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Dedicated to A. M. Samŏılenko on the occasion of his 70th birthday

Abstract

It is known that retarded functional differential equations can be regarded as
Banach-space valued generalized ordinary differential equations (GODEs). See [1].
In this paper some stability concepts for retarded functional differential equations
are introduced and they are discussed using known stability results for GODEs (see
[9]). Then the equivalence of the different concepts of stabilities considered here are
proved and converse Lyapunov theorems for a very wide class of retarded functional
differential equations are obtained by means of the correspondence of this class of
equations with GODEs.

Notations
Let X be a Banach space and I ⊂ R be an interval of the real line.
We denote by G(I, X) be the space of locally regulated functions f : I → X, that is,

for each compact interval [a, b] ⊂ I, the lateral limits f(t+) = limρ→0+ f(t + ρ), t ∈ [a, b),
and f(t−) = limρ→0− f(t + ρ), t ∈ (a, b], exist and are finite. When I = [a, b] we write
G([a, b], X) which is a Banach space when endowed with the usual supremum norm. In
G(I, X) we consider the topology of locally uniform convergence. By G−(I, X), we mean
the subspace of G(I, X) of left continuous functions for which f(t−) = limρ→0− f(t+ρ) =
f(t), t ∈ I, except for the left endpoint of I.

We denote by BV (I, X) the space of functions f : I → X which are locally of bounded
variation, that is, for each compact interval [a, b] ⊂ I, the restriction of f to [a, b], f

∣∣
[a,b]

,

is of bounded variation. In BV ([a, b], X), we consider the variation norm given by ‖f‖ =
‖f(a)‖ + varb

af , where varb
af stands for the variation of f in the interval [a, b]. Then

BV ([a, b], X) is a Banach space and BV ([a, b], X) ⊂ G([a, b], X). When f ∈ BV (I, X) is
also left continuous (f ∈ BV (I, X) ∩G−(I, X)), we write f ∈ BV −(I, X).
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1, Czech Republic. E-mail: schwabik@math.cas.cz. Supported by grant n. IAA100190702 of the Grant
Agency of the Acad. Sci. of the Czech Republic.

1

Preprint, Institute of Mathematics, AS CR, Prague. 2007-12-10 IN
ST
IT
U
TE

of
M
ATH

EMATICS

A
ca
d
em

y
o
f
Sc
ie
n
ce
s

C
ze
ch

R
ep
u
b
lic



We write C(I, X) to denote the space of continuous functions f : I → X. We consider
the Banach space C([a, b], X) equipped with the usual supremum norm and in C(I, X)
we consider the topology of locally uniform convergence.

It is clear that C(I, X) ⊂ G−(I, X) and BV −(I, X) ⊂ G−(I, X).
For simplifying our considerations we restrict ourselves to the case of left continuous

functions everywhere, when some discontinuities can occur.

1 Retarded functional differential equations

Let us consider the initial value problem for a retarded functional differential equation:

{
ẏ (t) = f (yt, t) ,

yt0 = φ,
(1.1)

where φ ∈ G−([−r, 0],Rn), r ≥ 0, and f(φ, t) maps an open subset Ω of G−([−r, 0],Rn)×
[t0, +∞) to Rn. Given a function y : [t0 − r, +∞) → Rn, we consider yt : [−r, 0] → Rn

defined, as usual, by

yt (θ) = y (t + θ) , θ ∈ [−r, 0], t ∈ [t0, +∞).

Let us recall the concept of a solution of problem (1.1).

Definition 1.1. Let σ > 0. A function y ∈ G−([t0 − r, t0 + σ],Rn) such that (yt, t) ∈
G− ([−r, 0],Rn)× [t0, t0 + σ] for all t ∈ [t0, t0 + σ], yt0 = φ and

ẏ (t) = f (yt, t)

for almost all t ∈ [t0, t0+σ] is called a (local) solution of (1.1) in [t0, t0 + σ] (or sometimes
also in [t0 − r, t0 + σ]) with initial condition (φ, t0).

The system (1.1) is known to be equivalent to the “integral” equation





y (t) = y(t0) +

∫ t

t0

f (ys, s) ds, t ∈ [t0, +∞),

yt0 = φ,

(1.2)

when the integral exists in the Lebesgue sense (cf. [4]). In fact we will use (1.2) for
the concept of the initial value problem (1.1). This makes it clear that if a solution y is
defined on some interval [t0, t0 + σ] with σ > 0 then y, being an indefinite integral of a
Lebesgue integrable function, is necessarily absolutely continuous on [t0, t0 + σ] (we write
y ∈ AC([t0, t0 + σ],Rn)).
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Let G1 ⊂ G−([t0 − r, +∞),Rn) with the following property: if y = y (t), t ∈ [t0 −
r, +∞), is an element of G1 and t̄ ∈ [t0 − r, +∞), then ȳ given by

ȳ (t) =

{
y (t) , t0 − r ≤ t ≤ t̄

y (t̄) , t̄ < t < +∞
also belongs to G1.

Let L1(I, X) denote the space of locally Bochner integrable functions f : I → X,
integrable in each compact of I, where I ⊂ R is an interval and X is a Banach space. If
X is finite-dimensional then we have in mind the Lebesgue integral.

Let | · | be a norm in Rn.
We consider f (φ, t) : G− ([−r, 0],Rn)× [t0, +∞) → Rn, the righthand side of the dif-

ferential equation in (1.1), such that the mapping t 7→ f (yt, t) belongs to L1([t0, +∞),Rn)
for y ∈ G1 and the following conditions are fulfilled:

(A) there is M ∈ L1([t0, +∞),R) such that for all x ∈ G1 and all u1, u2 ∈ [t0, +∞),
∣∣∣∣
∫ u2

u1

f (xs, s) ds

∣∣∣∣ ≤
∫ u2

u1

M (s) ds;

(B) there is L ∈ L1([t0, +∞),R) such that for all x, y ∈ G1 and all u1, u2 ∈ [t0, +∞),
∣∣∣∣
∫ u2

u1

[f (xs, s)− f (ys, s)] ds

∣∣∣∣ ≤
∫ u2

u1

L (s) ‖xs − ys‖ ds,

the norm on the righthand side is the norm in G− ([−r, 0],Rn) given by ‖φ‖ =
supt∈[−r,0] |φ(t)| for φ ∈ G− ([−r, 0],Rn).

Of course the functions M and L above depend on the choice of t0.
If f(0, t) = 0 for every t ∈ R, then y ≡ 0 is a solution of (1.1). The next definitions

concern stability concepts for the solution y ≡ 0 of (1.1). The following three defini-
tions are the classical definitions for Lyapunov stability, uniform (Lyapunov) stability
and uniform asymptotic stability of the trivial solution of (1.1). See [4], for instance.

