
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by: [Zagalak, P.]
On: 14 May 2009
Access details: Access Details: [subscription number 911175213]
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,
37-41 Mortimer Street, London W1T 3JH, UK

International Journal of Control
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713393989

On pole structure assignment in linear systems
J. J. Loiseau a; P. Zagalak b

a Institut de Recherche en Communications et en Cybernétique de Nantes, UMR 6597 CNRS, Ecole Centrale
de Nantes, F-44 321, Nantes, Cedex 03, France b Institute of Information Theory and Automation, Academy
of Sciences of the Czech Republic, PO Box 18, 182 08 Praha, Czech Republic

First Published:July2009

To cite this Article Loiseau, J. J. and Zagalak, P.(2009)'On pole structure assignment in linear systems',International Journal of
Control,82:7,1179 — 1192

To link to this Article: DOI: 10.1080/00207170802400954

URL: http://dx.doi.org/10.1080/00207170802400954

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713393989
http://dx.doi.org/10.1080/00207170802400954
http://www.informaworld.com/terms-and-conditions-of-access.pdf


International Journal of Control
Vol. 82, No. 7, July 2009, 1179–1192

On pole structure assignment in linear systems

J.J. Loiseaua and P. Zagalakb*

aInstitut de Recherche en Communications et en Cybernétique de Nantes, UMR 6597 CNRS, Ecole Centrale de Nantes,
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The problem of pole structure assignment (PSA) by state feedback in implicit, linear and uncontrollable systems
is discussed in the article. It is shown that the problem is solvable if the system is regularisable. Then necessary
and sufficient conditions for characteristic polynomial assignment are established. In the case of PSA (invariant
polynomials assignment) just necessary conditions have been obtained. But it turns out that these conditions are
also sufficient in some special cases. This happens, for example, when the system does not possess any non-proper
controllability indexes. A possible application of the achieved results to modelling a constrained movement of
a robot arm is outlined, too.
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1. Introduction

Let a linear system governed by the equation

E _x ¼ Axþ Bu, ð1Þ

where E and A are n� n matrices and B is an n�m
matrix over R, the field of real numbers, be given.
The matrix B is, without any loss of generality,
supposed to be of rank m. Frequently the system (1)
will also be referred to as the triple ðE,A,BÞ. Next let

u ¼ Fxþ v, ð2Þ

where F is an m� n matrix over R and v denotes a new
external input, be a state feedback around the system
(1), which yields the closed-loop system

E _x ¼ ðAþ BFÞxþ Bv: ð3Þ

In linear control it is of fundamental importance to
characterise all possible pole structures of the system
(3) generated by changing the state feedback gain F
in (2) since the pole structure of (3) determines its
dynamical behaviour, the thing we frequently want to
modify. The pole structure of (3) is a complex concept
that is defined as the zero structure of the pencil
sE� A� BF – see the definitions below.

This problem, hereafter called the problem of PSA
by state feedback, has been intensively studied for
more than two decades. The seminal work of
Rosenbrock (1970) should be recalled first. In that
work necessary and sufficient conditions for the

existence of a state feedback (2) such that the system
(1) with E ¼ In, and rank ½B,AB, . . . ,An�1B� ¼ n has
its (finite) pole structure given by monic polynomials
 1ðsÞ. 2ðsÞ. � � � . nðsÞ (here  iðsÞ. iþ1ðsÞ means
that  iþ1ðsÞ divides  iðsÞÞ, were formulated. The result
is often referred to as the fundamental theorem of state
feedback for explicit (or state-space, proper) control-
lable systems.

Rosenbrock’s result has been widely commented in
the control literature. Alternative proofs have been
proposed by Dickinson (1974) who used a state-space
approach, Kučera (1981) applied the theory of poly-
nomial equations, and Flamm (1980) and Özcaldiran
(1990) studied the problem in a geometric framework.
Many authors have also tried to generalise this result
and one can find that these generalisations go in two
lines.

First, Zaballa (1987) established a result
concerning the PSA in explicit and uncontrollable
systems, i.e. the systems with E ¼ In,
rank½B,AB, . . .,An�1B�5 n. Based on the so-called
interlacing inequalities, which tie together the invariant
polynomials characterising the uncontrollable sub-
space of (1) with those describing the overall state
space of (1), necessary and sufficient conditions for the
existence of state feedback (2) assigning a prescribed
set of monic polynomials as the invariant polynomials
of sIn � A� BF have been given.

Second, Kučera and Zagalak (1988) and Zagalak
and Loiseau (1992) generalised Rosenbrock’s theorem

*Corresponding author. Email: zagalak@utia.cas.cz

ISSN 0020–7179 print/ISSN 1366–5820 online

� 2009 Taylor & Francis

DOI: 10.1080/00207170802400954

http://www.informaworld.com

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
Z
a
g
a
l
a
k
,
 
P
.
]
 
A
t
:
 
1
1
:
0
7
 
1
4
 
M
a
y
 
2
0
0
9



to the implicit (E is singular), square, and controllable
systems (1). They have established necessary and
sufficient conditions under which there exists a state
feedback (2) such that the pencil sE� A� BF has
prescribed structures of its finite and infinite zeros.
Moreover, these conditions also describe all the
possible ranks of the pencil sE� A� BF.

Not surprisingly, it is of great interest and
theoretical importance to establish a similar result for
implicit systems that are not completely controllable.
Such a result would mainly be important from
theoretical point of view, but – as Example 2 shows –
there are also some practical problems where similar
questions arise. Thus, the article is devoted to the
problem of PSA by state feedback in a very general
case of linear systems, the case of implicit and
uncontrollable systems (1).

The article is organised as follows. Section 2 is
devoted to defining some basic concepts. Especially the
feedback canonical form and normal external descrip-
tion (NED) of (1) are detailed. The problem formula-
tion is introduced in x 3. The discussion starts in x 4
with the problem of characteristic polynomial assign-
ment, which can be viewed as a simpler version of the
invariant polynomials assignment problem. Under the
assumption of regularisability, necessary and sufficient
conditions of solvability for this problem are estab-
lished. The core of the article lies in x 5 where the
problem of PSA in regularisable systems is treated.
First, the already solved special cases of that problem
are recalled (the case of implicit and controllable
systems and the case of explicit and uncontrollable
systems), which enables us to introduce the mathema-
tical tools needed for approaching the main problem.
This is done in two steps. First, the problem of finite
PSA is considered and then the assignment of both
finite and infinite pole structures is studied. As a result,
necessary conditions of solvability are established
(Theorem 5). These conditions become also sufficient
if the system does not have non-proper controllability
indices (Corollary 1). The last section is devoted to
possible applications of the obtained results; linear
equations of a constrained movement of a robot arm
are studied therein.

As far as notation is concerned, standard symbols
and concepts of linear control theory, see Kailath
(1980) for instance, are used throughout the article.
For the reader’s convenience some of them are now
introduced.

The pole structure (finite or infinite) of the system
(1), the main concept of the article, is a synonym for the
zero structure (finite or infinite) of the pencil sE� A –
see the definition below. The degree of a polynomial
vector xðsÞ 2 R

k
½s�, degxðsÞ stands for the greatest

degree of all its entries xiðsÞ. Accordingly, the degree

of the i-th column of a polynomial matrix
MðsÞ 2 R

p�m
½s� is denoted by degciMðsÞ. Such a matrix

is called column reduced if it can be written in the form
MðsÞ ¼Mlcdiag fs

cigmi¼1 þ
�MðsÞ, where Mlc 2 R

p�m is of
full column rank and �MðsÞ 2 R

p�m
½s� is such that

degci �MðsÞ5 ci :¼ degciMðsÞ.

