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The problem of pole structure assignment (PSA) by state feedback in implicit, linear and uncontrollable systems
is discussed in the article. It is shown that the problem is solvable if the system is regularisable. Then necessary
and sufficient conditions for characteristic polynomial assignment are established. In the case of PSA (invariant
polynomials assignment) just necessary conditions have been obtained. But it turns out that these conditions are
also sufficient in some special cases. This happens, for example, when the system does not possess any non-proper
controllability indexes. A possible application of the achieved results to modelling a constrained movement of

a robot arm is outlined, too.
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1. Introduction

Let a linear system governed by the equation
Ex = Ax + Bu, (1)

where £ and 4 are n x n matrices and B is an n X m
matrix over R, the field of real numbers, be given.
The matrix B is, without any loss of generality,
supposed to be of rank m. Frequently the system (1)
will also be referred to as the triple (E, 4, B). Next let

u=Fx+v, (2

where Fis an m x n matrix over R and v denotes a new
external input, be a state feedback around the system
(1), which yields the closed-loop system

Ex = (A + BF)x + Bv. 3)

In linear control it is of fundamental importance to
characterise all possible pole structures of the system
(3) generated by changing the state feedback gain F
in (2) since the pole structure of (3) determines its
dynamical behaviour, the thing we frequently want to
modify. The pole structure of (3) is a complex concept
that is defined as the zero structure of the pencil
SE — A — BF — see the definitions below.

This problem, hereafter called the problem of PSA
by state feedback, has been intensively studied for
more than two decades. The seminal work of
Rosenbrock (1970) should be recalled first. In that
work necessary and sufficient conditions for the

existence of a state feedback (2) such that the system
(1) with E=1,, and rank[B, 4B, ..., A" 'B] = n has
its (finite) pole structure given by monic polynomials
V1) B> Ya(s)B> -+ - B (s) (here i(s) B> Yiri(s) means
that ;1 (s) divides ¥;(s)), were formulated. The result
is often referred to as the fundamental theorem of state
feedback for explicit (or state-space, proper) control-
lable systems.

Rosenbrock’s result has been widely commented in
the control literature. Alternative proofs have been
proposed by Dickinson (1974) who used a state-space
approach, Kucera (1981) applied the theory of poly-
nomial equations, and Flamm (1980) and Ozcaldiran
(1990) studied the problem in a geometric framework.
Many authors have also tried to generalise this result
and one can find that these generalisations go in two
lines.

First, Zaballa (1987) established a result
concerning the PSA in explicit and uncontrollable
systems, i.€e. the systems with E=1,
rank[B, AB, ..., A" 'B] < n. Based on the so-called
interlacing inequalities, which tie together the invariant
polynomials characterising the uncontrollable sub-
space of (1) with those describing the overall state
space of (1), necessary and sufficient conditions for the
existence of state feedback (2) assigning a prescribed
set of monic polynomials as the invariant polynomials
of sI, — A — BF have been given.

Second, Kucera and Zagalak (1988) and Zagalak
and Loiseau (1992) generalised Rosenbrock’s theorem
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to the implicit (£ is singular), square, and controllable
systems (1). They have established necessary and
sufficient conditions under which there exists a state
feedback (2) such that the pencil sE — A — BF has
prescribed structures of its finite and infinite zeros.
Moreover, these conditions also describe all the
possible ranks of the pencil sE — 4 — BF.

Not surprisingly, it is of great interest and
theoretical importance to establish a similar result for
implicit systems that are not completely controllable.
Such a result would mainly be important from
theoretical point of view, but — as Example 2 shows —
there are also some practical problems where similar
questions arise. Thus, the article is devoted to the
problem of PSA by state feedback in a very general
case of linear systems, the case of implicit and
uncontrollable systems (1).

The article is organised as follows. Section 2 is
devoted to defining some basic concepts. Especially the
feedback canonical form and normal external descrip-
tion (NED) of (1) are detailed. The problem formula-
tion is introduced in §3. The discussion starts in §4
with the problem of characteristic polynomial assign-
ment, which can be viewed as a simpler version of the
invariant polynomials assignment problem. Under the
assumption of regularisability, necessary and sufficient
conditions of solvability for this problem are estab-
lished. The core of the article lies in §5 where the
problem of PSA in regularisable systems is treated.
First, the already solved special cases of that problem
are recalled (the case of implicit and controllable
systems and the case of explicit and uncontrollable
systems), which enables us to introduce the mathema-
tical tools needed for approaching the main problem.
This is done in two steps. First, the problem of finite
PSA is considered and then the assignment of both
finite and infinite pole structures is studied. As a result,
necessary conditions of solvability are established
(Theorem 5). These conditions become also sufficient
if the system does not have non-proper controllability
indices (Corollary 1). The last section is devoted to
possible applications of the obtained results; linear
equations of a constrained movement of a robot arm
are studied therein.

As far as notation is concerned, standard symbols
and concepts of linear control theory, see Kailath
(1980) for instance, are used throughout the article.
For the reader’s convenience some of them are now
introduced.

The pole structure (finite or infinite) of the system
(1), the main concept of the article, is a synonym for the
zero structure (finite or infinite) of the pencil sE — A —
see the definition below. The degree of a polynomial
vector x(s) € R¥[s], degx(s) stands for the greatest
degree of all its entries x;(s). Accordingly, the degree

of the i-th column of a polynomial matrix
M(s) € RP*™[s] is denoted by deg,;M(s). Such a matrix
is called column reduced if it can be written in the form
M(s) = M. diag {s}", + M(s), where M;. € R”" is of
full column rank and M(s) € RP*™[s] is such that
deg,;M(s) < c; := deg,;M(s).

2. Background

The main concept that plays a key role when shifting
the poles of the system (1) is the concept of
controllability. We use this concept in the sense of
Verghese, Lévy and Kailath (1981) and Cobb (1984),
where it is called strong or impulse controllability.
There are many definitions of controllability in the
literature; see Ozcaldiran and Lewis (1990) and the
discussion therein. Here, as suggested in the later
reference, controllability means reachability of the
origin. Some other basic definitions needed in the
sequel are recalled, too. For a more detailed treatment
of these and other basic concepts of linear implicit
(singular) systems, the reader is referred to Dai (1989),
Lewis (1992) and the references therein.

Given a pencil sH — Q, H,Q € R, the finite zero
structure of sH — Q is given by the invariant poly-
nomials of sH — Q while the infinite zero structure is
defined by the negative powers of s occurring in the
Smith—McMillan form at infinity of sH — Q; see
Vardulakis, Limebeer and Karcanias (1982).