Definition 1.2. The trivial solution of system (1.1) is called (Lyapunov) stable if for every
ε > 0, there exists δ = δ(ε, t0) > 0 such that if φ ∈ G− ([−r, 0],Rn) and y : [γ, v] → Rn,
with [γ, v] ⊂ [t0 − r, +∞) and [γ, v] 3 t0, is a solution of (1.1) such that yt0 = φ and

‖φ‖ < δ,

then
‖yt(t0, φ)‖ < ε, t ∈ [t0, v].

Definition 1.3. The trivial solution of system (1.1) is called uniformly stable if the
number δ in Definition 1.2 is independent of t0.
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Definition 1.4. The solution y ≡ 0 of (1.1) is called uniformly asymptotically stable if
there exists a δ0 > 0 and for every ε > 0, there exists a T = T (ε, δ0) ≥ 0 such that if
φ ∈ G− ([−r, 0],Rn), and y : [γ, v] → Rn, with [γ, v] ⊂ [t0 − r, +∞) and [γ, v] 3 t0, is
solution of (1.1) such that yt0 = φ and

‖φ‖ < δ0,

then
‖yt(t0, φ)‖ < ε, t ∈ [γ, v] ∩ [γ + T, +∞).

The next definition of stability of the solution y ≡ 0 of (1.1) is borrowed from [3].

Definition 1.5. The solution y ≡ 0 of (1.1) is said to be integrally stable if for every ε > 0
there is a δ = δ(ε) > 0 such that if φ ∈ G− ([−r, 0],Rn), ‖φ‖ < δ and p ∈ L1([t0, t1],Rn)
with

∫ t1
t0
|p(s)|ds < δ, then

|y(t; t0, φ)| < ε for every t ∈ [t0, t1],

where y(t; t0, φ) is a solution of the perturbed equation

{
ẏ (t) = f (yt, t) + p(t),

yt0 = φ.
(1.3)

The solution of equation (1.3) has to be interpreted as a solution of the “integral”
equation 




y (t) = y(t0) +

∫ t

t0

f (ys, s) ds +

∫ t

t0

p(s)ds

yt0 = φ,

(1.4)

where the integral is considered in the Lebesgue sense. The solution of (1.3), when it
exists, is absolutely continuous on [t0, t1] (i.e., y(·; t0, φ) ∈ AC([t0, t1],Rn)).

Now we introduce a concept of stability of the trivial solution of (1.1) which generalizes
Definition 1.5 and will be essential to our purposes.

Definition 1.6. The solution y ≡ 0 of (1.1) is said to be variationally stable if for
every ε > 0 there is a δ = δ(ε) > 0 such that if φ ∈ G− ([−r, 0],Rn), ‖φ‖ < δ and
P ∈ BV −([t0, t1],Rn) with vart1

t0P < δ, then

|y(t; t0, φ)| < ε for every t ∈ [t0, t1],

where y(t; t0, φ) is a solution of





y (t) = y(t0) +

∫ t

t0

f (ys, s) ds + P (t)− P (t0), t ∈ [t0, t1]

yt0 = φ.

(1.5)
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It can be seen immediately that the solution y of (1.5) is of bounded variation and
left continuous, that is, y ∈ BV −([t0, t1],Rn) ⊂ G−([t0, t1],Rn).

Note that (1.4) is a particular case of (1.5) for P (t) =
∫ t

t0
p(s)ds, t ≥ t0. If p ∈

L1([t0, t1],Rn), then we have P ∈ AC([t0, t1],Rn) ⊂ BV −([t0, t1],Rn), the derivative
Ṗ (s) = dP

ds
exists almost everywhere in [t0, t1] and

vart1
t0P =

∫ t1

t0

|Ṗ (s)|ds =

∫ t1

t0

|p(s)|ds.

Having this in mind we can easily see that the variational stability of the trivial solution
of (1.1) is a concept which is more general than that of integral stability. Therefore we
consider the variational stability only.

Definition 1.7. The solution y ≡ 0 of (1.1) is called variationally attracting if there is a

δ̃ > 0 and for every ε > 0, there exist a T = T (ε) ≥ 0 and a ρ = ρ(ε) > 0 such that if

‖φ‖ < δ̃ and vart1
t0P < ρ

with P ∈ BV −([t0, t1],Rn), then

|y(t; t0, φ)| < ε for all t ≥ t0 + T, t ∈ [t0, t1]

where y(t; t0, φ) is a solution of the equation (1.5) satisfying yt0 = φ.

Definition 1.8. The solution y ≡ 0 of (1.1) is called variationally asymptotically stable
if it is variationally stable and variationally attracting.

It is clear by the definitions that if the solution y ≡ 0 of (1.1) is variationally stable
then it is also Lyapunov stable. Similarly also for the asymptotic stabilities.

Maybe at this moment the reader is wondering why Definitions 1.6 to 1.8 are presented
for RFDEs. One reason is that stability with respect to permanently acting perturbations
is of interest for technology. The second is a pragmatic one, since we have results on
stability for GODEs at our disposal which can be used in this context. See [2] and [9]
and the development of the theory in the next section.

To the first reason we add that the perturbation in the case of integral stability can be
large enough as long as its integral is small. One could also consider perturbations of the
form p(t, y, yt) and the same technique would apply. However, the theory around would
be more complicated technically. In the case of variational stability, we can think about
the possibility of perturbing the original equation (1.1) by an integrable function plus a
Dirac sum acting on a countable set and then interpret the solution appropriately. In this
case, the solution is a left continuous function. It is clear that (1.5) can be interpreted
as an equation with impulses acting at points of discontinuity of the function P and
described in the form given e.g. in the book [7] of A. M. Samŏılenko and N. A. Perestyuk
and, of course, in numerous papers of the Kiev ODE group concentrated around this two
personalities.
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2 The GODE corresponding to (1.5)

Let X be a Banach space and consider Ω ⊂ X × R. Assume that G : Ω → X is a given
X-valued function with G(x, t) defined for each (x, t) ∈ Ω.

Having the concept of Kurzweil integrability in mind (see for instance [1], [2], [8] or
[9]), we now present the concept of generalized differential equation.

Definition 2.1. A function x : [α, β] → X is called a solution of the generalized ordinary
differential equation

dx

dτ
= DG(x, t) (2.1)

on the interval [α, β] ⊂ R if (x(t), t) ∈ Ω for all t ∈ [α, β] and if the equality

x(v)− x(γ) =

∫ v

γ

DG(x(τ), t) (2.2)

holds for every γ, v ∈ [α, β], where the integral is considered in the sense of Kurzweil.