2. Background

The main concept that plays a key role when shifting
the poles of the system (1) is the concept of
controllability. We use this concept in the sense of
Verghese, Lévy and Kailath (1981) and Cobb (1984),
where it is called strong or impulse controllability.
There are many definitions of controllability in the
literature; see Özcaldiran and Lewis (1990) and the
discussion therein. Here, as suggested in the later
reference, controllability means reachability of the
origin. Some other basic definitions needed in the
sequel are recalled, too. For a more detailed treatment
of these and other basic concepts of linear implicit
(singular) systems, the reader is referred to Dai (1989),
Lewis (1992) and the references therein.

Given a pencil sH�Q, H,Q 2 R
p�q, the finite zero

structure of sH�Q is given by the invariant poly-
nomials of sH�Q while the infinite zero structure is
defined by the negative powers of s occurring in the
Smith–McMillan form at infinity of sH�Q; see
Vardulakis, Limebeer and Karcanias (1982).

The system (1) is controllable if rank ½sE� AB� ¼ n
for all complex s (finite and infinite), i.e. the pencil has
neither finite nor infinite input decoupling zeros.
The absence of finite and infinite input decoupling
zeros means that both exponential and impulsive
modes of (1) can be excited by non-impulsive inputs.
A useful consequence of this property is, for example,
the existence of a state feedback (2) eliminating
impulses in (3) (Cobb 1984); see also Theorem 2 for
a more complete answer.

The pencil sE� A (and analogously the system (1))
is called regular if detðsE� AÞ is not identically equal
to zero.

The pencil sE� A (or the system (1)) is called
regularisable if there exists a state feedback (2) such
that the pencil sE� A� BF is regular; see Özcaldiran
and Lewis (1990).

2.1 Feedback canonical form

The system (1) can be transformed to another system
by many types of transformations, among which the
transformations involving the state feedback (2) are of
special importance. Let P ,Q and G be n� n, n� n and
m�m invertible matrices over R and let further F be
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an m� n matrix. Then the action of the

(proportional) feedback group upon the system (1) is

defined, see Loiseau, Özcaldiran, Malabre and

Karcanias (1991), by

ðP,Q,G,FÞ � ðE,A,BÞ ¼ ðPEQ,PðAþ BFÞQ,PBGÞ:

Under this action, the system (1) can be brought into

the feedback canonical form ðEC,AC,BCÞ described

below.

sEC � AC :¼ block diag fsEci � Acig
6
i¼1, ð4Þ

where

sEC1�AC1 :¼ block diag

s �1

. .
. . .

.

s �1

2
64

3
75

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�iþ1

9>=
>;�i

8>>>><
>>>>:

9>>>>=
>>>>;

k�

i¼1

sEC2�AC2 :¼ block diag

s �1

. .
. . .

.

. .
.
�1

s

2
66664

3
77775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�i

9>>>=
>>>;�i

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

k�

i¼1

sEC3�AC3 :¼ block diag

�1

s . .
.

. .
.
�1

s

2
66664

3
77775

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
qi

9>>>=
>>>;qiþ 1

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

kq

i¼1

sEC4�AC4

:¼ block diag

�1 s

. .
. . .

.

. .
.

s

�1

2
66664

3
77775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
piþ1

9>>>=
>>>;piþ 1

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

kp

i¼1

sEC5 � AC5 :¼ block diag sIli � Ari

� �t
j¼1

with

Ari :¼

0 1

. .
. . .

.

. .
. . .

.

0 1

��i0 ��i1 . . . ��ili�2 ��ili�1

2
66666664

3
77777775
2 R

li�li

sEC6�AC6 :¼ block diag

s

�1 . .
.

. .
.

s

�1

2
66664

3
77775

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
�i

9>>>=
>>>;�iþ1

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

k�

i¼1

:

It should be noted that the integers �i and li are positive
while the integers �i, pi, qi and �i are just non-negative.
These indexes are supposed to be non-increasingly
ordered, i.e. �1 � �2 � � � � � �k� and so on. If �i ¼ 0,
or qi¼ 0, or �i ¼ 0, then the corresponding columns, or
rows, of sEC � AC are equal to zero.

The matrix BC is of the form

BC :¼

0 0

BC2 0

0 BC3

0 0

0 0

0 0

2
666666664

3
777777775

with BC2 :¼ block diag fe�ig
k�
i¼1,BC3 :¼ block diag

feqiþ1g
kq
i¼1, ei :¼ ½0, . . . , 0, 1�T 2 R

i:
The integers f�ig

k�
i¼1, f�ig

k�
i¼1, fqig

kq
i¼1, fpig

kp
i¼1 are

called, see Loiseau et al. (1991), the non-proper,
proper, almost proper, almost non-proper controllability
indices of (1), respectively, while the integers f�ig

k�
i¼1 are

known as the row minimal indices of ½sEC � AC BC�.
The polynomials �iðsÞ :¼ sli þ �ili�1s

li�1 þ � � � þ

�i1sþ �i0, i ¼ 1, 2, . . . , t, which are assumed to satisfy
the divisibility conditions �1ðsÞ . �2ðsÞ. � � � .�tðsÞ,
are the invariant polynomials of ½sEC � AC BC�, the
zeros of which are termed the (finite) input decoupling
zeros in Rosenbrock (1970).

There is a clear reason for introducing the above
canonical form. This form is the simplest form that
enables us to study the effect of state feedback (2) upon
(1) and moreover the original system (1) can always be
recovered by transformations of the state feedback
group.

2.2 Normal external description

The next definition concerns the concept of an NED of
the controllable system (1), see Malabre, Kučera and
Zagalak (1990), which will frequently be used through-
out the article.

Let (1) be a controllable system and let N(s) and
D(s) be polynomial matrices such that

. ½sE� A � B�½NðsÞDðsÞ� ¼ 0,

. ½NðsÞ
DðsÞ
� forms a minimal polynomial basis for

Ker ½sE� A � B�,

International Journal of Control 1181
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. N(s) forms a minimal polynomial basis for

Ker�ðsE� AÞ where � denotes a maximal

annihilator of B.

Then the matrices N(s) and D(s) are said to form an

NED of the system (1).
It has also been shown by Malabre et al. (1990) that

the column degrees ci :¼ degci½
NðsÞ
DðsÞ�, i ¼ 1, 2, . . ., are the

controllability indices of (1). When degciDðsÞ4
degciNðsÞ (degciDðsÞ � degciNðsÞ) for some i, the

corresponding controllability index is called

proper (non-proper), which coincides with the above

definition. The concept of controllability indices is

closely tied with the concept of controllability: if the

system (1), see Malabre et al. (1990), is regularisable,

then it is controllable iff
P

i ci ¼ rankE. Notice that

the controllability indices of the system (1) are given

by the indices �i and �i. The integers �i define the

non-proper controllability indices while �i are the

proper ones.

2.3 NED and state feedback action

If the system (1) is uncontrollable, we can still find

matrices N(s) and D(s) having the properties of NED.

However, such an NED will not reflect all the

information shown by the feedback canonical form.

One can see that the only blocks contributing to an

NED of (1) are those corresponding to the indices �i
and �i. On the other hand, the matrices N(s) and D(s)

of any NED do not depend on the integers pi, qi, �i
and the polynomials �i(s), which means that these

quantities represent hidden parts of the system.

More particularly, the zeros of �i(s) are the finite

uncontrollable (hidden) modes of (1) while pi and qi
give the orders of uncontrollable (hidden) mode at

infinity.
To remedy this situation, the matrix B will be

extended in a way resulting in a controllable system

– hereafter called the extended system of (1). An

NED of that system will then be used for studying

the effect of state feedback (2) upon ðEC,AC,BCÞ.

