2n items, which is a fact used repeatedly
below. Observe that the input imset for the modified versions Adapt* and Reduce* (Tables 11 and 12), which are used in
the algorithm Testing (Table 13), also always satisfies (20).28

Now, let us discuss the complexity of the subroutine Adapt from Table 4. To find the maximal set M in line 1 one needs to
make at most 2n — 1 inclusion tests, which are of quadratic complexity. Thus, the step in line 1 has ¢(n?®) complexity. In line 2
of Table 4 one goes through the list of sets L with u(L) # 0, which has at most 2n items. For each set one makes the test
whether L C M and if this is not the case, the set is “removed” from the list. Thus, the step in line 2 has ¢(n®) complexity as
well. Therefore, the whole subroutine Adapt has complexity ¢(n3) and the same arguments hold for the subroutine Adapt’
from Table 11.

As concerns the subroutine Reduce from Table 5, the creation of the lists 7~ and .# in lines 1 and 2 and setting up codes
for the sets in the lists is at most of complexity @ (n?); the resulting lists will have the length at most 2n. The step in line 3 is of
0(n?) since to get union of at most 2n sets it is enough to do 2n — 1 pairwise unions. Given a set T € 7 (and the set W) in line
4, testing whether T\ W = §) is ¢(n?) and creating T N W is also ¢(n?). Now, testing whether TN W ¢ £ U {0} is already of
linear complexity.?® Since one has at most 2n sets T to be tested in line 4, the overall complexity of this step is ¢(n3). The steps
in lines 5 and 6 are ¢(n?) and the step in line 7 can even be done in ¢(n').3° The step in line 8 is identical with the step in line 2
of Adapt and has, therefore, @(n®) complexity. Altogether, the whole subroutine Reduce has ¢(n?) complexity. The same
arguments can be applied to the subroutine Reduce* from Table 12.

In the subroutine Extend from Table 6, steps in lines 1-3 have at most ¢(n?) complexity. The test for L # § in line 4 is of
quadratic complexity ¢(n?) as well. The restriction to (=the creation of) the induced subgraph G in line 4 can be done with
0(n3) complexity.! Finding a terminal component X in G; is also of @(n®) complexity.>? Testing whether X is complete in G; in
line 5 of Table 6 is of ¢(n?) complexity, the same complexity as finding of pa;(X) and the test for pac(X) = L\ X as well. Thus, the
step in line 5 has quadratic complexity ¢(n?). Finally, determining the graph H in lines 7-9 is again the step having at most of
0(n?) complexity. Therefore, the whole Extend subroutine has at most ¢(n?) complexity.

Now, as concerns the recursive algorithm Reconstruct from Table 7, the step in line 1 has at most quadratic complexity
and calling Adapt, Reduce or Extend is at most of ¢(n®) complexity. The recursion depth is at most n: this is because in each
round at least one variable is “removed” from the considered set of variables. Thus, complexity of the algorithm is at most
0(n*). The same argument holds for the non-recursive version of the algorithm, which only differs in the order of calling
subroutines.

As concerns the recursive algorithm Testing in Table 13, the arguments are analogous. The complexity of testing the
condition in line 2 of Table 13 depends on the internal computer representation of the imset u. If only non-zero values are
kept, then despite the fact the memory demands for representing a general imset u over N could be exponential, testing
whether the condition in line 2 is valid requires summing of at most 2n integers, which is of linear complexity.* Then testing
in line 3 of Table 13 is of ®(n®) complexity. The subroutines Adapt* or Reduce* are also called at most n times, which implies
that Testing is of (at most) ¢(n*) complexity. O
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