The system (1) is controllable if rank [sE — AB] = n
for all complex s (finite and infinite), i.e. the pencil has
neither finite nor infinite input decoupling zeros.
The absence of finite and infinite input decoupling
zeros means that both exponential and impulsive
modes of (1) can be excited by non-impulsive inputs.
A useful consequence of this property is, for example,
the existence of a state feedback (2) eliminating
impulses in (3) (Cobb 1984); see also Theorem 2 for
a more complete answer.

The pencil sE — A (and analogously the system (1))
is called regular if det(sE — A) is not identically equal
to zero.

The pencil sE— A4 (or the system (1)) is called
regularisable if there exists a state feedback (2) such
that the pencil sE — A4 — BF is regular; see Ozcaldiran
and Lewis (1990).

2.1 Feedback canonical form

The system (1) can be transformed to another system
by many types of transformations, among which the
transformations involving the state feedback (2) are of
special importance. Let P, Q and G be n x n,n x n and
m x m invertible matrices over R and let further F be
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an m xn matrix. Then the action of the
(proportional) feedback group upon the system (1) is
defined, see Loiseau, Ozcaldiran, Malabre and
Karcanias (1991), by

(P,Q,G,F)o(E,A,B) = (PEQ, P(A + BF)Q, PBG).

Under this action, the system (1) can be brought into
the feedback canonical form (Ec, Ac, B¢) described
below.

sEc — Ac¢ = block diag {sE.; — Ac,,-}le, 4)

where
s —1 ke
. €
sEc) — Acy :=Dblock diag
s —1
€+1 i=1
s —1 Ko
. a;
SEcy — Ao :=Dblock diag o
S
o i=1
—1 kt/
S 1
SEcy — Acs :=Dblock diag | ai
S
e
qi i=1
sEcy — Aca
—1 s kp
. i+1
:= block diag s P
—1
pitl i=1
sEcs — Acs := block diag {sf, — A,.,-}jt.:1
with
- 0 | _
A= . - e R
0 1
L —%o —&1 ... —Q2 —0-1_|

i+ 1
sEce — Ace :=block diag s U

-1
—_————
ni i=1

It should be noted that the integers o; and /; are positive
while the integers ¢;, p;, ¢; and n; are just non-negative.
These indexes are supposed to be non-increasingly
ordered, i.e. €, > € >---> ¢, and so on. If ¢ =0,
or ¢;=0, or n; = 0, then the corresponding columns, or
rows, of sEc — A¢ are equal to zero.

The matrix B¢ is of the form

- 0 0 1
B 0
0 B
Bc =
. 0 0
0 0
L 0 0

with Bcy = block diag {e,,}¥7,, Bes := block diag

leg )iy e:=10,....0,1]T e R".

The integers {e}i . {0}, {g). (pd, are
called, see Loisecau et al. (1991), the non-proper,
proper, almost proper, almost non-proper controllability
indices of (1), respectively, while the integers {n,-}fll are
known as the row minimal indices of [sEc — Ac Bc].
The polynomials ai(s) i= st Fay s 4+
ajs +ay, i=1,2,...,t, which are assumed to satisfy
the divisibility conditions o (s) > ay(s)> -+ - > a,(s),
are the invariant polynomials of [sEc — A¢ Bc], the
zeros of which are termed the (finite) input decoupling
zeros in Rosenbrock (1970).

There is a clear reason for introducing the above
canonical form. This form is the simplest form that
enables us to study the effect of state feedback (2) upon
(1) and moreover the original system (1) can always be
recovered by transformations of the state feedback
group.

2.2 Normal external description

The next definition concerns the concept of an NED of
the controllable system (1), see Malabre, Kucera and
Zagalak (1990), which will frequently be used through-
out the article.
Let (1) be a controllable system and let N(s) and

D(s) be polynomial matrices such that

e [sE—4 —B|[})]=0,

° [gzj;] forms a minimal polynomial basis for
Ker[sE—A — B],
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e N(s) forms a minimal polynomial basis for
KerII(sE — A) where IT denotes a maximal
annihilator of B.

Then the matrices N(s) and D(s) are said to form an
NED of the system (1).

It has also been shown by Malabre et al. (1990) that
the column degrees ¢; ;= degci[ggg], i=1,2,..., are the
controllability indices of (1). When deg.D(s) >
deg,N(s) (deg,D(s) < deg,N(s)) for some i, the
corresponding  controllability index is called
proper (non-proper), which coincides with the above
definition. The concept of controllability indices is
closely tied with the concept of controllability: if the
system (1), see Malabre et al. (1990), is regularisable,
then it is controllable iff ) .¢; = rank E. Notice that
the controllability indices of the system (1) are given
by the indices ¢; and o,. The integers ¢, define the
non-proper controllability indices while o; are the
proper ones.

2.3 NED and state feedback action

If the system (1) is uncontrollable, we can still find
matrices N(s) and D(s) having the properties of NED.
However, such an NED will not reflect all the
information shown by the feedback canonical form.
One can see that the only blocks contributing to an
NED of (1) are those corresponding to the indices ¢;
and o;. On the other hand, the matrices N(s) and D(s)
of any NED do not depend on the integers p;, ¢, 1;
and the polynomials «s), which means that these
quantities represent hidden parts of the system.
More particularly, the zeros of «,(s) are the finite
uncontrollable (hidden) modes of (1) while p; and ¢;
give the orders of uncontrollable (hidden) mode at
infinity.

To remedy this situation, the matrix B will be
extended in a way resulting in a controllable system
— hereafter called the extended system of (1). An
NED of that system will then be used for studying
the effect of state feedback (2) upon (Ec, Ac, Be).
To that end, consider the system (Ec, A¢c, Bc) and
define

0 0 0 0
0 0 0 0
_ By 0 0 0
BC = - ) (5)
0 Be 0 0
0 0 Bes 0
| 0 0 0 Be |

Bes :=block diag {e‘f'“}

=1’

BC4:=blockdiag{e,, }f'”l, Bcs _blockdlag{e;}l .

Bce :=block diag {[¢" ! e,,,+1]}k”l and
¢! :[1,0,...,0] cR'.