To that end, consider the system ðEC,AC,BCÞ and

define

�BC :¼

0 0 0 0

0 0 0 0

�BC3 0 0 0

0 �BC4 0 0

0 0 �BC5 0

0 0 0 �BC6

2
666666666664

3
777777777775
, ð5Þ

�BC3 :¼ block diag e
qiþ1

� �kq
i¼1

,

�BC4 :¼ block diag epiþ1
� �kp

i¼1
, �BC5 :¼ block diag eli

� �kl
i¼1

,

�BC6 :¼ block diag e
�iþ1 e�iþ1

� �� �k�
i¼1

and

e
i :¼

�
1,0, . . . , 0

�T
2R

i:

It can be verified that the system ðEC,AC, ½BC, �BC�Þ

is controllable. Simple calculation also shows that an
NED of ðEC,AC, ½BC, �BC�Þ is formed by matrices NCðsÞ
and DCðsÞ,

NCðsÞ :¼ block diag NCiðsÞ
� �6

i¼1
, ð6Þ

where

NC1ðsÞ :¼ block diag 1, s, . . . , s�i½ �
T

� �k�
i¼1

,

NC2ðsÞ :¼ block diag 1, s, . . . , s�i�1
� �Tn ok�

i¼1
,

NC3ðsÞ :¼ block diag 1, s, . . . , sqi�1
� �Tn okq

i¼1
,

NC4ðsÞ :¼ block diag spi , . . . , s, 1½ �
T� �kp

i¼1
,

NC5ðsÞ :¼ block diag 1, s, . . . , sli�1
� �Tn ot

i¼1
,

NC6ðsÞ :¼ block diag s�i�1 , . . . , s, 1½ �
T

� �k�
i¼1

and

DCðsÞ :¼
DC1ðsÞ

DC2ðsÞ

" #
:¼

0 S� 0 0 0 0

0 0 Sq 0 0 0

� � � � � �

0 0 �Ikq 0 0 0

0 0 0 �Ikp 0 0

0 0 0 0 S� 0

0 0 0 0 0 S�

2
6666666666666664

3
7777777777777775
ð7Þ

with

S� :¼ diag fs�igk�i¼1, Sq :¼ diag fsqig
kq
i¼1,

S� :¼ diag �iðsÞ
� �t

i¼1
, S� :¼ block diag ½s�i � 1�T

� �k�
i¼1
:

ð8Þ

The matrix DCðsÞ has k� þ 2kq þ kp þ tþ 2k� rows and
k� þ k� þ kq þ kp þ tþ k� columns and is square when
k� ¼ kq þ k�.

Now, using the concept of NED, the action of state
feedback (2) upon the system ðEC,AC, ½BC

�BC�Þ is
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described as follows:

�
sEC � AC � ½BC

�BC�
� In 0 0

F Im 0

0 0 I

2
64

3
75 In 0 0

�F Im 0

0 0 I

2
64

3
75

�

NCðsÞ

DC1ðsÞ

DC2ðsÞ

2
64

3
75 ¼ 0, ð9Þ

which gives

�
sEC �AC �BCF � ½BC

�BC�
� NCðsÞ

DC1ðsÞ � FNCðsÞ

DC2ðsÞ

2
64

3
75 ¼ 0:

ð10Þ

The relationships (9) and (10) reveal in fact the main

ideas of our approach to the problem. Instead of

studying the structure of sEC � AC � BCF that is

parametrised by F, the structure of DCFðsÞ will be

investigated. The relationship (10) further shows

that the matrices NCðsÞ and DCFðsÞ :¼ ½DC1ðsÞ�FNCðsÞ
DC2ðsÞ

�

form an NED of the system ðEC,ACþ BCF, ½BC
�BC�Þ:

The matrix DCFðsÞ is of the form

DCFðsÞ :¼

D11 S� þD12 D13 D14 D15 D16

D21 D22 SqþD23 D24 D25 D26

�����������������

0 0 �Ikq 0 0 0

0 0 0 �Ikp 0 0

0 0 0 0 S� 0

0 0 0 0 0 S�

2
666666666666664

3
777777777777775
,

ð11Þ

where Dij are polynomial matrices of compatible sizes

such that

degci
D11

D21

� �
� �i, i ¼ 1, 2, . . . , k�,

degci
D12

D22

� �
� �i � 1, i ¼ 1, 2, . . . , k�,

degci
D13

D23

� �
� qi � 1, i ¼ 1, 2, . . . , kq,

degci
D14

D24

� �
� pi, i ¼ 1, 2, . . . , kp,

degci
D15

D25

� �
� li � 1, i ¼ 1, 2, . . . , t,

degci
D16

D26

� �
� �i � 1, i ¼ 1, 2, . . . , k�:

ð12Þ

All the above observations are now summarised in the
following proposition.

Proposition 1: The following holds for the extended
system ðEC,AC, ½BC

�BC�Þ:

(i1) The system ðEC,AC, ½BC
�BC�Þ is controllable.

(i2) The matrices NCðsÞ,DCðsÞ and NCðsÞ,DCFðsÞ
form NEDs of ðEC,AC, ½BC

�BC�Þ and ðEC,ACþ

BCF, ½BC
�BC�Þ, respectively.

(i3) The system (1) is regularisable by state feedback
(2) if and only if k� ¼ kq & k� ¼ 0 (it is square and
without row minimal indices).

(i4) The system (1) is properisable (i.e. there exists F
such that ðsEC � AC � BCF Þ

�1 exists and is
proper) if and only if it is regularisable with
pi ¼ 0 and qi ¼ 0.

(i5) The system (1) is controllable () t ¼ k� ¼ 0^
ððqi ¼ 0	 kq ¼ 0Þ _ ð pi ¼ 0	 kp ¼ 0ÞÞ. (	 means
XOR.)

(i6) The non-unit invariant polynomials of both
sEC � AC � BCF and DCFðsÞ coincide for any F.

(i7) The infinite zero orders of sEC � AC � BCF
and DCFðsÞdiag fs

�kig, where ki :¼ degci½
NCðsÞ
DCðsÞ
� and

F 2 R
m�n, are the same.

The proof is omitted since the above assertions
can be found either in Loiseau et al. (1991), or
directly follows from the properties of the feedback
canonical form and the corresponding matrices
NCðsÞ,DCðsÞ.

2.4 Conformal mapping

The article is devoted to assigning both finite and
infinite zero structures to sEC � AC � BCF by choosing
F. Therefore we need to handle both finite and infinite
zeros of the pencil in a unified way. To that end the
conformal mapping

s ¼
1þ aw

w
, ð13Þ

where a 2 R, a 6¼ 0, is not a pole of (1), is applied
to the extended system of (1). As a result, the poles
at infinity are brought to the point 0, while other
finite poles are still kept in finite positions.
Applying (13) to ðEC,AC, ½BC

�BC�Þ, see Zagalak
and Kučera (1995) for details, means that (13) is
applied to the equation

�
sEC � AC � ½BC

�BC�
� NCðsÞ

DCðsÞ

� �
¼ 0, ð14Þ

where NC(s) and DC(s) form an NED of
ðEC,AC, ½BC

�BC�Þ. This is done as follows. Perform
first the substitution given by (13) and then premultiply

International Journal of Control 1183

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
Z
a
g
a
l
a
k
,
 
P
.
]
 
A
t
:
 
1
1
:
0
7
 
1
4
 
M
a
y
 
2
0
0
9



(14) by the matrix diag fw�ig, where �i :¼ degri½sEC�

AC � BC�. Postmultiply further (14) by diag fw�ig,

�i :¼ degci½
NCðsÞ
DCðsÞ
�, to get (14) in the form

�
w ~EC � ~AC � ~BCðwÞ

� ~NCðwÞ

~DCðwÞ

" #
¼ 0, ð15Þ

where both ½w ~EC � ~AC � ~BCðwÞ� and ½
~NCðwÞ
~DCðwÞ
�

are polynomial matrices over R½w�. Moreover,

degci ~NCðwÞ ¼ degci½
NCðsÞ
DCðsÞ
� and ~NCðwÞ is column reduced.

