# pressureless gas with a temperature-dependent viscosity. 

Bernard Ducomet ${ }^{a}$ and Šarka Nečasova ${ }^{b}$<br>${ }^{a}$ Département de Physique Théorique et Appliquée, CEA/DAM Ile de France BP 12, F-91680 Bruyères-le-Châtel, France<br>E-mail: bernard.ducomet@cea.fr<br>${ }^{b}$ Mathematical Institute $A S \check{C} R$<br>Žitna 25, 11567 Praha 1, Czech Republic<br>E-mail: matus@math.cas.cz

## SUMMARY


#### Abstract

We consider an initial boundary value problem for the equations of spherically symmetric motion of a pressureless gas with temperaturedependent viscosity $\mu(\theta)$ and conductivity $\kappa(\theta)$. We prove that this problem admits a unique weak solution, assuming the Belov's functional relation between $\mu(\theta)$ and $\kappa(\theta)$ and we give the behaviour of the solution for large times.


Keywords: spherically symmetric motion, pressureless gas,temperature - dependent viscosity

Math. Class. 76N10, 36Q35

## 1 Introduction

Pressureless gas have been the object of various mathematical studies in recent years $[5,6,4,8,6,15,7,5]$. Physically, these models (which may be considered as generalization of the popular Burgers model (see [16, 27, 17, 18])) have been introduced in astrophysics $[28,26]$ to describe sticky particles in interstellar madium, galaxy gases or rarefied cold plasmas. Also in some recent high-energy works $[25,24]$ it has been shown that classical decay of
unstable higher-dimensional objects in string theories produces pressureless gas with non-zero energy density.

In the present work we are interested in the compressible case of a pressureless gas with non-constant transport coefficients (viscosity and conductivity) in spherical symmetry. If the density dependent viscosity case has been the object of a number of works in recent years (see for example [19, 23, 9] and references therein for the 1D and spherical symmetries), the temperature dependent-viscosity is much less known. After the pioneering article by C. Dafermos and L. Hsiao [6] in the incompressible case, to our knowledge, only the paper by S. Ya. Belov [2] deals with the compressible case. Our purpose in the following is to test the robustness of the model in [2] on the spherically symmetric geometry. We would like to mention that in 3d case the situation is different and the existence and asymptotic behavior of full system of the Navier-Stokes- Fourier system in 3D with nonideal gas (including pressure) were proved in the works of Feireisl and his coworkers [11, 13, 12]. With ideal polytropic gas and density dependent viscosity the existence of solution was proved by D. Bresch and B. Desjardins [3].

We consider the following model of compressible Navier-Stokes system for a spherical symmetric flow of a pressureless gas

$$
\left\{\begin{array}{c}
\rho_{t}+(\rho v)_{r}+\frac{2 \rho v}{r}=0  \tag{1}\\
\rho\left(v_{t}+v v_{r}\right)=\left(\mu\left(v_{r}+\frac{2 v}{r}\right)\right)_{r} \\
\rho\left(\theta_{t}+v \theta_{r}\right)=q_{r}+\frac{2 q}{r}+\mu\left(v_{r}+\frac{2 v}{r}\right)^{2}
\end{array}\right.
$$

in the domain $\Omega \times \mathbf{R}^{+}$with $\Omega:=\left(R_{0}, R_{1}\right)$, for the density $\rho(r, t)$, the velocity $v(r, t)$ and the temperature $\theta(r, t)$. The heat flux $q$ is given by the Fourier law $q(\theta):=\kappa(\theta) \theta_{r}$.

Writing the system in the lagrangian (mass) coordinates $(x, t)$, with

$$
\begin{equation*}
r(x, t):=r_{0}(x)+\int_{0}^{t} v(x, s) d s \tag{2}
\end{equation*}
$$

where

$$
r_{0}(x):=\left[R_{0}^{3}+3 \int_{0}^{x} \eta^{0}(y) d y\right]^{1 / 3}, \quad \text { for } x \in \Omega
$$

we get

$$
\left\{\begin{array}{c}
\eta_{t}=\left(r^{2} v\right)_{x}  \tag{3}\\
v_{t}=r^{2}\left(\frac{\mu}{\eta}\left(r^{2} v\right)_{x}\right)_{x} \\
\theta_{t}=q_{x}+\left(\frac{\mu}{\eta}\left(r^{2} v\right)_{x}\right)\left(r^{2} v\right)_{x} \\
r_{t}=v
\end{array}\right.
$$

in the domain $Q:=\Omega \times \mathbf{R}^{+}$with $\Omega:=(0, M)$, where the specific volume $\eta$ (with $\eta:=\frac{1}{\rho}$ ), the velocity $v$, the temperature $\theta$ and the radius $r$ depend on the lagrangian mass coordinates.