It can be verified that the system (Ec, Ac, [Bc, Bc])
is controllable. Simple calculation also shows that an
NED of (Ec, Ac,[Bc, BC]) is formed by matrices Nc(s)
and Dc(s),

Nc(s) := block diag {NC’(V)}Z . ©)
where
Neci(s) := block diag {[1,s, ..., SE"]T}f“ -
ko
Neo(s) := block diag { Sa,,l]r] -
ky
Nes(s) := block diag{ B _’S,,,._l]T];I’
Ncy(s) := block diag {[s”', s, I]T}fpl’
t
Nes(s) := block diag{ ,sl'*l]T} .
Neas) := block diag ([, 5, 1},
and
B 0 S{T 0 0 0 0 -
Sy 0 0 0
De¢i(s)
Dels):= =10 0 -, 0 0 0
Dca(s)
0 0 0 _Ik[, 0 0
0 0 0 0 Sa 0
| 0 0 O 0 0 Sy/_
(7
with

S, := diag {s"},, S, := diag {sq"}f.zl,

S, := diag {Oli(S)}i:P S, := block diag {[s" — 1]T}Zl

®)

The matrix Dc(s) has k, + 2k, + k, 4 t 4 2k, rows and
ke + kg + kg + k, + t + k; columns and is square when
ke =kq+ k.

Now, using the concept of NED, the action of state
feedback (2) upon the system (Ec, Ac,[Be Bc)) is
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described as follows:

I, 0 0 I, 0 0

[sEc —Ac —[Bc BC|| F Ln O || —F I, 0

0 0 I 0 0 1
Nc(s)

X DCl(S) =0, (9)
Dca(s)
which gives
Nc(s)

[sEc — Ac — BcF —[Bc Bcl]| Dei(s) — FNc(s) | =0.

Dca(s)

(10)

The relationships (9) and (10) reveal in fact the main

ideas of our approach to the problem. Instead of

studying the structure of sEc— Ac — B¢F that is

parametrised by F, the structure of Dc¢p(s) will be

investigated. The relationship (10) further shows

that the matrices Nc¢(s) and Dcg(s) := [DC‘(ZS));&VC(S)]

form an NED of the system (Ec, Ac + BcF,[Bc Bc)).
The matrix Dcp(s) is of the form

Dy S;+Dix D3 Dy Dis Dig
Dy Dy S;+Dx3 Dy Dis Dy

Der(s):==| 0 0 L, 0 0 0|,
0 0 0 L, 0 0
0 0 0 0 S, 0

0 0 0 0 0 S,

(11)

where D;; are polynomial matrices of compatible sizes
such that

F Dy
degci S €, 1= l) 29 7k6’
L D21 |
[ D12 ] .
deg,. <o;—1, i=12,...k,,
| D2
[ D13 )
deg, <q—1, i=12.. .k,
"L D |
- (12)
deg. <pi, i=12,....k,,
gé'_D24_ —p P
[ D5 ] .
deg,. <hL-1, i=12,...,1,
L D25 |
deg _D“’_<n-—1 i=1,2,.. .,k
Ci_D26 =N 5 5 Ly ey e

All the above observations are now summarised in the
following proposition.

Proposition 1:  The following holds for the extended
system (Ec, Ac,[Bc Bcl):

(1) The system (Ec, Ac,[Bc Bc)) is controllable.

(i2) The matrices Nc(s), De(s) and  Nc(s), Dep(s)
form NEDs of (Ec,Ac,[Bc Bcl) and (Ec, Ac +
BcF,[Bc Bc)), respectively.

(13)  The system (1) is regularisable by state feedback
(2) if and only if ke = k, & k,, = 0 (it is square and
without row minimal indices).

(14) The system (1) is properisable (i.e. there exists F
such that (sEc — Ac — BcF)™' exists and s
proper) if and only if it is regularisable with
pi=0and q; = 0.

(i5) The system (1) is controllable <= t =k, =0A
(7i=0@k,=0)V(pi=0®k, =0)). (® means
XOR.)

(16) The non-unit invariant polynomials of both
sEc — Ac — BcoF and Dc(s) coincide for any F.

(i7) The infinite zero orders of sEc— Ac— BcF
and Dcp(s)diag (s7™}, where k; := deg, [\ and
FeR™" are the same.

The proof is omitted since the above assertions
can be found either in Loiseau et al. (1991), or
directly follows from the properties of the feedback
canonical form and the corresponding matrices
Nc($), De(s)-

2.4 Conformal mapping

The article is devoted to assigning both finite and
infinite zero structures to sEc — Ac — B¢cF by choosing
F. Therefore we need to handle both finite and infinite
zeros of the pencil in a unified way. To that end the
conformal mapping

1 +aw
S =
w

. (13)

where a € R, a # 0, is not a pole of (1), is applied
to the extended system of (1). As a result, the poles
at infinity are brought to the point 0, while other
finite poles are still kept in finite positions.
Applying (13) to (Ec,Ac,[Be Bcl), see Zagalak
and Kucera (1995) for details, means that (13) is
applied to the equation

=0, (14

- Nl
[sEc —Ac —[Bc BC]]|: C(g)]

De(s)
where Ng(s) and De(s) form an NED of

(Ec, Ac,[Be Bc)). This is done as follows. Perform
first the substitution given by (13) and then premultiply
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(14) by the matrix diag{w"}, where v; := deg,[sEc —
Ac — Bc]. Postmultiply further (14) by diag{wH},

Wi = degci[gigg], to get (14) in the form

E i o | N | _
[WEC AC Bc(w)] |:D~C(W) j| 0, (1 5)

where  both [wEc— A¢c — Be(w)]  and [gig:;]
are polynomial matrices over [R[w]. Moreover,
degc,NC(w) = deg(,,-[g?gg] and N¢(w) is column reduced.
Similarly, as in (i5) of Proposition 1, it holds that the
matrices wEc — A¢c and Dc(w) have the same (non-
unit) invariant polynomials. These polynomials reflect
the finite and infinite pole structures of (1). Next,
a w-analogue, ISCF(W), of the matrix D¢pg(s) defined by
(11) is of the form

_D~11 D~12 513 D~l4 515 516_

D~21 D~22 l323 D~24 D~25 D~26
Der(w):=| 0 0 diag{w¥) 0 0 0
0 0 0 diag{w”} 0 0

0 0 0 0 S; 0

L0 0 0 0 0 S;_

(16)

where Sj; := block diag {[(1 + aw)” — w""]T}k” Sg 1=

=1
diag {@:(w)}_,, a@i(w) :=wha;(2) for i=1,2,...,1,

and
1?12(0) D:13(0) _ [Ikv 0 ] (17)
D22(O) D23(0) 0 Ik

4

As the use of the feedback canonical form does not
bring any restriction on what will follow, it is
supposed, from now on, that the system (1) is already
in that form, i.e. the index C will be dropped.