Similarly, as in (i5) of Proposition 1, it holds that the

matrices w ~EC � ~AC and ~DCðwÞ have the same (non-

unit) invariant polynomials. These polynomials reflect

the finite and infinite pole structures of (1). Next,

a w-analogue, ~DCFðwÞ, of the matrix DCFðsÞ defined by

(11) is of the form

~DCFðwÞ :¼

~D11
~D12

~D13
~D14

~D15
~D16

~D21
~D22

~D23
~D24

~D25
~D26

� � � � � �

0 0 diag fwqig 0 0 0

0 0 0 diag fwpig 0 0

0 0 0 0 S ~� 0

0 0 0 0 0 S ~�

2
666666666666664

3
777777777777775
,

ð16Þ

where S ~� :¼ block diag f½ð1þ awÞ�i � w�i �Tg
k�
i¼1, S ~� :¼

diag f ~�iðwÞg
t
i¼1, ~�iðwÞ :¼wli�ið

1þaw
w Þ for i ¼ 1, 2, . . . , t,

and

~D12ð0Þ ~D13ð0Þ

~D22ð0Þ ~D23ð0Þ

" #
¼

Ikq 0

0 Ik�

� �
: ð17Þ

As the use of the feedback canonical form does not

bring any restriction on what will follow, it is

supposed, from now on, that the system (1) is already

in that form, i.e. the index C will be dropped.

3. Problem formulation

Proposition 1 shows that the NED of ðE,A, ½B, �B�Þ is

a very useful tool when investigating the ability of state

feedback in modifying the zero structures of sE�

A� BF. To be more precise, the following question is

the main problem under consideration in this article:

Let a system (1) be given and let  1ðsÞ. 2ðsÞ. � � � .
 rðsÞ be monic polynomials. Let further d1 �
d2 � � � � � dkd be positive integers. The matter in
question is the existence of a matrix F in (2) such
that the polynomials  iðsÞ and integers di will be the
invariant polynomials and infinite zero orders of
sE� A� BF. This problem will subsequently be
called the problem of PSA by state feedback (2).

4. Characteristic polynomial assignment

Let the system (1) be regularisable (i.e. k� ¼ kq and

k� ¼ 0Þ. We will first consider the problem of

regularisation of (1) by state feedback (2) as the

problem of characteristic polynomial assignment,

which is a simpler case of the invariant factors

assignment problem. To that end, let  (s) denote the

determinant of sE� A� BF and let d stand for the

sum of the infinite zero orders of sE� A� BF. Then

the freedom in choosing  (s) and d is described by the

following conditions:

deg ðsÞ þ d ¼
Xk�
i¼1

�i þ
Xk�
i¼1

�i þ
Xkq
i¼1

qi þ
Xkp
i¼1

pi þ
Xt
i¼1

li

ð18Þ

 ðsÞ.�1ðsÞ�2ðsÞ . . .�tðsÞ ð19Þ

d �
Xkq
i¼1

qi þ
Xkp
i¼1

pi, ð20Þ

where �i(s), i ¼ 1, 2, . . . , t are the fixed invariant

polynomials of sE� A. The necessity of these condi-

tions can directly be deduced from the matrix ~D

introduced in (16) where, due to the condition k� ¼ 0,

the last blocks of columns and rows are missing.

Let ~DFðwÞ denote this matrix.
The matrix ~DFðwÞ is column reduced (for almost all

F; if not, then such F assigns some zeros at the point

a to ~DFðwÞ, which would contradict the assumptions

regarding the conformal mapping (13)) with column

degrees �1, . . . , �k� , �1, . . . , �k� , q1, . . . , qkq , p1, . . . , pkp ,

l1, . . . , lt, which implies the condition (18).

The relationship (19) is evident and (20) is

a consequence of the block triangular structure of the

matrix ~DFðwÞ.
The conditions (18)–(20) are also sufficient for

there to exist F such that  ðsÞ ¼ detðsE� A� BFÞ.

These conditions imply that

deg
	
�1ðsÞ . . .�tðsÞ



� deg ðsÞ �

X
�i þ

X
�i þ

X
li,

which means that an F can be chosen such that

DFðsÞ :¼

D11 S� þD12 0 0 0

D21 D22 Sq 0 0

����������������

0 0 �Ikq 0 0

0 0 0 �Ikp 0

0 0 0 0 S�

2
666666664

3
777777775

with det
D11 S� þD12

D21 D22

� �
¼

 ðsÞ

�1ðsÞ � � ��tðsÞ
:
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Such a matrix F always exists because of the conditions
(12) and since deg  ðsÞ

�1ðsÞ����tðsÞ
�
Pk�

i¼1 �i þ
Pk�

i¼1 �i: It is
to be noted that if k� ¼ 0, then the condition

deg ðsÞ ¼
X

�i þ
X

li ð21Þ

has to be added to the conditions (18) – (20). In fact
we have proved the following.

Theorem 1: Given a regularisable system (1), a monic
polynomial  (s), and an integer d � 0, then there exists
a state feedback (2) such that detðsE� A� BFÞ ¼  ðsÞ
and the sum of the infinite zero orders of sE� A� BF
equals d if and only if the conditions (18)–(20) (and (21)
if k� ¼ 0) are satisfied.

It has already been mentioned that the matrix S�
represents the finite and uncontrollable poles of the
system (1) while the integers qi and pi affect the orders
of the uncontrollable pole of (1) at infinity. The
relationships (19) and (20) then show that these
quantities cannot be changed by state feedback (2).
On the other hand, the numbers �i and �i are the
controllability indices (non-proper and proper) of
ðE,A,BÞ and their sum is the number of the
controllable poles that can freely be assigned either
to finite or infinite locations.

5. Pole structure assignment in regularisable systems

The regularisability of (1) is a reasonable assumption
when studying the PSA by state feedback; see
Özcaldiran and Lewis (1990) and Ishihara and Terra
(2001) for more details. In this section, we recall first
the already known results that concern some special
cases of PSA, which also enables us to introduce
needed mathematical tools, and then we approach the
main problem. The achieved results are stated in
Theorems 4 and 5, and Corollary 1.

5.1 Implicit and controllable systems

When the system (1) is controllable, much more can
be said on the structure of the zeros of sE� A� BF.
The following theorem can be found in Zagalak and
Loiseau (1992).

Theorem 2: Given a controllable system (1), monic
polynomials  1ðsÞ. 2ðsÞ. � � � . rðsÞ, and positive
integers d1 � d2 � � � � � dkd , then there exists a matrix
F in (2) such that the polynomials  iðsÞ and integers di
will determine the zero structures (finite and infinite) of
sE� A� BF if and only if

n� k� þ kd � r � n ð22Þ

Xr
i¼j

ðdeg iðsÞ þ diÞ �
Xr
i¼j

c
i , j ¼ 1, 2, . . . , r ð23Þ

where c
1 � c
2 � � � � � c
r is the list consisting of all

the indices �i and k� � nþ r greatest �i (completed by

zeros to the number r, if necessary), and di :¼ 0

for i4 kd.

It is to be noted that equality holds in (23) just in

one case, namely for j¼ 1 and r¼ n. If this condition

is satisfied, the pencil sE� A� BF becomes non-

singular, that is to say, the closed-loop system (3) is

regular. Some other particular cases of Theorem 2 are

discussed in the remarks below.

Remark 1: From practical point of view the most

important version of Theorem 2 is obtained if r¼ n and

di ¼ 0 for all i, which means that just a finite pole

structure is assigned to the closed-loop system (3).

The resulting system is proper and the so-called

impulsive behaviour is eliminated; see Kučera and

Zagalak (1988).

Remark 2: Theorem 2 is a generalisation of the

aforementioned result of Rosenbrock (1970).