Let us mention that the theory of generalized ordinary differential equations presented
e.g. in [8] is for the case when X = Rn, but it is easy to check that all the basic results
hold also for the case of a Banach space.

Given an initial condition (z0, t0) ∈ Ω the following definition of the solution of the
initial value problem for the equation (2.1) will be used.

Definition 2.2. A function x : [α, β] → X is a solution of the generalized ordinary
differential equation (2.1) with the initial condition x(t0) = z0 on the interval [α, β] ⊂ R
if t0 ∈ [α, β], (x(t), t) ∈ Ω for all t ∈ [α, β] and if the equality

x(v)− z0 =

∫ v

t0

DG(x(τ), t) (2.3)

holds for every v ∈ [α, β].

Now we consider Ω = G1× [t0, +∞) and we define a special class of functions F : Ω →
X.

Definition 2.3. We say that a function G : Ω → X belongs to the class F(Ω, h), if there
exists a nondecreasing, left continuous function h : [t0, +∞) → R such that

‖G(x, s2)−G(x, s1)‖ ≤ |h(s2)− h(s1)| (2.4)

for all (x, s2), (x, s1) ∈ Ω and

‖G(x, s2)−G(x, s1)−G(y, s2) + G(y, s1)‖ ≤ ‖x− y‖|h(s2)− h(s1)| (2.5)

for all (x, s2), (x, s1), (y, s2), (y, s1) ∈ Ω.
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Suppose f (φ, t) : G1 × [t0, +∞) → Rn such that for each y ∈ G1 the mapping
t 7→ f (yt, t) belongs to L1([t0, +∞),Rn) and f satisfies conditions (A) and (B).

Assume further that P ∈ BV −([t0, +∞),Rn).
For y ∈ G1 and t ∈ [t0 − r, +∞), define

F (y, t) (ϑ) =





0, t0 − r ≤ ϑ ≤ t0 or t0 − r ≤ t ≤ t0∫ ϑ

t0
f (ys, s) ds, t0 ≤ ϑ ≤ t < +∞;∫ t

t0
f (ys, s) ds, t0 ≤ t ≤ ϑ < +∞.

(2.6)

and, for t ∈ [t0 − r, +∞), put

P (t) (ϑ) =





0, t0 − r ≤ ϑ ≤ t0 or t0 − r ≤ t ≤ t0

P (ϑ)− P (t0), t0 ≤ ϑ ≤ t < +∞;

P (t)− P (t0), t0 ≤ t ≤ ϑ < +∞.

(2.7)

Then
G (y, t) = F (y, t) + P (t) (2.8)

defines an element G (y, t) of G− ([t0 − r, +∞),Rn) and G (y, t) (ϑ) ∈ Rn is the value of
G (y, t) at a point ϑ ∈ [t0 − r, +∞), that is,

G : G1 × [t0 − r, +∞) → G−([t0 − r, +∞),Rn).

The idea to construct the righthand side of a GODE which corresponds to a functional
differential equation of the form (1.1) is due to C. Imaz, F. Oliva and Z. Vorel from their
papers [5] and [6].

Let h : [t0, +∞) → R be defined by

h(t) =

∫ t

t0

[M(s) + L(s)]ds + vart
t0
P, t ∈ [t0, +∞).

Then the function h is left continuous and nondecreasing, since M, L : [t0, +∞) → R are
nonnegative a.e. and P ∈ BV −([t0, +∞),Rn).

Under the given assumptions, it is a matter of routine to prove that the function G
given by (2.8) belongs to the class F(Ω, h), where Ω = G1 × [t0, +∞) (see e.g. [1]).

Consider G given by (2.8). If [α, β] ⊂ [t0, +∞) and x : [α, β] → G−([t0 − r, +∞),Rn)
is a solution of (2.1) in [α, β], then x is of bounded variation in [α, β] and

varβ
α x ≤ h(β)− h(α) < +∞.

Moreover, every point in [α, β] at which the function h is continuous is a point of continuity
of the solution x : [α, β] → G−([t0 − r, +∞),Rn) and we have

x(σ+)− x(σ) = lim
s→σ+

x(s)− x(σ) = G(x(σ), σ+)−G(x(σ), σ)
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for σ ∈ [α, β) and

x(σ)− x(σ−) = x(σ)− lim
s→σ−

x(s) = G(x(σ), σ)−G(x(σ), σ−)

for σ ∈ (α, β], where G(x, σ+) = lims→σ+ G(x, s), for σ ∈ [α, β) and G(x, σ−) =
lims→σ− G(x, s), for σ ∈ (α, β]. For a proof of these facts, the reader may want to consult
[8], for instance.

Now we present a result on the existence of the integral involved in the definition of
the solution of the generalized equation (2.1). This result is a particular case of Corollary
3.16 and Proposition 3.6, both from [8].

Lemma 2.1. Let G ∈ F(Ω, h). Suppose x : [α, β] → X, [α, β] ⊂ [t0, +∞), is of bounded

variation in [α, β] and (x(s), s) ∈ Ω for every s ∈ [α, β]. Then the integral
∫ β

α
DG(x(τ), t)

exists and the function s 7→ ∫ s

α
DG(x(τ), t) ∈ X is of bounded variation for all s ∈ [α, β].

The next result concerns the existence of a solution of (2.1) (see [1], Theorem 2.15).

Theorem 2.4. Let G : Ω → X be an element of the class F(Ω, h), where the function h
is left continuous (i.e. h(t−) = h(t), t ∈ (a, +∞)). Then for every (x̃, t0) ∈ Ω such that
for x̃+ = x̃ + G(x̃, t0+) − G(x̃, t0) we have (x̃+, t0) ∈ Ω and there exists a ∆ > 0 such
that on the interval [t0, t0 + ∆] there exists a unique solution x : [t0, t0 + ∆] → X of the
generalized ordinary differential equation (2.1) for which x(t0) = x̃.

Consider the generalized equation (2.1). We will work now with a specific initial value
problem for equation (2.3) with G given by (2.8).

Let φ ∈ G− ([−r, 0],Rn) and σ > 0 be given. A function x (t) defined on the interval
[t0 − r, t0 + σ] and taking values in G−([t0 − r, t0 + σ],Rn) is a (local) solution of the
generalized ordinary differential equation (2.1) in the interval [t0, t0+σ] (or in [t0−r, t0+σ]),
with initial condition x (t0) ∈ G1 given for φ ∈ G− ([−r, 0],Rn) by

x(t0)(ϑ) =

{
φ(ϑ− t0) for ϑ ∈ [t0 − r, t0],

x(t0)(t0) for ϑ ∈ [t0, t0 + σ]

if

x (v) = x (t0) +

∫ v

t0

DG (x (τ) , t)

for every v ∈ [t0, t0 + σ].
For a proof of the next result, see [1], Lemma 3.3.