3. Problem formulation

Proposition 1 shows that the NED of (E, 4, [B, B)) is
a very useful tool when investigating the ability of state
feedback in modifying the zero structures of sE—
A — BF. To be more precise, the following question is
the main problem under consideration in this article:

Let a system (1) be given and let ¢, (s)> ¥ (s)> --- >
¥,(s) be monic polynomials. Let further d; >
dr > --->d, be positive integers. The matter in
question is the existence of a matrix F in (2) such
that the polynomials v;(s) and integers ; will be the
invariant polynomials and infinite zero orders of
sE— A — BF. This problem will subsequently be
called the problem of PSA by state feedback (2).

4. Characteristic polynomial assignment

Let the system (1) be regularisable (i.e. k. =k, and
ky=10). We will first consider the problem of
regularisation of (1) by state feedback (2) as the
problem of characteristic polynomial assignment,
which is a simpler case of the invariant factors
assignment problem. To that end, let ¥(s) denote the
determinant of s£E — 4 — BF and let d stand for the
sum of the infinite zero orders of sE — 4 — BF. Then
the freedom in choosing v(s) and d is described by the
following conditions:

ke ko ky kp t
degy(s) +d = ZE[ + 205 + Z%’ + ZP[ + Zli
i=1 i=1 i=1 i=1 i=1
(13)
Y(s) B> i (s)aa(s) . . . ori(s) (19)

k, k
d> qu+zp:pi, (20)
i=1 i=1

where «s), i=1,2,...,t are the fixed invariant
polynomials of sE — A. The necessity of these condi-
tions can directly be deduced from the matrix D
introduced in (16) where, due to the condition &k, =0,
the last blocks of columns and rows are missing.
Let Dy(w) denote this matrix.

The matrix D~F(w) is column reduced (for almost all
F; if not, then such F assigns some zeros at the point
a to Dg(w), which would contradict the assumptions
regarding the conformal mapping (13)) with column
degrees €1,..., €k, O1,- 0k, qls-->Gkys Pls---sPkys
h,...,l,, which implies the condition (18).
The relationship (19) is evident and (20) is
a consequence of the block triangular structure of the
matrix Dg(w).

The conditions (18)—(20) are also sufficient for
there to exist F such that vy(s) = det(sE — A — BF).
These conditions imply that

deg(ai(s)... a(s)) < degy(s) < D> e+ Y oi+ I

which means that an F can be chosen such that

Dy Sy + D> 0 0 07
Ds, D> Sy 0 0
D —_ T
r(s) 0 0 - 0 0
0 0 0 —I, 0
Lo 0 0 0 S,
D Sy +D
withdet[ et 12} Y
21 Dy ay(s) - -a(s)
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Such a matrix F always exists because of the conditions
(12) and since deg—28 _ < Zf;l €&+ Y% o Tt is

a(s)-ai(s) — i

to be noted that if k. = 0, then the condition
degy(s) =Y oi+ Y I, (21)

has to be added to the conditions (18) — (20). In fact
we have proved the following.

Theorem 1: Given a regularisable system (1), a monic
polynomial Y(s), and an integer d > 0, then there exists
a state feedback (2) such that det(sE — A — BF) = y(s)
and the sum of the infinite zero orders of SE — A — BF
equals d if and only if the conditions (18)—(20) (and (21)
if ke = 0) are satisfied.

It has already been mentioned that the matrix S,
represents the finite and uncontrollable poles of the
system (1) while the integers ¢, and p; affect the orders
of the uncontrollable pole of (1) at infinity. The
relationships (19) and (20) then show that these
quantities cannot be changed by state feedback (2).
On the other hand, the numbers ¢; and o; are the
controllability indices (non-proper and proper) of
(E,A,B) and their sum 1is the number of the
controllable poles that can freely be assigned either
to finite or infinite locations.

5. Pole structure assignment in regularisable systems

The regularisability of (1) is a reasonable assumption
when studying the PSA by state feedback; see
Ozcaldiran and Lewis (1990) and Ishihara and Terra
(2001) for more details. In this section, we recall first
the already known results that concern some special
cases of PSA, which also enables us to introduce
needed mathematical tools, and then we approach the
main problem. The achieved results are stated in
Theorems 4 and 5, and Corollary 1.

5.1 Implicit and controllable systems

When the system (1) is controllable, much more can
be said on the structure of the zeros of sE — A4 — BF.
The following theorem can be found in Zagalak and
Loiseau (1992).

Theorem 2: Given a controllable system (1), monic
polynomials i (s)B> Ya(s)> - - > ,(s), and positive
integers dy > dr > --- > dy,, then there exists a matrix
F in (2) such that the polynomials ;(s) and integers d;
will determine the zero structures (finite and infinite) of
SE — A — BF if and only if

n—k.+ks<r<n (22)

D degyis)+d) <Y ¢ j=12....r (23)
= =

where ¢{ > ¢y > --->c’ is the list consisting of all
the indices o; and ke — n + r greatest €; (completed by
zeros to the number r, if necessary), and d;:=0
fOV i>kgy.

It is to be noted that equality holds in (23) just in
one case, namely for j=1 and r=n. If this condition
is satisfied, the pencil sE— 4 — BF becomes non-
singular, that is to say, the closed-loop system (3) is
regular. Some other particular cases of Theorem 2 are
discussed in the remarks below.

Remark 1: From practical point of view the most
important version of Theorem 2 is obtained if r =#n and
d; =0 for all 7, which means that just a finite pole
structure is assigned to the closed-loop system (3).
The resulting system is proper and the so-called
impulsive behaviour is eliminated; see Kucera and
Zagalak (1988).

Remark 2: Theorem 2 is a generalisation of the
aforementioned result of Rosenbrock (1970).
Assuming an explicit and controllable system (1), the
inequalities (22) imply that k. = k; = 0, which gives
r = n. Hence, the inequalities (23) are of the form

n n
Zdeglﬁf(s)ich, v=1,2,....n, (24)

where the integers ¢; > ¢; > -+ > ¢, are the controll-
ability indices of the system (i.e. the indexes ), ¢; := 0
for i > m, and equality holds for v=1.