Assuming an explicit and controllable system (1), the

inequalities (22) imply that k� ¼ kd ¼ 0, which gives

r ¼ n. Hence, the inequalities (23) are of the form

Xn
i¼�

deg iðsÞ �
Xn
i¼�

ci, � ¼ 1, 2, . . . , n, ð24Þ

where the integers c1 � c2 � � � � � cm are the controll-

ability indices of the system (i.e. the indexes �i), ci :¼ 0

for i4m, and equality holds for �¼ 1.

Remark 3: It is worth noting that the conditions (24)

also hold between the column degrees c1 �

c2 � � � � � cm of any n�m polynomial matrix P(s) of

rank m and the degrees of its invariant polynomials,

say  1ðsÞ. 2ðsÞ. � � � . mðsÞ.

Remark 4: In terms of the ‘w-notation’ introduced

above, the result given by Theorem 2 reads ( just the

case of regularisation is considered) as follows. Under

the assumptions of Theorem 2 there exists an F in (2)

such that the m�m matrix

~DFðwÞ :¼
~D11ðwÞ ~D12ðwÞ

~D21ðwÞ ~D22ðwÞ

" #

has given polynomials  1ðwÞw
d1 . 2ðwÞw

d2 . � � � .
 kdðwÞw

dkd . kdþ1ðwÞ. � � � . mðwÞ, m :¼ k� þ k� , as

its invariant polynomials if and only if

(1) ~DFðwÞ is column reduced with column degrees

�1, �2, . . . , �k� , �1, �2, . . . , �k� ,

(2)
~D12ð0Þ
~D22ð0Þ

� �
¼

Ik�
0

� �
,

(3) kd � k�.
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It should be noted that the above formulation will

turn to play an important role when establishing the

main results of the article in x 5.3.

5.2 Explicit and uncontrollable systems

There is another way to generalise Rosenbrock’s

result (Remark 2). To that end, consider an

explicit but uncontrollable system (1), i.e. the

system characterised by k� ¼ kq ¼ kp ¼ k� ¼ 0. This

leads to investigating the invariant polynomials of the

matrix

DFðsÞ :¼
S� þD12 D15

0 S�

" #
, ð25Þ

where S� and S� are given matrices while D12 and

D15 are arbitrary but satisfying the corresponding

conditions given in (12).
For the sake of simplifying the subsequent

notation, let m :¼ k�, i.e. S� and S� are m�m and

t� t matrices, respectively. The polynomials

�1ðsÞ .�2ðsÞ. � � � .�tðsÞ describe the dynamics of

the uncontrollable part of (1). Next, by (i6) of

Proposition 1, the non-unity invariant polynomials of

DFðsÞ are the same as those of sE� A� BF, which

means that the study of the zero structure of DFðsÞ is

equivalent to the study of the zero structure of

sE� A� BF. Based on that, the problem of PSA can

be reformulated in the following way:

Given a t� t matrix S� defined in (8) and monic
polynomials  1ðsÞ. 2ðsÞ. � � � . mþtðsÞ, do there
exist matrices D12 and D15 satisfying the degree
conditions (12) such that the matrix DFðsÞ defined by
(25) will have the polynomials  iðsÞ as its invariant
polynomials?

The following lemma is a key technical result on the

way to solve the above problem.

Lemma 1 (Sá 1979; Thompson 1979): Given a t� t

polynomial matrix AðsÞ :¼ diag f�ig
t
i¼1 with �1ðsÞ .

�2ðsÞ. � � � .�tðsÞ and monic polynomials ’1ðsÞ .
’2ðsÞ. � � � .’tþ1ðsÞ, there exist polynomials �iðsÞ,
i ¼ 1, 2, . . . , tþ 1 such that the matrix

�tþ1ðsÞ �tðsÞ, . . . , �1ðsÞ

0 AðsÞ

� �
ð26Þ

has the polynomials ’iðsÞ as its invariant polynomials if

and only if

’iþ1ðsÞ/ �iðsÞ/ ’iðsÞ, i ¼ 1, 2, . . . , t: ð27Þ

Thus, to find the matrices D12 and D15 in (25), one

recurrently applies Lemma 1, as many times as needed,

and constructs polynomials ’jiðsÞ, i ¼ 1, 2, . . . , tþ j,

j ¼ 0, 1, . . . ,m such that

’0i ðsÞ ¼ �iðsÞ, i ¼ 1, 2, . . . , t,

’mi ðsÞ ¼  iðsÞ, i ¼ 1, 2, . . . ,mþ t,

’jþ1iþ1ðsÞ/ ’
j
iðsÞ/ ’

jþ1
i ðsÞ, i ¼ 1, 2, . . . , tþ j,

j ¼ 0, 1, . . . ,m� 1:

The polynomials ’jþ1i ðsÞ are called a polynomial path

from the polynomials �iðsÞ to the polynomials  iðsÞ and

are evidently far from unique. The point now is whether

at least one such a path can be found. To that end let

	jiðsÞ :¼ lcm ð�iðsÞ, mþi�jðsÞÞ ð28Þ

for i ¼ 1, 2, . . . , tþ j and j ¼ 0, 1, . . . ,m� 1. Then the

polynomials 	jiðsÞ form a polynomial path from f�iðsÞg
to f iðsÞg, see Sá (1979), which is called the minimal

polynomial path since 	jiðsÞ/ ’
j
iðsÞ, i ¼ 1, 2, . . . , tþ j

and j ¼ 1, 2, . . . ,m, where f’jiðsÞg denotes any other

polynomial path.
But this is not all. As the matrix DFðsÞ is column

reduced with column degrees �1, �2, . . . , �m, 1, 1, . . . , 1,

which are supposed to be non-increasingly ordered,

then, in view of Remark 3, the relationship (24) has to

hold between the invariant polynomials ofDFðsÞ and its

column degrees. All these facts lead to the subsequent.

Theorem 3 (Zaballa 1987): Let (1) be an explicit

system (q¼ n and rankE ¼ n) with controllability

indices �1 � �2 � � � � � �m that has an uncontrollable

part characterised by the polynomials �1ðsÞ.�2ðsÞ. � � �
.�tðsÞ. Let further  1ðsÞ. 2ðsÞ. � � � . mþtðsÞ be

monic polynomials. Then there exists an F in (2) such

that the pencil sE� A� BF has the polynomials  iðsÞ

(completed by 1s to the number n) as its invariant

polynomials if and only if

 iþmðsÞ/ �iðsÞ/  iðsÞ, i ¼ 1, 2, . . . , t ð29Þ

and

Xtþj
i¼1

deg	jiðsÞ �
Xt
i¼1

deg�iðsÞþ
Xm

i¼m�jþ1

�i, j¼ 1,2, . . . ,m,

ð30Þ

where equality holds for j¼m and the polynomials 	jiðsÞ
are defined by (28).

5.3 Implicit and uncontrollable systems

5.3.1 Finite PSA

The result stated in Theorem 3 can also be applied to

the case where assigning just a finite pole structure

to a regularisable system (1) (k� ¼ kq & k� ¼ 0)
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is considered. This leads to investigating the finite zero
structure of the matrix

DFðsÞ ¼

D11 S� þD12
�D15

D21 D22
�D25

0 0 �S�

2
64

3
75, ð31Þ

which is a matrix resembling that in (25), where �S� is
a block-diagonal matrix consisting of the blocks
S�, Ikq , Ikp , and where the matrices �D15 :¼ ½D15, 0, 0�,
�D25 :¼ ½D25, 0, 0� have the parts corresponding to Ikq
and Ikp equal to zero since these parts can always be
zeroed by unimodular operations.