Proposition 2.1. If x (t) is a solution of (2.1) in the interval [t0, t0 + σ], then for v ∈
[t0, t0 + σ] we have

x (v) (ϑ) = x (v) (v) , ϑ ≥ v, ϑ ∈ [t0 − r, t0 + σ]

and
x (v) (ϑ) = x (ϑ) (ϑ) , v ≥ ϑ, ϑ ∈ [t0 − r, t0 + σ] .
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Left continuous regulated functions with the properties of Proposition 2.1 are candi-
dates for considering them as solutions of the initial value problem described above for
(2.1).

The next result is the key to our approach to retarded functional differential equations
by the theory of generalized differential equations. It states the correspondence between
these equations by relating their solutions in a one-to-one manner. For a proof of it see
[1].

Proposition 2.2.

(i) Consider equation (1.5), where f : G1 × [t0, t0 + σ] → Rn, t 7→ f (yt, t) is Lebesgue
integrable on [t0, t0+σ], P ∈ BV −([t0, t0+σ],Rn) and (A), (B) are fulfilled. Let y (t)
be a solution of problem (1.5) in the interval [t0, t0 + σ]. Given t ∈ [t0 − r, t0 + σ],
let

x (t) (ϑ) =

{
y (ϑ) , ϑ ∈ [t0 − r, t]

y (t) , ϑ ∈ [t, t0 + σ] .

Then x (t) ∈ G− ([t0 − r, t0 + σ],Rn) is a solution of (2.1) in [t0 − r, t0 + σ] where
the right hand side of (2.1) is given by (2.8) .

(ii) Reciprocally, let G be given by (2.8) and x (t) be a solution of (2.1) in the interval
[t0 − r, t0 + σ] satisfying the initial condition

x(t0)(ϑ) =

{
φ(ϑ− t0), t0 − r ≤ ϑ ≤ t0,

x(t0)(t0), t0 ≤ ϑ ≤ t0 + σ
(2.9)

For every ϑ ∈ [t0 − r, t0 + σ], define

y (ϑ) =

{
x (t0) (ϑ) , t0 − r ≤ ϑ ≤ t0

x (ϑ) (ϑ) , t0 ≤ ϑ ≤ t0 + σ.

Then y (ϑ) is a solution of (1.5) in [t0 − r, t0 + σ] and y (ϑ) = x (t0 + σ) (ϑ) for all
ϑ ∈ [t0 − r, t0 + σ].

Proposition 2.2 gives a one-to-one correspondence between the solutions y of (1.5)
and the solutions x of (2.1). Thus given a solution y of (1.5), we have an x given by
Proposition 2.2, (i), which satisfies equation (2.1). Therefore taking t0 ≤ t1 ≤ t2 ≤ t0 + σ
we get

‖x(t2)− x(t1)‖ = sup
ϑ∈[t0−r,t0+σ]

|x(t2)(ϑ)− x(t1)(ϑ)|

= sup
ϑ∈[t0,t0+σ]

|x(t2)(ϑ)− x(t1)(ϑ)|

= sup
ϑ∈[t1,t2]

|y(ϑ)− y(t1)| ≤ vart2
t1y

9



and taking t0 < t1 < t2 < . . . < tk = t0 + σ we get

k∑
i=1

‖x(ti)− x(ti−1)‖ ≤
k∑

i=1

varti
ti−1

y = vart0+σ
t0 y.

Hence
vart0+σ

t0 x ≤ vart0+σ
t0 y.

It has to be noted that a solution y of (1.5) is a function of bounded variation and
therefore the corresponding x is also of bounded variation.

Reciprocally, if G is given by (2.8) and x (t) is a solution of (2.1) with the initial
condition (2.9), then it can be shown by the procedure above that y given by Proposition
2.2, (ii), satisfies

vart0+σ
t0 y ≤ vart0+σ

t0 x < +∞.

In this manner, we have the situation of a one-to-one correspondence between the
solutions of (1.5) and (2.1) and their variations (in different spaces) are the same and
finite.

Remark 2.5. Let us note that in our paper [1] a similar approach to impulsive retarded
functional equations was presented. Of course the definition in this case is slightly more
complicated by an additional term. The complication is technical only, the reasoning of
this note can be used similarly for this case, too. Again, the link between GODE’s and
classical systems with impulses as they are described in the book [7] of A.M. Samŏılenko
and N.A. Perestyuk is given in [8].

3 Concepts of stability for GODE’s

In this section, Ω = Bc × [t0 − r,∞), where Bc = {y ∈ X; ‖y‖ < c}, c > 0, and X
is any Banach space. Let r ≥ 0. In the sequel, we assume that for F : Ω → X we
have F ∈ F(Ω, h) and F (0, t) − F (0, s) = 0, for t, s ∈ [t0 − r, +∞). Then for every
[γ, v] ⊂ [t0 − r, +∞), we have

∫ v

γ

DF (0, t) = F (0, v)− F (0, γ) = 0

and, therefore, x ≡ 0 is a solution of the generalized equation

dx

dτ
= DF (x, t) (3.1)

on [t0 − r, +∞).
If F ∈ F(Ω, h) and x : [γ, v] → X is a solution of (3.1), where [γ, v] ⊂ [t0 − r, +∞),

then x is of bounded variation in [γ, v]. Thus it is natural to measure the distance between
two solutions by the variation norm.

The next stability concepts are based on the variation of the solutions around x ≡ 0.
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Definition 3.1. The solution x ≡ 0 of (3.1) is called variationally stable if for every
ε > 0, there exists δ = δ(ε) > 0 such that if x : [γ, v] → Bc, t0 − r ≤ γ < v < +∞ is a
function of bounded variation on [γ, v] such that

‖x(γ)‖ < δ

and

varv
γ

(
x(s)−

∫ s

γ

DF (x(τ), t)

)
< δ,

then
‖x(t)‖ < ε, t ∈ [γ, v].

Definition 3.2. The solution x ≡ 0 of (3.1) is called variationally attracting if there
exists a δ0 > 0 and for every ε > 0, there exist a T = T (ε) ≥ 0 and a ρ = ρ(ε) > 0 such
that if x : [γ, v] → Bc, t0 − r ≤ γ < v < +∞, is a function of bounded variation in [γ, v]
such that

‖x(γ)‖ < δ0

and

varv
γ

(
x(s)−

∫ s

γ

DF (x(τ), t)

)
< ρ,

then
‖x(t)‖ < ε, for t ∈ [γ, v] ∩ [γ + T, +∞) and γ ≥ t0 − r.