Remark 3: It is worth noting that the conditions (24)
also hold between the column degrees ¢} >
¢y >+ > ¢, of any n x m polynomial matrix P(s) of
rank m and the degrees of its invariant polynomials,

say I/II(S) > w2(s) >... > 1[//11(5)'

Remark 4: In terms of the ‘w-notation’ introduced
above, the result given by Theorem 2 reads (just the
case of regularisation is considered) as follows. Under
the assumptions of Theorem 2 there exists an F in (2)
such that the m x m matrix

ﬁp(w) . [D~11(W) D~12(W):|

Dyi(w)  Da(w)

has given polynomials vri(w)w® D>y (wyw® > .. >
wk‘,(w)wdkd > Y, 1 (W) - D (w), mi=ke+ ks, as
its invariant polynomials if and only if

(1) Dp(w) is column reduced with column degrees

61’~629'"’6k690190—2"")O‘kUD
Dlz(O)] _ [Ik,,}
2 ~ - ’
@ |:Dzz(0) 0
() kg <ke.



11: 07 14 May 2009

Downl oaded By: [Zagal ak, P.] At:

1186 J.J. Loiseau and P. Zagalak

It should be noted that the above formulation will
turn to play an important role when establishing the
main results of the article in §5.3.

5.2 Explicit and uncontrollable systems

There is another way to generalise Rosenbrock’s
result (Remark 2). To that end, consider an
explicit but uncontrollable system (1), ie. the
system characterised by k. =k, =k, =k, =0. This
leads to investigating the invariant polynomials of the
matrix

(25)

Se + D12 Dis
Dp(s) := ,

0 Se

where S, and S, are given matrices while Dy, and
D5 are arbitrary but satisfying the corresponding
conditions given in (12).

For the sake of simplifying the subsequent
notation, let m :=k,, i.e. S, and S, are m x m and
t xt matrices, respectively. The polynomials
a1(s) > an(s)B> - - - >ay(s) describe the dynamics of
the uncontrollable part of (1). Next, by (i6) of
Proposition 1, the non-unity invariant polynomials of
Dp(s) are the same as those of sE — A — BF, which
means that the study of the zero structure of Dg(s) is
equivalent to the study of the zero structure of
sE — A — BF. Based on that, the problem of PSA can
be reformulated in the following way:

Given a t x t matrix S, defined in (8) and monic
polynomials  ¥(s)> ¥ (s) > - -+ D> ,4.(s), do there
exist matrices Dy, and D;s satisfying the degree
conditions (12) such that the matrix Dg(s) defined by
(25) will have the polynomials ;(s) as its invariant
polynomials?

The following lemma is a key technical result on the
way to solve the above problem.

Lemma 1 (Sa 1979; Thompson 1979): Given a t x t
polynomial matrix A(s) := diag{og}'_, with o(s) >
ar($)> - D>ay(s) and monic polynomials ¢(s) >
©(s)B> - D> @ii(s), there exist polynomials 5;(s),
i=1,2,....t+ 1 such that the matrix

|:5z+l(s)| 8,(8), ..., 81(5) :|
0 | A(s)

(26)

has the polynomials ¢;(s) as its invariant polynomials if
and only if

Oir1() <)< @i(s), i=1,2,...,t 27)

Thus, to find the matrices D, and D;s in (25), one
recurrently applies Lemma 1, as many times as needed,

and constructs polynomials ¢/(s), i=1,2,...,1+},
Jj=0,1,...,m such that

$U(s) = ai(s), =121,
@(s) = (o), =12 m+t,

<)< ), =12, 4
j=0,1,....,m—1.

The polynomials <p§+l(s) are called a polynomial path
from the polynomials ¢;(s) to the polynomials v;(s) and
are evidently far from unique. The point now is whether
at least one such a path can be found. To that end let

B(s) := lem (ai(s), Yimsi—s(5)) (28)

fori=1,2,...,t+jand j=0,1,...,m— 1. Then the
polynomials Bi(s) form a polynomial path from {e;(s)}
to {¥(s)}, see Sa (1979), which is called the minimal
polynomial path since ,Bf:(s) < <p’l:(s), i=1,2,...,t+]
and j=1,2,...,m, where {gof(s)} denotes any other
polynomial path.

But this is not all. As the matrix Dg(s) is column
reduced with column degrees o1,07,...,0,, 1, 1,...,1,
which are supposed to be non-increasingly ordered,
then, in view of Remark 3, the relationship (24) has to
hold between the invariant polynomials of Dg(s) and its
column degrees. All these facts lead to the subsequent.

Theorem 3 (Zaballa 1987): Let (1) be an explicit
system (q=n and rank E=n) with controllability
indices oy > 0y > -+ > 0, that has an uncontrollable
part characterised by the polynomials o;(s)> aa(s)B> - - -
> (s). Let further yri(s)B>yn(s)> --- D> ,,(s) be
monic polynomials. Then there exists an F in (2) such
that the pencil sE — A — BF has the polynomials (s)
(completed by ls to the number n) as its invariant
polynomials if and only if

Yiem($) << ai(s) < ¥i(s), i=1,2,...,¢ (29)
and

1+j !

Zdegﬂé(s)deegozi(s)+ i o, j=12,....m,
i=1 i=1

i=m—j+1
(30)

where equality holds for j=m and the polynomials ﬂ;(s)
are defined by (28).

5.3 Implicit and uncontrollable systems
5.3.1 Finite PSA
The result stated in Theorem 3 can also be applied to

the case where assigning just a finite pole structure
to a regularisable system (1) (ke=k, & k,=0)
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is considered. This leads to investigating the finite zero
structure of the matrix

Dy S, + Dia| Dis
Dp(s) = | D2 D Dos |, (31)
0 0 | S,

which is a matrix resembling that in (25), where S, is
a block-diagonal matrix consisting of the blocks
Sus Ik,s Ix,, and where the matrices Dys = [Di5,0,0],
Dys == [D25,0,0] have the parts corresponding to I,
and Iy, equal to zero since these parts can always be
zeroed by unimodular operations.

Let ¢y > ¢, >+-->¢, denote a non-increasingly
ordered set of indices ¢; and o;, m := k. + k,. Then
Theorem 3 implies that the conditions (29) and (30) are
necessary in this case, too. Just the equality for j=m in
(30) need not hold since the submatrix

Dy S+ Dlzi|
Ds; D>

P(s) .= |:

need not be column reduced. It will be shown below
that the conditions (29) and (30), where equality for
j=m need not be satisfied, are also sufficient.