Let c1 � c2 � � � � � cm denote a non-increasingly
ordered set of indices �i and �i, m :¼ k� þ k�. Then
Theorem 3 implies that the conditions (29) and (30) are
necessary in this case, too. Just the equality for j¼m in
(30) need not hold since the submatrix

PðsÞ :¼
D11 S� þD12

D21 D22

� �
need not be column reduced. It will be shown below
that the conditions (29) and (30), where equality for
j¼m need not be satisfied, are also sufficient.

Theorem 4: Let (1) be an implicit and regularisable
system (i.e. k� ¼ kq and k� ¼ 0) and let fcig

m
i¼1 stand for

a non-increasingly ordered set of indices �i and �i. Let
further m :¼ k� þ k� , k :¼ kq þ kp þ t and let �1ðsÞ .
�2ðsÞ. � � � .�tðsÞ, �tþ1ðsÞ ¼ �tþ2ðsÞ ¼ � � � ¼ �kðsÞ ¼ 1,
 1ðsÞ. 2ðsÞ. � � � . mþkðsÞ be monic polynomials.
Then there exists an m� n matrix F over R such that
the matrix (31) is non-singular and the polynomials  iðsÞ
are its invariant polynomials if and only if the following
conditions hold:

 iþmðsÞ/ �iðsÞ/  iðsÞ, i ¼ 1, 2, . . . , k, ð32Þ

Xkþj
i¼1

deg	jiðsÞ �
Xk
i¼1

deg�iðsÞ þ
Xm

i¼m�jþ1

ci, j¼ 1, 2, . . . ,m,

ð33Þ

degð 1 2 � � � mþkÞ �
Xk�
i¼1

�i þ
Xk
i¼1

deg�iðsÞ: ð34Þ

Proof of Theorem 4 (Necessity): The conditions (32)
and (33) follow from the conditions (29) and (30) of
Theorem 3 while the condition (34) is a simple
consequence of the fact that the matrix P(s) is
non-singular having the submatrix S� þD12 column
reduced. Thus the following inequalities hold:

Xk�
i¼1

�i � deg detPðsÞ �
Xm
i¼1

ci,

which implies (34).

(Sufficiency) Provided that (32)–(34) hold then there
exist integers �c1 � �c2 � � � � � �cm � 0 such that (33)
holds with equality for j¼m. These integers can be
chosen such that �ci � ci for i ¼ 1, 2, . . . ,m. More
precisely, these indices comprise all the indices �i and
some others, denoted by ĉi, satisfying ĉi � �i,
i ¼ 1, 2, . . . , k�. Thus

f �cig
m
i¼1 ¼ fĉig

k�
i¼1 [ f�ig

k�
i¼1:

Now the conditions (29) and (30) (with �i replaced
by �ci) of Theorem 3 are satisfied, which means that an
m�m column reduced matrix, say �PðsÞ, with the
highest column-degree coefficient matrix equal to Im
can be constructed (see Zagalak, Kučera and Loiseau
(1993) and Zaballa (1999) for details) giving rise to the
matrix

�PðsÞ QðsÞ

0 S�

" #

with the invariant polynomials  iðsÞ and degciQðsÞ5
degciS�, i ¼ 1, 2, . . . , k. This matrix can easily be
brought, by permutations of columns and rows, into
the form of the matrix P(s).

Once the matrix DFðsÞ is constructed, the feedback
gain F is obtained from a constant solution (X,Y), with
X non-singular, to the matrix linear equation

XDðsÞ þ YNðsÞ ¼ PðsÞ, ð35Þ

where D(s) and N(s) form an NED of (1), on putting
F :¼ X�1Y, see Kučera and Zagalak (1991).

It should be noted, see Kučera and Zagalak (1991),
that F calculated from (35) is far from unique. It
depends on the way the matrix P(s) is obtained. More
specifically, the entries of F depend on a particularly
assigned eigenvector structure (which is, in this case,
implicitly assigned). œ

Remark 5: The result stated in Theorem 4 concerns
the problem of regularisation of regularisable systems
(1), which is, from the control theoretical point of view,
the most important case. A more general form of this
result, where just kþ �, k� � � � m, invariant poly-
nomials are assigned, can also be established (using
Theorem 2, see Zaballa (1987)). The conditions (32)–
(34) are still necessary and sufficient in this case, too;
just m is replaced by �.

5.3.2 Finite and infinite PSA

A trick how to handle both the finite and infinite pole
structures in a unified way lies in applying the
conformal mapping (13) to the extended system of
(1). Keeping the same notation as in x 2.4, the
transformed system is described by the matrices ~NðwÞ
and ~DðwÞ in (15). It has been shown (see Zagalak and
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Kučera (1995) for details) that the invariant poly-
nomials of ~DFðwÞ are

~ iðwÞ :¼ wdiþdeg iðsÞ i
1þ aw

w

� �
: ð36Þ

Analogously, �iðsÞ are transformed to ~�iðwÞ ¼
whiþdeg�iðsÞ�ið

1þaw
w Þ:

Thus, applying the mapping (13) to (1) results in
a system that possesses just a finite pole structure (this
structure contains – as a substructure – a structure of
the pole at the point 0 that defines the structure at
infinity of the original system). But this is a situation to
which Theorem 4 can be applied. The condition (32) is
now of the form

~ iþmðwÞ/ ~�iðwÞ/ ~ iðwÞ, i ¼ 1, 2, . . . , k,

which gives the following two conditions:

 iþmðsÞ/ �iðsÞ/  iðsÞ, i ¼ 1, 2, . . . , k, ð37Þ

diþm � hi � di, i ¼ 1, 2, . . . , kh, ð38Þ

where fhig denotes the non-increasingly ordered set
fpig [ fqig consisting of the almost (non-proper and
proper) controllability indices of (1), kh :¼ card fhig,
d1 � d2 � � � � � dkd 4 0 are multiplicities of the pole
at w¼ 0 that are to be assigned, kd :¼ card fdig, and
the polynomials  1ðsÞ. 2ðsÞ. � � � . kþmðsÞ define
the finite pole structure to be assigned. Notice that the
set fpig [ fqig may contain zeros while the set fhig
consists just of positive integers.

The second condition, (33), of Theorem 4 takes the
form

Xkþj
i¼1

ðdeg	jiðsÞ þmaxðhi, diþm�jÞÞ

�
Xk
i¼1

ðdeg�iðsÞ þ hiÞ þ
Xm

i¼m�jþ1

ci, j ¼ 1, 2, . . . ,m,

ð39Þ

where k :¼ tþ kp þ kq, �iðsÞ :¼ 1 for i4 t, hi :¼ 0 for
i4 kh and equality holds for j¼m if the matrix

~DFðwÞ :¼

~D11
~D12

~D
13 0 ~D15

~D21
~D22

~D
23 0 ~D25

�����������������

0 0 diag fwq
i g
k
q
i�1 0 0

0 0 0 Iðkq�k
qÞ 0

0 0 0 0 S�

2
6666666664

3
7777777775
ð40Þ

with k
q :¼ card fqi 4 0g, is non-singular – see also
proof of Corollary 1.

The condition (34) remains unchanged. However,

another necessary condition comes from the fact that

just the �-, q-, and p-blocks of ½sE� A B� determine

a possible infinite pole structure of the closed-loop

system. Inspecting the rank of (40) at w¼ 0 reveals that

kd � k� þ k
p ðcolumn rankÞ ð41Þ

kd � kq þ k
p ðrow rankÞ, ð42Þ

where k
p denotes the number of pi greater than zero.
These conditions are clearly equivalent in the case

of regularisable systems (k� ¼ kq and k� ¼ 0).

Moreover, the conditions (38), (41) and (42) also

describe the freedom in choosing the number of

multiplicities of the pole at s ¼ 1 since they imply

the following inequality for kd:

kh � kd � kq þ kp: ð43Þ

At this moment one could wonder whether the

conditions (37)–(41) are also sufficient. Unfortunately

the following example shows that these conditions are

just necessary.