Definition 3.3. The solution x ≡ 0 of (3.1) is called variationally asymptotically stable
if it is variationally stable and variationally attracting.

To Definitions 3.1-3.3, it should be noted that if x : [γ, v] → X is a solution of (3.1)
then:

(a) x is of bounded variation on [γ, v] and

(b) varv
γ

(
x(s)−

∫ s

γ

DF (x(τ), t)

)
= 0.

Also, the conditions in Definition 3.1 mean that the function x of bounded variation is
close (in the variation norm: ‖x(γ)‖ + var(x(s) − ∫ s

γ
DF (x(τ), t))) to the solution x ≡ 0

of (3.1).
Besides the generalized differential equation (3.1), let us consider the perturbed gen-

eralized equation
dx

dτ
= D[F (x, t) + P (t)] (3.2)

where P ∈ BV −([t0 − r,∞), X). It is easy to verify that for the function G(x, t) =
F (x, t) + P (t) we have G ∈ F(Ω, hP ), where hP (t) = h(t) + vart

−rP . Therefore the
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solutions of (3.2) have good properties (existence, uniqueness, etc., see Theorem 2.4, for
instance).

Let us present now some other definitions.

Definition 3.4. The solution x ≡ 0 of (3.1) is called stable with respect to perturbations
if for every ε > 0, there exists δ = δ(ε) > 0 such that if ‖x0‖ < δ and P ∈ BV −([γ, v], X)
is continuous from the left with varv

γP < δ then

‖x(t, γ, x0)‖ < ε for every t ∈ [γ, v]

where x(t, γ, x0) is a solution of the perturbed generalized equation (3.2) with x(γ, γ, x0) =
x0 and [γ, v] ⊂ [t0 − r, +∞).

Definition 3.5. The solution x ≡ 0 of (3.1) is called attracting with respect to perturba-

tions if there is a δ̃ > 0 and for every ε > 0, there exist a T = T (ε) ≥ 0 and a ρ = ρ(ε) > 0
such that if

‖x0‖ < δ̃ and varv
γP < ρ

with P ∈ BV −([γ, v], X), then

‖x(t, γ, x0)‖ < ε for all t ≥ γ + T, t ∈ [γ, v]

where x(t, γ, x0) is a solution of the perturbed generalized equation (3.2) with x(γ, γ, x0) =
x0 and [γ, v] ⊂ [t0 − r, +∞).

Definition 3.6. The solution x ≡ 0 of (3.1) is called asymptotically stable with respect to
perturbations if it is both stable and attracting with respect to perturbations.

It turns out that the respective definitions presented above are equivalent. Indeed, we
have the following result.

Proposition 3.1. The following statements hold.

(i) The solution x ≡ 0 of (3.1) is variationally stable if and only if it is stable with
respect to perturbations.

(ii) The solution x ≡ 0 of (3.1) is variationally attracting if and only if it is attracting
with respect to perturbations.

(iii) The solution x ≡ 0 of (3.1) is variationally asymptotically stable if and only if it is
asymptotically stable with respect to perturbations.

Proof. Let us prove (i). Assume that the solution x ≡ 0 of (3.1) is variationally stable.
Let for ε > 0 the quantity δ > 0 be given according to Definition 3.4. Then for the

12



solution x(t) = x(t, γ, x0) of the perturbed generalized equation (3.2) on [γ, v], we have
‖x(γ)‖ = ‖x(γ, γ, x0)‖ < δ and for any s1, s2 ∈ [γ, v] we get

x(s2)− x(s1) =

∫ s2

s1

DF (x(τ), t) + P (s2)− P (s1),

that is,

x(s2)−
∫ s2

γ

DF (x(τ), t)−
(

x(s1)−
∫ s1

γ

DF (x(τ), t)

)
= P (s2)− P (s1)

and this implies

varv
γ

(
x(s)−

∫ s

γ

DF (x(τ), t)

)
= varv

γP < δ.

Therefore the variational stability implies

‖x(t)‖ = ‖x(t, γ, x0)‖ < ε for t ∈ [γ, v]

and the trivial solution of (3.1) is stable with respect to perturbations.
Reciprocally, if the solution x ≡ 0 of (3.1) is stable with respect to perturbations, take

x : [γ, v] → Bc, −r ≤ γ < v < +∞, a function of bounded variation on [γ, v] such that
‖x(γ)‖ < δ and

varv
γ

(
x(s)−

∫ s

γ

DF (x(τ), t)

)
< δ,

where δ > 0 corresponds to some ε > 0 from Definition 3.4.
For s ∈ [γ, v], let P (s) = x(s)− ∫ s

γ
DF (x(τ), t). Then for s1, s2 ∈ [γ, v], we have

P (s2)− P (s1) = x(s2)− x(s1)−
∫ s2

s1

DF (x(τ), t).

Hence

x(s2)− x(s1) =

∫ s2

s1

DF (x(τ), t) + P (s2)− P (s1), s1, s2 ∈ [γ, v],

which means that x is a solution of (3.2) in [γ, v]. Besides, varv
γP < δ, P is left contin-

uous and ‖x(γ)‖ = ‖x(γ, γ, x0)‖ = ‖P (γ)‖ < δ. Therefore the stability with respect to
perturbations implies ‖x(t)‖ = ‖x(t, γ, x0)‖ < ε, for all t ∈ [γ, v], and this means that the
solution x ≡ 0 of (3.1) is variationally stable.

Coming to the attractive part in item (ii), assume first that the solution x ≡ 0 of
(3.1) is variationally attracting. Then there is a δ0 > 0 and for every ε > 0, there exist a
T = T (ε) ≥ 0 and a ρ = ρ(ε) > 0 such that if x : [γ, v] → Bc, −r ≤ γ < v < +∞, is a
function of bounded variation in [γ, v] such that ‖x(γ)‖ < δ0 and

varv
γ

(
x(s)−

∫ s

γ

DF (x(τ), t)

)
< ρ,
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then
‖x(t)‖ < ε, t ∈ [γ, v] ∩ [γ + T, +∞), γ ≥ −r.

If ‖x0‖ < δ̃ and P ∈ BV −([γ, v], X) is such that varv
γP < ρ, then denote x(t) =

x(t, γ, x0) the solution of the perturbed generalized equation (3.2) satisfying x(γ, γ, x0) =

x0. It follows that ‖x(γ)‖ < δ̃ and we have

varv
γ

(
x(s)−

∫ s

γ

DF (x(τ), t)

)
= varv

γP < δ.