Theorem 4: Let (1) be an implicit and regularisable
system (i.e. ke = k, and k,, = 0) and let {c;}", stand for
a non-increasingly ordered set of indices €; and o;. Let
Sfurther m =k +kq, k:=ky+k, 4+t and let o(s) >
ar($)> - D ayls), a1(8) = aga(s) = =aol(s) =1,
Y1 ($) > Yo (s)B> - - - D> ,qk(s) be monic polynomials.
Then there exists an m x n matrix F over R such that
the matrix (31) is non-singular and the polynomials r,(s)
are its invariant polynomials if and only if the following
conditions hold.

Wier(s) < Otl'(S) < Wi(s)’ = 1’ 2’ ) ka (32)
k+j ) k m
Y degpl(s) < Y degai(s)+ Y i j=1.2....m,
i=1 i=1 i=m—j+1
(33)
ko k
degWivn - Ym) = S oi+ Y degals).  (34)

1 i=1

Proof of Theorem 4 (Necessity): The conditions (32)
and (33) follow from the conditions (29) and (30) of
Theorem 3 while the condition (34) is a simple
consequence of the fact that the matrix P(s) is
non-singular having the submatrix S, + D, column
reduced. Thus the following inequalities hold:

ko m

Zai < degdet P(s) < Zc,-,

=1 =1

s =

which implies (34).

(Sufficiency) Provided that (32)—(34) hold then there
exist integers ¢; > ¢, > -+ > ¢, > 0 such that (33)
holds with equality for j=m. These integers can be
chosen such that ¢; <¢; for i=1,2,...,m. More
precisely, these indices comprise all the indices o; and
some others, denoted by ¢;, satisfying ¢é <,
i=1,2,... k.. Thus
(@, = (&), Vo,

Now the conditions (29) and (30) (with o; replaced
by ¢;) of Theorem 3 are satisfied, which means that an
m x m column reduced matrix, say P(s), with the
highest column-degree coefficient matrix equal to 7,
can be constructed (see Zagalak, Kucera and Loiseau
(1993) and Zaballa (1999) for details) giving rise to the

matrix
P(s) | O(s)
0 S,

with the invariant polynomials ¥;(s) and deg.Q(s) <
deg,;Sy, i=1,2,...,k. This matrix can easily be
brought, by permutations of columns and rows, into
the form of the matrix P(s).

Once the matrix Dg(s) is constructed, the feedback
gain Fis obtained from a constant solution (X, Y), with
X non-singular, to the matrix linear equation

XD(s) + YN(s) = P(s), (35)

where D(s) and N(s) form an NED of (1), on putting
F:= X"'Y, see Kucera and Zagalak (1991).

It should be noted, see Kucera and Zagalak (1991),
that F calculated from (35) is far from unique. It
depends on the way the matrix P(s) is obtained. More
specifically, the entries of F depend on a particularly
assigned eigenvector structure (which is, in this case,
implicitly assigned). O

Remark 5: The result stated in Theorem 4 concerns
the problem of regularisation of regularisable systems
(1), which is, from the control theoretical point of view,
the most important case. A more general form of this
result, where just k+ u,k, < u < m, invariant poly-
nomials are assigned, can also be established (using
Theorem 2, see Zaballa (1987)). The conditions (32)—
(34) are still necessary and sufficient in this case, too;
just m is replaced by pu.

5.3.2 Finite and infinite PSA

A trick how to handle both the finite and infinite pole
structures in a unified way lies in applying the
conformal mapping (13) to the extended system of
(1). Keeping the same notation as in §2.4, the
transformed system is described by the matrices N(w)
and D(w) in (15). It has been shown (see Zagalak and



11: 07 14 May 2009

Downl oaded By: [Zagal ak, P.] At:

1188 J.J. Loiseau and P. Zagalak

Kucera (1995) for details) that the invariant poly-
nomials of Dp(w) are

- N :
Yi(w) = lvd’ereng(é)lﬁi( +v0m>. (36)
V

Analogously, «;(s) are transformed to a&;(w)=
Wh,v+dega,(s)ai(%).

Thus, applying the mapping (13) to (1) results in
a system that possesses just a finite pole structure (this
structure contains — as a substructure — a structure of
the pole at the point 0 that defines the structure at
infinity of the original system). But this is a situation to
which Theorem 4 can be applied. The condition (32) is
now of the form

I/’}i+m(‘/v) 4 &l’(wy) 4 'J/l'(‘v)’ l - 13 29 ) k)
which gives the following two conditions:

I/fier(S) < (Xl‘(S) < l/f,'(S), i= 1: 29 B k7 (37)

di+/715hifdia i:1a2>"':k/’la (38)

where {h;} denotes the non-increasingly ordered set
{pi} U{qi} consisting of the almost (non-proper and
proper) controllability indices of (1), kj, := card {/;},
dy>d, > --->d, >0 are multiplicities of the pole
at w=0 that are to be assigned, k, := card {d;}, and
the polynomials (s)> yp(s)> - -+ B> Y u(s) define
the finite pole structure to be assigned. Notice that the
set {p;} U{g;} may contain zeros while the set {/;}
consists just of positive integers.

The second condition, (33), of Theorem 4 takes the
form

k+j

> (degB(s) + max(hi. diym-))

i=1

k m
<) (degai(s) +h)+ Y e j=1.2.....m,
i=1

i=m—j+1
(39)

where k :=t+k, +ky, a;(s) :=1 for i > ¢, hj := 0 for
i > kj, and equality holds for j=m if the matrix

[ Dy D 13’1‘3 0 Dys |
Dy Dy 1333 0 D»s
Prny=1-4 diag{wi}' 0 o0
0 0 0 Iyt 0
L0 0 0 0 S|
(40)

with k; := card {¢; > 0}, is non-singular — see also
proof of Corollary 1.

The condition (34) remains unchanged. However,
another necessary condition comes from the fact that
just the e-, ¢-, and p-blocks of [sE — A B] determine
a possible infinite pole structure of the closed-loop
system. Inspecting the rank of (40) at w =0 reveals that

kq < ke +k, (column rank) 41)

kq < kg +k, (row rank), (42)

where k7 denotes the number of p; greater than zero.

These conditions are clearly equivalent in the case
of regularisable systems (kc=k, and k,=0).
Moreover, the conditions (38), (41) and (42) also
describe the freedom in choosing the number of
multiplicities of the pole at s = oo since they imply

the following inequality for k.
kh = kd =< kq + kp- (43)

At this moment one could wonder whether the
conditions (37)—(41) are also sufficient. Unfortunately
the following example shows that these conditions are
just necessary.