For our pressureless model, the stress $\sigma$ is only viscous

$$
\sigma(\eta, \theta):=\frac{\mu(\theta)}{\eta}\left(r^{2} v\right)_{x}
$$

the energy is normalized $e=\theta$, and the heat flux is $q(\theta):=\frac{\kappa(\theta) r^{4}}{\eta} \theta_{x}$.
We consider the boundary conditions

$$
\left\{\begin{array}{l}
\left.v\right|_{x=0, M}=0,  \tag{4}\\
\left.\pi\right|_{x=0, M}=0,
\end{array}\right.
$$

for $t>0$, and initial conditions

$$
\begin{equation*}
\left.\eta\right|_{t=0}=\eta^{0}(x),\left.\quad v\right|_{t=0}=v^{0}(x),\left.\quad r\right|_{t=0}=r^{0}(x),\left.\quad \theta\right|_{t=0}=\theta^{0}(x) \quad \text { on } \Omega \tag{5}
\end{equation*}
$$

The viscosity coefficient $\mu$ is such that $\mu \in C^{2}\left(\mathbf{R}^{+}\right)$and satisfy the conditions

$$
\begin{equation*}
\frac{d}{d \xi} \mu(\xi) \leqslant 0, \quad \mu(\xi) \geqslant \underline{\mu}>0 \tag{6}
\end{equation*}
$$

The thermal conductivity satisfies the Belov's condition [2]

$$
\begin{equation*}
\kappa(\xi)=-\Lambda \frac{d}{d \xi}(\log \mu(\xi)) \text { for } \xi \geqslant 0 \tag{7}
\end{equation*}
$$

where $\Lambda$ is a positive constant.

We study weak solutions for the above problem with properties

$$
\left\{\begin{array}{c}
\eta \in L^{\infty}\left(Q_{T}\right), \quad \eta_{t} \in L^{\infty}\left([0, T], L^{2}(\Omega)\right), \quad \sqrt{\rho}\left(r^{2} v\right)_{x} \in L^{\infty}\left([0, T], L^{2}(\Omega)\right)  \tag{8}\\
v \in L^{\infty}\left([0, T], L^{4}(\Omega)\right), \quad v_{t} \in L^{\infty}\left([0, T], L^{2}(\Omega)\right), \sigma_{x} \in L^{\infty}\left([0, T], L^{2}(\Omega)\right) \\
\theta \in L^{\infty}\left([0, T], L^{2}(\Omega)\right), \quad \sqrt{\rho} \theta_{x} \in L^{\infty}\left([0, T], L^{2}(\Omega)\right)
\end{array}\right.
$$

and

$$
\begin{equation*}
r \in C(Q) \text { and for all } t \in[0, T], x \rightarrow r(x, t) \text { is strictly increasing on } \Omega \tag{9}
\end{equation*}
$$

where $Q_{T}:=\Omega \times(0, T)$.
We also assume the following conditions on the data:

$$
\left\{\begin{array}{c}
\eta^{0}>0 \text { on } \Omega, \quad \eta^{0} \in L^{1}(\Omega)  \tag{10}\\
v_{0} \in L^{2}(\Omega), \quad \sqrt{\rho^{0}} v_{x}^{0} \in L^{2}(\Omega) \\
\theta^{0} \in L^{2}(\Omega), \quad \inf _{\Omega} \theta^{0}>0
\end{array}\right.
$$

We look for a weak solution $(\eta, v, \theta)$ such that

$$
\begin{equation*}
\eta(x, t)=\eta^{0}(x)+\int_{0}^{t}\left(r^{2} v_{x}+\frac{2 \eta v}{r}\right)(x, s) d s \tag{11}
\end{equation*}
$$

for a.e. $x \in \Omega$ and any $t>0$, and such that for any test function $\phi \in$ $L^{2}\left([0, T], H^{1}(\Omega)\right)$ with $\phi_{t} \in L^{1}\left([0, T], L^{2}(\Omega)\right)$ such that $\phi(\cdot, T)=0$

$$
\begin{align*}
\int_{Q}\left[\phi_{t} v+\left(r^{2} \phi_{x}\right.\right. & \left.\left.+\frac{2 \eta \phi}{r}\right) p-\frac{\mu \phi_{x} r^{4}}{\eta} v_{x}-2 \mu \frac{\phi \eta v}{r^{2}}\right] d x d t \\
& =\int_{\Omega} \phi(0, x) v^{0}(x) d x \tag{12}
\end{align*}
$$

and

$$
\begin{equation*}
\int_{Q}\left[\phi_{t} e+\frac{\kappa r^{4} \theta_{x}}{\eta} \phi_{x}-r^{2} v \sigma \phi_{x}-r^{2} v \sigma_{x} \phi\right] d x d t=\int_{\Omega} \phi(0, x) \theta^{0}(x) d x \tag{13}
\end{equation*}
$$

The aim of the present paper is to prove the following result

Theorem 1 Suppose that the initial data satisfy (10) and that $T$ is an arbitrary positive number.