Hence by Definition 3.2, we get

‖x(t, γ, x0)‖ = ‖x(t)‖ < ε for all t ≥ γ + T, t ∈ [γ, v],

that is, the solution x ≡ 0 of (3.1) is attracting with respect to perturbations.
Reciprocally, if the solution x ≡ 0 of (3.1) is attracting with respect to perturbations,

suppose x : [γ, v] → Bc, −r ≤ γ < v < +∞, is a left continuous function of bounded
variation in [γ, v] and such that ‖x(γ)‖ < δ0 and

varv
γ

(
x(s)−

∫ s

γ

DF (x(τ), t)

)
< ρ.

As in the previous part of the proof, it is easy to see that x(t) is a solution of (3.2) on
[γ, v], where P (s) = x(s) − ∫ s

γ
DF (x(τ), t) for s ∈ [γ, v]. This function P belongs to

BV −([γ, v], X) and there exists a δ0 > 0 and for every ε > 0, there exist a T = T (ε) ≥ 0
and a ρ = ρ(ε) > 0 such that varv

γP < ρ. Definition 3.5 now yields

‖x(t)‖ < ε, t ∈ [γ, v] ∩ [γ + T, +∞), γ ≥ −r,

which means that we have the variational attractivity of the trivial solution of (3.1).
Item (iii) follows from (i) and (ii) and we finished the proof.

4 Stability relations between the equations

Consider the retarded system (1.1). Let G1 ⊂ G([t0 − r, +∞),Rn) be defined as in the
beginning of the paper.

We assume that f (φ, t) : G1 × [t0, +∞) → Rn is such that for each y ∈ G1 the
mapping t 7→ f (yt, t) belongs to L1([t0 − r, +∞),Rn) and conditions (A) and (B) are
fulfilled. Suppose in addition that f(0, t) = 0 for every t ∈ [t0, +∞). Thus y ≡ 0 is a
solution of (1.1) in [t0 − r, +∞).

For y ∈ G1 and t ∈ [t0 − r, +∞), define F (y, t) as in (2.6). Then

F : G1 × [t0 − r, +∞) → C([t0 − r, +∞),Rn)
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and by definition we have F (0, t) = 0, for all t ∈ [t0 − r, +∞). Then x ≡ 0 is a solution
of the generalized differential equation

dx

dτ
= DF (x, t) (4.1)

in [t0 − r, +∞).
By the results from Proposition 2.2, there is a well described one-to-one correspondence

between solutions of equations (1.1) and (4.1) with F given by (2.6).
We will also consider the perturbed retarded equation (1.5) and, again by Proposition

2.2, its corresponding perturbed generalized equation

dx

dτ
= DG(x, t) = D[F (x, t) + P (t)], (4.2)

where F is given by (2.6) and P given by (2.7).
We have

P : [t0 − r, +∞) → G−([t0 − r, +∞),Rn).

and then
G : G1 × [t0 − r, +∞) → G−([t0 − r, +∞),Rn).

We are now able to present a result which relates the respective concepts of variational
stability and variational attractivity of the trivial solution of the retarded equation (1.1)
and the trivial solution of its corresponding generalized equation (4.1).

Theorem 4.1. The following statements hold.

(i) The solution y ≡ 0 of (1.1) is variationally stable if and only if the solution x ≡ 0
of (4.1) is variationally stable.

(ii) The solution y ≡ 0 of (1.1) is variationally attracting if and only if the solution
x ≡ 0 of (4.1) is variationally attracting.

(iii) The solution y ≡ 0 of (1.1) is variationally asymptotically stable if and only if the
solution x ≡ 0 of (4.1) is variationally asymptotically stable.

Proof. We start by proving (i). Suppose the trivial solution of (1.1) in [t0 − r, +∞) is
variationally stable. Then given ε > 0, there exists δ = δ(ε) > 0 such that if φ ∈
G−([−r, 0],Rn) is such that ‖φ‖ < δ and P (t) belongs to BV −([t0, t1],Rn) with vart1

t0P < δ,
then

|y(t; t0, φ)| < ε

2
, t ∈ [t0, t1],

where y(t; t0, φ) is a solution of (1.5).
We want to prove that the trivial solution of generalized equation (4.1), with F given

by (2.6), is stable with respect to perturbations. Then the result will follow by Proposition
3.1.
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Suppose δ = δ(ε) > 0 from Definition 1.6 is such that δ < ε/2. Let x(t; t0, x0) be a
solution of the perturbed generalized equation (4.2) with F given by (2.6), P given by
(2.7) and x(t0; t0, x0) = x0 and assume that ‖x0‖ < δ, where x0 ∈ G−([t0 − r, +∞),Rn),
and P ∈ BV −([t0, t1],Rn) with vart1

t0P < δ.
We have ‖x(t0)‖ = ‖x(t0; t0, x0)‖ = ‖x0‖ < δ which means that supθ∈[t0−r,+∞) |x(t0)(θ)| <

δ and therefore supθ∈[t0−r,t0] |φ(θ − t0)| < δ. Thus

‖φ‖ < δ.

Since x is a solution of the perturbed generalized equation we have

x(s2)− x(s1) =

∫ s2

s1

D
[
F (x(τ), t) + P (t)

]

=

∫ s2

s1

DF (x(τ), t) + P (s2)− P (s1)

for s1, s2 ∈ [t0, t1].
Therefore

x(s2)−
∫ s2

t0

DF (x(τ), t)− x(s1) +

∫ s1

t0

DF (x(τ), t) = P (s2)− P (s1).

Hence

vart1
t0

(
x(s)−

∫ s

t0

DF (x(τ), t)

)
= vart1

t0P < δ.

Thus by the variational stability of the trivial solution of (1.1), |y(t)| < ε/2, for all
t ∈ [t0, t1].

Finally, we have

‖x(t)‖ = sup
θ∈[t0−r,+∞)

|x(t)(θ)| = sup
θ∈[t0−r,t]

|y(θ)|

≤ ‖φ‖+ sup
θ∈[t0,t]

|y(θ)| ≤ δ +
ε

2
< ε

and we have the sufficiency of item (i).
Now, using (i) from Proposition 3.1, we assume that the trivial solution of (4.1) is

stable with respect to perturbations. Thus given ε > 0, let δ = δ(ε) > 0 be the quantity
from Definition 3.4.

Let y(t; t0, φ) be a solution of the perturbed retarded equation (1.5). Suppose ‖φ‖ < δ
and P ∈ BV −([t0, t1],Rn) with vart1

t0P < δ. We want to prove that y ≡ 0 is variationally
stable, that is, |y(t; t0, φ)| < ε, t ∈ [t0, t1]. Then the reciprocal of item (i) (necessity) will
follow by Proposition 3.1.