Example 1: Consider the system given by € =1,
q1=2, and p =1, ie {&(w)}:={w’ w} and
{h;} := {2, 1}. Then Dg(w) is equivalent to

wmw4a; w41y
0 w)Z 0 H o, /37 14 € [R; a3 # 05
0 0 w

and has the invariant factors {1, w, w>(eaw + «;)}. One
can notice that there are no coefficients o, as,  and y
such that the polynomials {1,w?, w?} would be the
invariant polynomials of Dg(w) or, using the above
notation, the list {d,,d>} = {2,2} cannot be assigned.
However, the conditions (37)—(41) are satisfied.

Remark 6: To enlighten the above example a bit
more, consider the matrix (16) again. As the matrices
D~23(w) and diag {w?} are right coprime, the matrix
D~p(w) := Dcp(w) has the same non-unit invariant
polynomials as the matrix

I —D3X 0 0
e PO
0 0 0 I
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where [)Af g] is a unimodular matrix satisfying

the Bezout identity

Lo o Loen] Lo
A B || diag {w%} o

Considering now the matrix Dg(w) from Example 1,
we obtain

Biw) w2 0 [aaw+a; O
w) = )
" 0 1 0 w

Such a matrix cannot have {w?, w?} as its invariant
polynomials.

The following theorem summarises the above
observations.

Theorem 5: Let (1) be an implicit and regularisable
system (ke =k, & ky, = 0) and let {h;}]", stand for the
non-increasingly ordered set of the indices p; and q;. Let
k:=t+k,+k, and let the polynomials o;(s) and (s)
be as in Theorem 4. Let further c, i=1,2,...,m,

m = k. + k,, denote the non-increasingly ordered set of

the indices €; and o;, dy > dr, > --- > dy, > 0 be given
integers, and F be an m x n matrix over R such that the
matrix (40) is non-singular and its finite and infinite zero
structures are given by the polynomials ¥(s) and the
integers d;, respectively. Then the conditions (37)—(41)
hold.

As the conditions (37)—(41) are just necessary, one
could be interested in finding special cases in which
these conditions would also be sufficient.
Such special cases clearly exist and have already
been mentioned. The conditions (37)—(41) are
also sufficient if the system (1) is controllable
(Theorem 2), or explicit (Theorem 3), or just
a finite pole structure is to be assigned (Theorem 4).
Some other cases are described in the following
corollary.

Corollary 1: The conditions (37)—(41) of Theorem 5
are also sufficient if in addition the following holds:

@ {pi} =9,
i) pi=0,i=12,...,k,
(1) {p;} is a subset of {d;}, i.e. {d;} = {p;} U {n;}.

Proof of Corollary 1:  First, if k, = 0, then the matrix
(16) reduces to the matrix (40) where all the entries
above the term [,k have been eliminated by
unimodular operations.

Next, it follows from (41) and (43) that
k:; <kq<k; So, to prove the sufficiency of the
conditions (37)—(41), a way to construct a matrix
DN}(W) satisfying (17) should be shown.

Let ai(s), ¥i(s) and d; be given polynomials and
integers. Then the polynomials &;(w) and v;(w), where

~ i di :l 2 k
Tiw) = viw l 32,k (44)
viw), i=kg kq+1,...,m+k

aw? i=1,2,... k4

45
(W), i=kg ky+ 1.k, “43)

a;i(w) = {
are obtained first. Now, as (37) and (38) hold, there
exists a polynomial path (particularly the minimal
polynomial path {8/(w)} (28) can be chosen) from &;(w)
to &i(w), which means that — similarly as in the proof
of Theorem (4) — an (m + k) x (m + k) matrix

P(w) | O(w) 46)
0 S: |

with Sz := diag {@:(w)} and with ¥,(w) as its invariant
polynomials, can be constructed. The matrix Sz can
further be brought by unimodular row and column
operations into the form (40), i.e.

diagwd' )i’ 0 0
Sg ~ 0 I(kl,—k;;) 0 |- (47)
0 0 Se

It is assumed, without any loss of generality, that the
matrix (46) is of a column reduced form.

Next, investigating the rank deficiency of the
matrix (46) at w=0, it can be seen that it equals k.
Then, as the rank deficiency of Sg is k7, it implies that
the rank deficiency of the matrix [P(O) Q(O)] is kq — ke,
which is lower or equal to k, —kf] and hence, the
matrix [P(w), Q(w)] can be m0d1ﬁed by unimodular
row operations such that rank [P(0), Q(O)] ke + ke.
One can notice that in fact rank [P(O) Qk* 0)] =
ko + ke, where the matrix Qk*(v) is formed by the first
kg columns of Q(s) (rank Sy is full). This implies that
rank P(0) > k, and consequently the matrix P(s) can
be brought to the form

- Dy D
Ps)= | D Do
Dy Dy

which is column reduced with column indices
€l,..501,...,0k, with D~12(0) = Ikg-

The matrix QkZ(O) need not be of full column rank;
however, this feature can be achieved by adding certain
columns of P'(s) to Q~k*(’?) Then, after dividing Q~k;(s)
by the matrix diag{w?},* , we can combine row and
column operations performed on Qk* (s) to obtain the
matrix Qk*(O) in the form [0, s 0]7.

In the last step, the rows contammg the submatrix
Lk, k) are added to the last k,— k; rows of
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[P(w), 0(w)] such that the matrix Q:(0) is of the
form [0, qu]T.

Such a constructed matrix Dy(w) has all the features
described in §2.4 and can be used (together with the
corresponding matrix N(w)) for calculating a feedback
gain F. This is done as follows. The inverse conformal
mapping is applied first to the matrices N(w) and
Dg(w), which results in an NED of the closed-loop
system (3). Then an F is obtained in a similar way as
in the proof of Theorem 4. This proves (i).

A proof of the second clain}(*is the same as that
above. Just, the matrix diag {w”'},”, = I, is considered
as a submatrix of Sj;.

To prove the third claim, i.e. when {d;} = {p;} U {1},
it is sufficient to choose D14 = D»4 = 0 and proceed as
in the previous case.

6. Conclusions

The question of pole structure assignment by state
feedback in implicit systems is discussed in the article.
First, in a brief discussion, it is shown that the system
(1) should have some ‘reasonable’ properties under
which the PSA problem is solvable. Then, provided the
system is regularisable, necessary and sufficient condi-
tions for placing the poles of (3) at desired locations
(the characteristic polynomial assignment to the matrix
SE — A — BF) are established.