Example 1: Consider the system given by �1 ¼ 1,

q1 ¼ 2, and p1 ¼ 1, i.e. f ~�iðwÞg :¼ fw2,wg and

fhig :¼ f2, 1g. Then �DFðwÞ is equivalent to

�2wþ �1 	wþ 1 


0 w2 0

0 0 w

2
64

3
75, �i,	, 
 2 R, �2 6¼ 0,

and has the invariant factors f1,w,w2ð�2wþ �1Þg. One

can notice that there are no coefficients �1,�2,	 and 

such that the polynomials f1,w2,w2g would be the

invariant polynomials of �DFðwÞ or, using the above

notation, the list fd1, d2g ¼ f2, 2g cannot be assigned.

However, the conditions (37)–(41) are satisfied.

Remark 6: To enlighten the above example a bit

more, consider the matrix (16) again. As the matrices
~D23ðwÞ and diag fwqig are right coprime, the matrix
~DFðwÞ :¼ ~DCFðwÞ has the same non-unit invariant

polynomials as the matrix

~D0FðwÞ ¼

I � ~D13X 0 0

0 A 0 0

0 0 I 0

0 0 0 I

2
6664

3
7775

�

~D11
~D12

~D14
~D15

~D21
~D22

~D24
~D25

������������

0 0 diag fwpig 0

0 0 0 S ~�

2
6666664

3
7777775,
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where ½X Y
A B� is a unimodular matrix satisfying

the Bezout identity

X Y

A B

" #
~D23

diag fwqig

" #
¼

I

0

" #
:

Considering now the matrix ~DFðwÞ from Example 1,

we obtain

~D0FðwÞ ¼
w2 0

0 1

" #
�2wþ �1 0

0 w

" #
:

Such a matrix cannot have fw2,w2g as its invariant

polynomials.

The following theorem summarises the above

observations.

Theorem 5: Let (1) be an implicit and regularisable

system (k� ¼ kq & k� ¼ 0) and let fhig
m
i¼1 stand for the

non-increasingly ordered set of the indices pi and qi. Let

k :¼ tþ kp þ kq and let the polynomials �iðsÞ and  iðsÞ

be as in Theorem 4. Let further ci, i ¼ 1, 2, . . . ,m,

m :¼ k� þ k�, denote the non-increasingly ordered set of

the indices �i and �i, d1 � d2 � � � � � dkd 4 0 be given

integers, and F be an m� n matrix over R such that the

matrix (40) is non-singular and its finite and infinite zero

structures are given by the polynomials  iðsÞ and the

integers di, respectively. Then the conditions (37)–(41)

hold.

As the conditions (37)–(41) are just necessary, one

could be interested in finding special cases in which

these conditions would also be sufficient.

Such special cases clearly exist and have already

been mentioned. The conditions (37)–(41) are

also sufficient if the system (1) is controllable

(Theorem 2), or explicit (Theorem 3), or just

a finite pole structure is to be assigned (Theorem 4).

Some other cases are described in the following

corollary.

Corollary 1: The conditions (37)–(41) of Theorem 5

are also sufficient if in addition the following holds:

(i) fpig ¼ ;,
(ii) pi ¼ 0, i ¼ 1, 2, . . . , kp,
(iii) {pi} is a subset of {di}, i.e. fdig ¼ fpig [ f �nig.

Proof of Corollary 1: First, if kp ¼ 0, then the matrix

(16) reduces to the matrix (40) where all the entries

above the term Iðkq�k
qÞ have been eliminated by

unimodular operations.
Next, it follows from (41) and (43) that

k
q � kd � kq. So, to prove the sufficiency of the

conditions (37)–(41), a way to construct a matrix
~D0FðwÞ satisfying (17) should be shown.

Let �iðsÞ,  iðsÞ and di be given polynomials and

integers. Then the polynomials ~�iðwÞ and ~ iðwÞ, where

~ iðwÞ :¼
 iw

di i ¼ 1, 2, . . . , kd

 iðwÞ, i ¼ kd, kd þ 1, . . . ,mþ k

(
ð44Þ

~�iðwÞ :¼
�iw

qi i ¼ 1, 2, . . . , kq

�iðwÞ, i ¼ kq, kq þ 1, . . . , k,



ð45Þ

are obtained first. Now, as (37) and (38) hold, there

exists a polynomial path (particularly the minimal

polynomial path f	 j
i ðwÞg (28) can be chosen) from ~�iðwÞ

to ~ iðwÞ, which means that – similarly as in the proof
of Theorem (4) – an ðmþ kÞ � ðmþ kÞ matrix

~PðwÞ ~QðwÞ

0 S ~�

" #
, ð46Þ

with S ~� :¼ diag f ~�iðwÞg and with ~ iðwÞ as its invariant

polynomials, can be constructed. The matrix S ~� can

further be brought by unimodular row and column

operations into the form (40), i.e.

S ~� �

diag fwq
i g
k
q
i�1 0 0

0 Iðkq�k
qÞ 0

0 0 S�

2
64

3
75: ð47Þ

It is assumed, without any loss of generality, that the

matrix (46) is of a column reduced form.
Next, investigating the rank deficiency of the

matrix (46) at w¼ 0, it can be seen that it equals kd.

Then, as the rank deficiency of S ~� is k


q, it implies that

the rank deficiency of the matrix ½ ~Pð0Þ, ~Qð0Þ� is kd � k
q,
which is lower or equal to kq � k
q, and hence, the

matrix ½ ~PðwÞ, ~QðwÞ� can be modified by unimodular

row operations such that rank ½ ~Pð0Þ, ~Qð0Þ� ¼ k� þ k�.

One can notice that in fact rank ½ ~Pð0Þ, ~Qk
q
ð0Þ� ¼

k� þ k�, where the matrix ~Qk
q ðsÞ is formed by the first

kq
 columns of ~QðsÞ (rankS� is full). This implies that
rank ~Pð0Þ � k� and consequently the matrix ~PðsÞ can

be brought to the form

~P0ðsÞ :¼
~D11

~D12

~D21
~D22

" #

which is column reduced with column indices

�1, . . . , �1, . . . , �k� with ~D12ð0Þ ¼ Ik� .
The matrix ~Qk
q ð0Þ need not be of full column rank;

however, this feature can be achieved by adding certain

columns of ~P0ðsÞ to ~Qk
q
ðsÞ. Then, after dividing ~Qk
q

ðsÞ

by the matrix diag fwqig
k
q
i¼1, we can combine row and

column operations performed on ~Qk
q
ðsÞ to obtain the

matrix ~Qk
q ð0Þ in the form ½0, Ik
q , 0�
T.

In the last step, the rows containing the submatrix
Iðkq�k
qÞ are added to the last kq � k
q rows of
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½ ~PðwÞ, ~QðwÞ� such that the matrix ~Qk
q
ð0Þ is of the

form ½0, Ikq �
T.

Such a constructed matrixDFðwÞ has all the features

described in x 2.4 and can be used (together with the
corresponding matrix N(w)) for calculating a feedback

gain F. This is done as follows. The inverse conformal
mapping is applied first to the matrices N(w) and

DFðwÞ, which results in an NED of the closed-loop

system (3). Then an F is obtained in a similar way as
in the proof of Theorem 4. This proves (i).

A proof of the second claim is the same as that

above. Just, the matrix diag fwpig
k
p
i¼1 ¼ Ikp is considered

as a submatrix of S ~�.
To prove the third claim, i.e. when fdig ¼ fpig [ f �nig,

it is sufficient to choose D14 ¼ D24 ¼ 0 and proceed as
in the previous case.

6. Conclusions

The question of pole structure assignment by state

feedback in implicit systems is discussed in the article.

First, in a brief discussion, it is shown that the system
(1) should have some ‘reasonable’ properties under

which the PSA problem is solvable. Then, provided the
system is regularisable, necessary and sufficient condi-

tions for placing the poles of (3) at desired locations

(the characteristic polynomial assignment to the matrix
sE� A� BF) are established.