Let x(t; t0, x0) be the solution of the perturbed generalized equation (4.2) with F
given by (2.6) and P given by (2.7), that is, x is the solution corresponding to y obtained
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according to Proposition 2.2. We have vart1
t0x ≤ vart1

t0y (see the comments after Proposition
2.2) and, analogously, vart1

t0P ≤ vart1
t0P < δ. Thus, from the stability with respect to

perturbations of the trivial solution of (4.1), ‖x(t)‖ < ε, that is,

sup
θ∈[t0−r,+∞)

|x(t)(θ)| < ε.

Therefore the relation in Proposition 2.2 implies

sup
θ∈[t0−r,t]

|y(θ)| < ε, t ∈ [t0, t1].

In particular,
sup

θ∈[t0,t1]

|y(θ)| ≤ sup
θ∈[t0−r,t1]

|y(θ)| < ε.

Now we will prove (ii).
At first, suppose the trivial solution of the retarded equation (1.1) is variationally

attracting. Thus there exists δ0 > 0 and for every ε > 0, let T = T (ε) ≥ 0 and
ρ = ρ(ε) > 0 be from Definition 1.7.

Let x(t; t0, x0) be a solution of the perturbed generalized equation (4.2) with F given
by (2.6) and P given by (2.7) and let y(t; t0, φ) be the solution of the perturbed retarded
equation (1.5) obtained from x according to Proposition 2.2.

Let δ > 0 be such that ‖x0‖ < δ and suppose P ∈ BV −([t0, t1],Rn) with vart1
t0P < ρ.

We can suppose, without loss of generality, that δ < min{δ0, ρ, ε/2}. Then

‖x(t0)‖ = ‖x0‖ < δ0

and

vart1
t0

(
x(s)−

∫ s

t0

DF (x(τ), t)

)
= vart1

t0P < ρ.

But the variational attractivity of the trivial solution of (1.1) implies

|y(t; t0, φ)| = |y(t)| < ε/2, t ≥ t0 + T, t ∈ [t0, t1].

Then, taking δ < ε/2, we obtain

‖x(t)‖ = sup
θ∈[t0−r,+∞)

|x(t)(θ)| = sup
θ∈[t0−r,t]

|y(θ)|

≤ ‖φ‖+ supθ∈[t0,t] |y(θ)| < ‖x0‖+
ε

2
< ε.

for t ≥ t0 + T , t ∈ [t0, t1], where we applied the relations of Proposition 2.2 to get the
second equality and ‖φ‖ = ‖x0‖, since

‖x0‖ = ‖x(t0)‖ = sup
θ∈[t0−r,+∞)

|x(t)(θ)|

= sup
θ∈[t0−r,t0]

|φ(θ − t0)| = ‖φ‖.
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Thus
‖x(t; t0, xo)‖ = ‖x(t)‖ < ε, t ≥ t0 + T, t ∈ [t0, t1],

and hence x is attracting with respect to perturbations. The sufficiency of (ii) follows
then by Proposition 3.1.

Now we will prove the reciprocal of item (ii). Suppose then that the trivial solution of
generalized equation (4.1) is attracting with respect to perturbations. Then there exists
δ0 > 0 and given ε > 0 let T = T (ε) ≥ 0 and ρ = ρ(ε) > 0 be from Definition 3.5.

Let y(t; t0, φ) be a solution of the perturbed retarded equation (1.3), or equivalently, of
equation (1.5) with P (t) =

∫ t

t0
p(s)ds, t ≥ t0. Suppose ‖φ‖ < δ0 and P ∈ BV −([t0, t1],Rn)

with vart1
t0P < ρ.

By Proposition 2.2, it follows that ‖x0‖ = ‖φ‖ < δ0. Also, for P given by (2.7),
we have vart1

t0P ≤ vart1
t0P < ρ (see the comments after Proposition 2.2. Therefore the

attractivity with respect to perturbations of the trivial solution of (4.1) implies

‖x(t)‖ = ‖x(t; t0, x0)‖ < ε, t ≥ t0 + T, t ∈ [t0, t1].

Therefore, for t ≥ t0 + T , t ∈ [t0, t1], we have by Proposition 2.2,

|y(t)| = |y(t; t0, φ)| = |x(t)(t)| ≤ ‖x(t)‖ < ε.

Assertion (iii) follows from (i) and (ii) and from Proposition 3.1.

5 Converse Lyapunov theorems

In the book [8] and in [9] direct Lyapunov-type theorems for stability of a solution of a
GODE are given. In [2] they are used for equation (1.1).

Converse Lyapunov theorems are an interesting topic, we present them shortly in this
concluding section of the paper.

In order to obtain converse Lyapunov theorems for equation (1.1), we need the follow-
ing results, borrowed from [8] or [9], for the generalized differential equation (4.1).

Let us consider the general case where Ω = Bc× [t0− r,∞), with Bc = {y ∈ X; ‖y‖ <
c}, c > 0, and X is a Banach space. Suppose F : Ω → X is such that F ∈ F(Ω, h)
and F (0, t)− F (0, s) = 0, for t, s ∈ [t0 − r, +∞) and consider the generalized differential
equation

dx

dτ
= DF (x, t). (5.1)

The following two results are respectively Theorems 10.23 and 10.24 from [8]. They
can also be found in [9].

Theorem 5.1. If the trivial solution x ≡ 0 of the generalized differential equation (5.1)
is variationally stable, then for every 0 < a < c, there exists a function V : [t0− r, +∞)×
Ba → R, where Ba = {y ∈ X; ‖y‖ < a}, such that for every x ∈ Ba, the function V (·, x)
belongs to BV −([t0 − r, +∞),R) and the following conditions hold:
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(i) V (t, 0) = 0, t ∈ [t0 − r, +∞);

(ii) |V (t, z)− V (t, y)| ≤ ‖z − y‖, t ∈ [t0 − r, +∞), z, y ∈ Ba.

(iii) V is positive definite along every solution x(t) of the generalized equation (5.1), that
is, there is a function b : [0, +∞) → R of Hahn class such that

V (t, x(t)) ≥ b(‖x(t)‖), (t, x(t)) ∈ [t0 − r, +∞)×Ba;

(iv) for all solutions x(t) of (5.1),

V̇ (t, x(t)) = lim sup
η→0+

V (t + η, x(t + η))− V (t, x(t))

η
≤ 0,

that is, the right derivative of V along every solution x(t) of (5.1) is non-positive.