As far as the problem of pole structure assignment
is concerned, just necessary conditions of its solvability
have been established. However, these conditions are
also sufficient if the system does not have almost
non-proper controllability indices. Obtaining a more
complete solution seems to be more involved and
remains thus as a topic for a future work.

This work is mainly of theoretical interest but there
is also motivation coming from applications. One can
find systems to which the achieved results might be
applied. Such systems occur for instance when model-
ling a constrained movement of a manipulator (or
robot) arm, as briefly shown in the example below. We
deliberately say ‘might be applied’ since the issue of
robustness have not been considered here; this remains
as a challenge for some future studies. On the other
hand Example 2 also shows that certain structural
features of (1) may play a key role in control design
(whatever the system parameters are, the impulsive
behaviour of (49) cannot be eliminated).

It should be noted that the design methods based
on the pole structure (or eigenstructure) assignment
has progressed significantly in the last two decades —
see for instance Liu and Patton (1998) and the
references therein — and we hope the presented results
could stimulate further development in that field.

Example 2: The equation of motion of a manipulator
arm, which is constrained by one point in contact with
a rigid frictionless surface, is of the form (see for
instance Mills and Goldenberg (1989))

(q)j + H(G. q) + G(g) = T+ T (9)D"(p)r,  (48)

where ¢ € R™! denotes the manipulator generalised
coordinates, p and A € RF are the position vector
(p = L(¢)) and Lagrange multiplier, ®(¢q) € R"*" is the
manipulator inertia matrix, H(¢, ¢) € R™*! denotes the
vector of Coriolis and centripetal forces, G(g) € R™*!
stands for the vector of gravity forces, t:=
(¢, ¢, §,2) € R™! is the vector of generalised forces
applied at each joint, J(g) € R¥>™ stands for the
manipulator Jacobian matrix (J(q) := %L(q)), and
D(p) = %(p(p) where ¢:R*— R is a given scalar
function with continuous gradient defining the con-
straint surface.

After linearising the non-linear system (48) about
a nominal state, say [go.do.r0]?, in which the
manipulator is at rest (i.e. ¢o =0 and gy =0), and
denoting 8q := q — qo, 8T := 1T — 19, SA := A — Ag, the
equation of the manipulator motion has the form

L 0 07[s

0 ®(q0) 8q
0 0 0]
0 I, 0 5 0
3
— —a—q(G—JTDTA)’O 0 J'DT| || g |+ ]| 1 |67
DJl, o o (L1 LO
(49)

where X }0 stands for the value of X at the nominal
point. Modifying the notation slightly, this system is
feedback equivalent to the system

0 Iy« 0O 0 O 00 Iy O 0
0 0 ZI,« 0 O 00 O 0
0 0 0 0 0 (x=|100 0 I O0]|x
0 0 0 I O 00 0 0 I
[0 0 0 0 I | (00 0 0 0]
-0 07
Ly—r 0O
+ 0 0 |u
0 0
| 0 I |

]
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the feedback invariants of which are

e the non-proper controllability indices €; = 0,
i=1,2,...,k,

e the proper controllability indices o; =2,
i=12,...,m—k,

e and the almost non-proper controllability
indices ¢; =2, i=1,2,... k.

This is the case to which Theorem 5 and Corollary 1
can now be applied. Thus, analysing the relationships
(37)-(41) of Theorem 5, it readily follows that the
integers d; and the polynomials v(s) have to satisfy
the following conditions:

kq=hk, =k (50)
di>2 fori=1,2,.. .k (51)

L)

Z(degl/fi+m<;‘(s) + max{q;, diym—j})

i=1

k m
<Y g+ Y, e j=L2....m (52)
i=1

i=m—j+1

where ¢;, i =1,2,...,m are defined in Theorem 5.

For example, let k=2 and m=3. Thene€; = ¢, =0,
o] :2, C1:2, CzZCgZO, andh1 = (1 :h2:q2:2.
It can also be wverified that such a system is
regularisable. Suppose now that the system is regular,
Y1(s) B> Yo(s) > Y3 (s) B> r4(s) B> ¥s(s) are the invariant
polynomials of sE—A and d,>d, its infinite
zero multiplicities. Then, the relationship (52) gives,
for j=2,

degyr(s) + - - - 4+ degyrs(s) + max{2, d»}
+max{2,0} +0+0<2+2,

which implies that ¥,(s) = ¥3(s) = Yu(s) = ¥s(s) = 1
and d>=2. If j=3, we obtain that degy,(s)+
max{2,d,} + 2 < 6, which reveals that just the follow-
ing three cases are possible:

(a) degyi(s) =2 and d) =2
(b) degyi(s)=1and d;=3
(c) degy(s) =0 and d; =4.

As the impulsive behaviour of the closed-loop
system cannot be eliminated by state feedback, see
(51), an obvious control design strategy lies in
minimising the impulses (i.e. the numbers d;) of (3).
Hence, to obtain a minimal-impulse closed-loop
system, one should choose the quantities ¥,(s) and
d; as in the case (a). So, let ¥(s) = s> + as+ B and
dy = d, = 2. Then one of the possible matrices Dg(s) is

of the form
1 0 s? 0 0
0 1 0 520
-1 0 as+p 0 0],
0 0 0 1 0
L 0 0 0 0 1

which gives a feedback gain F of the following form:

-1 0 0 0 0 0 0 O
0 -1 0 0 0 0 0 O
1 0 B —a 0 0 0 O

More generally, to obtain a minimal-impulse
closed-loop system, one should choose d;,=g¢;
i=1,2,...,k, which is always possible. For j=k, the
inequalities (52) imply

degwmfk+1(s) +- 4+ degmerk(s) + max{2, dmfk+1}
+ -+ max{2,0} = 2k,

which means that

Ympri=1 fori=1,2,...

2 form—k+i<k (53)
d171—k+i = .
0 otherwise

and the inequalities (52) can be rewritten in the form

m—k k
3 degyi(s) + Y max(2, diy1)
=1

i=j
k
<Y ai+
i=1

The inequalities (51), or even better the relation-
ships (53), show that the so-called impulsive modes of
(49) cannot be removed by state feedback. It should
be noted that the question of impulsive modes
elimination was originally posed by Mills and
Goldenberg (1989, p. 42) who also called for further
work in that area.

m—k
g, j:1,2,...,m.
-/
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