As far as the problem of pole structure assignment

is concerned, just necessary conditions of its solvability
have been established. However, these conditions are

also sufficient if the system does not have almost
non-proper controllability indices. Obtaining a more

complete solution seems to be more involved and

remains thus as a topic for a future work.
This work is mainly of theoretical interest but there

is also motivation coming from applications. One can

find systems to which the achieved results might be
applied. Such systems occur for instance when model-

ling a constrained movement of a manipulator (or

robot) arm, as briefly shown in the example below. We
deliberately say ‘might be applied’ since the issue of

robustness have not been considered here; this remains
as a challenge for some future studies. On the other

hand Example 2 also shows that certain structural
features of (1) may play a key role in control design

(whatever the system parameters are, the impulsive

behaviour of (49) cannot be eliminated).
It should be noted that the design methods based

on the pole structure (or eigenstructure) assignment

has progressed significantly in the last two decades –
see for instance Liu and Patton (1998) and the

references therein – and we hope the presented results

could stimulate further development in that field.

Example 2: The equation of motion of a manipulator

arm, which is constrained by one point in contact with

a rigid frictionless surface, is of the form (see for

instance Mills and Goldenberg (1989))

�ðqÞ €qþHð _q, qÞ þ GðqÞ ¼ � þ JTðqÞDTð pÞ�, ð48Þ

where q 2 R
m�1 denotes the manipulator generalised

coordinates, p and � 2 R
k are the position vector

(p ¼ LðqÞ) and Lagrange multiplier, �ðqÞ 2 R
m�m is the

manipulator inertia matrix, Hð _q, qÞ 2 R
m�1 denotes the

vector of Coriolis and centripetal forces, GðqÞ 2 R
m�1

stands for the vector of gravity forces, � :¼

�ðq, _q, €q, �Þ 2 R
m�1 is the vector of generalised forces

applied at each joint, JðqÞ 2 R
3�m stands for the

manipulator Jacobian matrix (JðqÞ :¼ @
@q LðqÞ), and

Dð pÞ :¼ @
@p ’ð pÞ where ’ : R

3
�!R is a given scalar

function with continuous gradient defining the con-

straint surface.
After linearising the non-linear system (48) about

a nominal state, say ½q0, _q0, �0�
T, in which the

manipulator is at rest (i.e. _q0 ¼ 0 and €q0 ¼ 0), and

denoting �q :¼ q� q0, �� :¼ � � �0, �� :¼ �� �0, the

equation of the manipulator motion has the form

In 0 0

0 �ðq0Þ

0 0 0

2
664

3
775

� _q

� €q

� _�

2
664

3
775

¼

0 In 0

�
@

@q
ðG�JTDT�Þ

��
0

0 JTDT
��
0

DJ
��
0

0 0

2
66664

3
77775

�q

� _q

��

2
664

3
775þ

0

Im

0

2
664

3
775��,
ð49Þ

where X
��
0
stands for the value of X at the nominal

point. Modifying the notation slightly, this system is

feedback equivalent to the system

0 Im�k 0 0 0

0 0 Im�k 0 0

0 0 0 0 0

0 0 0 Ik 0

0 0 0 0 Ik

2
666666664

3
777777775

_x¼

0 0 Im�k 0 0

0 0 0 0

0 0 0 Ik 0

0 0 0 0 Ik

0 0 0 0 0

2
666666664

3
777777775
x

þ

0 0

Im�k 0

0 0

0 0

0 Ik

2
666666664

3
777777775
u,
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the feedback invariants of which are

. the non-proper controllability indices �i ¼ 0,

i ¼ 1, 2, . . . , k,
. the proper controllability indices �i ¼ 2,

i ¼ 1, 2, . . . ,m� k,
. and the almost non-proper controllability

indices qi ¼ 2, i ¼ 1, 2, . . . , k:

This is the case to which Theorem 5 and Corollary 1

can now be applied. Thus, analysing the relationships

(37)–(41) of Theorem 5, it readily follows that the

integers di and the polynomials  i(s) have to satisfy

the following conditions:

kd ¼ kq ¼ k ð50Þ

di � 2 for i ¼ 1, 2, . . . , k ð51Þ

Xkþj
i¼1

	
deg iþm�jðsÞ þmaxfqi, diþm�jg




�
Xk
i¼1

qi þ
Xm

i¼m�jþ1

ci, j ¼ 1, 2, . . . ,m ð52Þ

where ci, i ¼ 1, 2, . . . ,m are defined in Theorem 5.
For example, let k¼ 2 and m¼ 3. Then �1 ¼ �2 ¼ 0,

�1 ¼ 2, c1¼ 2, c2 ¼ c3 ¼ 0, and h1 ¼ q1 ¼ h2 ¼ q2 ¼ 2.

It can also be verified that such a system is

regularisable. Suppose now that the system is regular,

 1ðsÞ . 2ðsÞ. 3ðsÞ. 4ðsÞ. 5ðsÞ are the invariant

polynomials of sE� A and d1� d2 its infinite

zero multiplicities. Then, the relationship (52) gives,

for j¼ 2,

deg 2ðsÞ þ � � � þ deg 5ðsÞ þmaxf2, d2g

þmaxf2, 0g þ 0þ 0 � 2þ 2,

which implies that  2ðsÞ ¼  3ðsÞ ¼  4ðsÞ ¼  5ðsÞ ¼ 1

and d2¼ 2. If j¼ 3, we obtain that deg 1ðsÞ þ

maxf2, d1g þ 2 � 6, which reveals that just the follow-

ing three cases are possible:

(a) deg 1ðsÞ ¼ 2 and d1¼ 2
(b) deg 1ðsÞ ¼ 1 and d1¼ 3
(c) deg 1ðsÞ ¼ 0 and d1¼ 4.

As the impulsive behaviour of the closed-loop

system cannot be eliminated by state feedback, see

(51), an obvious control design strategy lies in

minimising the impulses (i.e. the numbers di) of (3).

Hence, to obtain a minimal-impulse closed-loop

system, one should choose the quantities  i(s) and

di as in the case (a). So, let  1ðsÞ ¼ s2 þ �sþ 	 and

d1 ¼ d2 ¼ 2. Then one of the possible matrices DF(s) is

of the form

1 0 s2 0 0

0 1 0 s2 0

�1 0 �sþ 	 0 0

0 0 0 1 0

0 0 0 0 1

2
666666664

3
777777775
,

which gives a feedback gain F of the following form:

�1 0 0 0 0 0 0 0

0 �1 0 0 0 0 0 0

1 0 �	 �� 0 0 0 0

2
64

3
75:

More generally, to obtain a minimal-impulse

closed-loop system, one should choose di¼ qi,

i ¼ 1, 2, . . . , k, which is always possible. For j¼ k, the

inequalities (52) imply

deg m�kþ1ðsÞ þ � � � þ deg mþkðsÞ þmaxf2, dm�kþ1g

þ � � � þmaxf2, 0g ¼ 2k,

which means that

 m�kþi ¼ 1 for i ¼ 1, 2, . . .

dm�kþi ¼
2 for m� kþ i � k

0 otherwise



ð53Þ

and the inequalities (52) can be rewritten in the form

Xm�k
i¼j

deg iðsÞ þ
Xk
i¼1

maxf2, diþj�1g

�
Xk
i¼1

qi þ
Xm�k
i¼j

�i, j ¼ 1, 2, . . . ,m:

The inequalities (51), or even better the relation-

ships (53), show that the so-called impulsive modes of

(49) cannot be removed by state feedback. It should

be noted that the question of impulsive modes

elimination was originally posed by Mills and

Goldenberg (1989, p. 42) who also called for further

work in that area.
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