Theorem 5.2. If the trivial solution x ≡ 0 of the generalized differential equation (5.1)
is variationally asymptotically stable, then for every 0 < a < c, there exists a function
V : [t0 − r, +∞) × Ba → R such that for every x ∈ Ba, the function V (·, x) belongs to
BV −([t0 − r, +∞),R) and the following conditions hold:

(i) V (t, 0) = 0, t ∈ [t0 − r, +∞);

(ii) |V (t, z)− V (t, y)| ≤ ‖z − y‖, t ∈ [t0 − r, +∞), z, y ∈ Ba.

(iii) V is positive definite along every solution x(t) of the generalized equation (5.1), that
is, there is a function b : [0, +∞) → R of Hahn class such that

V (t, x(t)) ≥ b(‖x(t)‖), (t, x(t)) ∈ [t0 − r, +∞)×Ba;

(iv) for all solutions x(s) of (5.1) defined for s ≥ t, where x(t) = z ∈ Ba, the relation

V̇ (t, x(t)) = lim sup
η→0+

V (t + η, x(t + η))− V (t, x(t))

η
≤ V (t, z)

holds.

Now let us consider the more specialized equation (4.1), with F given by (2.6), corre-
sponding to the retarded system (1.1). We consider X = G−([t0− r, +∞),Rn). As in [2],
we need to relate a Lyapunov functional for (4.1) to a Lyapunov functional for (1.1)

Let y : [γ, v] → Rn be a solution of equation (1.1) on [γ, v] ⊂ [t0 − r, +∞), [γ, v] 3 t0,
such that yt = ψ for a given t ≥ t0, that is, ψ ∈ G−([−r, 0],Rn) and

ψ(θ) = yt (θ) = y (t + θ) = y(t)−
∫

[ t+θ,t]

f (ys, s) ds
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for almost every θ ∈ [−r, 0]. In this case, we write yt+η = yt+η(t, ψ) for every η ≥ 0. Then
if U : [t0 − r, +∞)×G−([−r, 0],Rn) → R, we define

D+U(t, ψ) = lim sup
η→0+

U(t + η, yt+η(t, ψ))− U(t, yt(t, ψ))

η
,

for t ≥ t0.
Let x be a solution of the generalized equation (4.1) on the interval [γ, v] ⊂ [t0−r, +∞),

[γ, v] 3 t0, with initial condition x(t0) = x0, where

x(t0)(ϑ) =

{
φ(ϑ− t0) for ϑ ∈ [t0 − r, t0],

x(t0)(t0) for ϑ ∈ [t0, +∞).
(5.2)

Then x(t)(t+θ) = y(t+θ), for all t ∈ [t0−r, +∞) and all θ ∈ [−r, 0] and hence (x(t))t = yt

for all t.
On the other hand, given x(t) ∈ G−([t0 − r, +∞),Rn), since x is locally of bounded

variation, we can consider x(t) as a solution on [γ, v] ⊂ [t0 − r, +∞), [γ, v] 3 t0, of
the generalized equation (4.1), with initial condition x(t0) = x0 given by (5.2). Then
Proposition 2.2 implies we can find a solution y(t; t0, φ) of (1.1) by means of the solution
x(t; t0, x0) of (4.1). Suppose (x(t))t = ψ. In this case, we write xψ(t) instead of x(t) and
we have yt = ψ.

Therefore (t, xψ(t)) 7→ (t, yt(t, ψ)) is a one-to-one mapping and we can define V :
[t0 − r, +∞)×G−([t0 − r, +∞),Rn) → R by

V (t, xψ(t)) = U(t, yt(t, ψ)), t ≥ t0. (5.3)

Then we have

D+U(t, ψ) = lim sup
η→0+

V (t + η, xψ(t + η))− V (t, xψ(t))

η

for all t ≥ t0. We write U̇(t, yt) = D+U(t, yt).
With the notation above, we now are able to present converse Lyapunov results for

equation (1.1).

Theorem 5.3. If the trivial solution y ≡ 0 of the retarded differential equation (1.1) is
variationally stable, then for every 0 < a < c, there exists a function U : [t0 − r, +∞) ×
Ea → R, where Ea = {ψ ∈ G−([−r, 0],Rn); ‖ψ‖ < a}, such that for every x ∈ Ea, the
function U(·, ψ) belongs to BV −([t0 − r, +∞),R) and the following conditions hold:

(i) U(t, 0) = 0, t ∈ [t0 − r, +∞);

(ii) |U(t, ψ)− U(t, ψ)| ≤ ‖ψ − ψ‖, t ∈ [t0 − r, +∞), ψ, ψ ∈ Ea.
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(iii) U is positive definite along every solution y(t) of the retarded equation (1.1), that
is, there is a function b : [0, +∞) → R of Hahn class such that

U(t, yt) ≥ b(‖yt‖), (t, yt) ∈ [t0 − r, +∞)× Ea;

(iv) for all solutions y(t) of (1.1),

U̇(t, yt) = lim sup
η→0+

U(t + η, yt+η)− V (t, yt))

η
≤ 0,

that is, the right derivative of U along every solution y(t) of (1.1) is non-positive.

Proof. If the trivial solution of (1.1) is variationally stable, then by Theorem 4.1 the trivial
solution of the generalized equation (4.1) with F given by (2.6) and P is given by (2.7)
is also variationally stable. Then by Theorem 5.1, there exists a function V satisfying all
conditions in that theorem. Define U : [t0− r, +∞)×G−([−r, 0],Rn) → R by the relation
in (5.3). Then as in the proof of [2], Theorem 4.3, U has the properties above and the
proof is complete.

The proof of the next result follows as in the proof of Theorem 5.3, but applying [2],
Theorem 4.5 instead of [2], Theorem 4.3.

Theorem 5.4. If the trivial solution y ≡ 0 of the retarded differential equation (1.1)
is variationally asymptotically stable, then for every 0 < a < c, there exists a function
U : [t0 − r, +∞) × Ea → R such that for every x ∈ Ba, the function V (·, x) belongs to
BV −([t0 − r, +∞),R) and the following conditions hold:

(i) U(t, 0) = 0, t ∈ [t0 − r, +∞);

(ii) |U(t, ψ)− U(t, ψ)| ≤ ‖ψ − ψ‖, t ∈ [t0 − r, +∞), ψ, ψ ∈ Ea.

(iii) U is positive definite along every solution y(t) of the retarded equation (1.1), that
is, there is a function b : [0, +∞) → R of Hahn class such that

U(t, yt) ≥ b(‖yt‖), (t, yt) ∈ [t0 − r, +∞)× Ea;

(iv) for all solutions y(s) of (1.1) defined for s ≥ t, where y(t) = ψ ∈ Ea, the relation

U̇(t, yt) = lim sup
η→0+

U(t + η, yt+η)− U(t, yt)

η
≤ U(t, ψ)

holds.
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