Then the problem (3)(4)(5) possesses a global weak solution satisfying (8) and (9) together with properties (11), (12) and (13).

For that purpose, we first prove a classical existence result in the Hölder category. We denote by $C^{\alpha}(\Omega)$ the Banach space of real-valued functions on $\Omega$ which are uniformly Hölder continuous with exponent $\alpha \in \Omega$, and $C^{\alpha, \alpha / 2}\left(Q_{T}\right)$ the Banach space of real-valued functions on $Q_{T}:=\Omega \times(0, T)$ which are uniformly Hölder continuous with exponent $\alpha$ in $x$ and $\alpha / 2$ in $t$. The norms of $C^{\alpha}(\Omega)$ (resp. $\left.C^{\alpha, \alpha / 2}\left(Q_{T}\right)\right)$ will be denoted by $\|\cdot\|_{\alpha}$ (resp. $\left|||\cdot|| \|_{\alpha}\right)$.

Theorem 2 Suppose that the initial data satisfy

$$
\left(\eta^{0}, \eta_{x}^{0}, v^{0}, v_{x}^{0}, v_{x x}^{0}, \theta^{0}, \theta_{x}^{0}, \theta_{x x}^{0}\right) \in\left(C^{\alpha}(\Omega)\right)^{8}
$$

for some $\alpha \in \Omega$. Suppose also that $\eta^{0}(x)>0$ and $\theta^{0}(x)>0$ on $\Omega$, and that the compatibility conditions

$$
\theta_{x}^{0}(0)=\theta_{x}^{0}(M)=0, \quad v^{0}(0)=v^{0}(M)=0,
$$

hold. Then, there exists a unique solution $(\eta(x, t), v(x, t), \theta(x, t))$ with $\eta(x, t)>$ 0 and $\theta(x, t)>0$ to the initial-boundary value problem (3)(4)(5) on $Q=$ $\Omega \times \mathbb{R}_{+}$such that for any $T>0$

$$
\left(\eta, \eta_{x}, \eta_{t}, \eta_{x t}, v, v_{x}, v_{t}, v_{x x}, \theta, \theta_{x}, \theta_{t}, \theta_{x x}\right) \in\left(C^{\alpha}\left(Q_{T}\right)\right)^{12}
$$

and

$$
\left(\eta_{t t}, v_{x t}, \theta_{x t}\right) \in\left(L^{2}\left(Q_{T}\right)\right)^{3}
$$

Then Theorem 1 will be obtained from Theorem 2 through a regularization process.

The plan of the article is as follows: in section 2 we give a priori estimates sufficient to prove in section 3 global existence of a solution, then we gives in section 4 the asymptotic behaviour of the solution for large time. In the last section we briefly study the case of constant transport coefficients.

## 2 A priori estimates

In the spirit of [21], we first suppose that the solution is classical in the following sense

$$
\left\{\begin{array}{c}
\eta \in C^{1}\left(Q_{T}\right), \quad \rho>0  \tag{14}\\
v, \theta \in C^{1}\left([0, T], C^{0}(\Omega)\right) \cap C^{0}\left([0, T], C^{2}(\Omega)\right), \quad \theta>0
\end{array}\right.
$$

and

$$
\begin{equation*}
r>0 \text { for all } t \in[0, T] . \tag{15}
\end{equation*}
$$

Our first task is to prove the following regularity result
Theorem 3 Suppose that the initial-boundary value problem (3)(4)(5) has a classical solution described by Theorem 2. Then the solution ( $\eta, v, v_{x}, \theta, \theta_{x}$ ) is bounded in the Hölder space $C^{1 / 3,1 / 6}\left(Q_{T}\right)$

$$
\left|\left\|\eta \left|\left\|\left\|_{1 / 3}+\right\||v|\right\|_{1 / 3}+\| \| v_{x}\| \|_{1 / 3}+\| \| \theta\| \|_{1 / 3}+\left\|| | \theta_{x}\right\| \|_{1 / 3} \leqslant C(T)\right.\right.\right.
$$

where $C$ depends on $T$, the physical data of the problem and the initial data. Moreover

$$
0<\underline{\eta} \leqslant \eta \leqslant \bar{\eta}, \quad 0<\underline{\theta} \leqslant \theta \leqslant \bar{\theta}
$$

Let $N$ and $T$ be arbitrary positive numbers In all the following, we denote by $C=C(N)$ or $K=K(N)$ various positive non-decreasing functions of $N$, which may possibly depend on the physical constants $M$ etc., but not on $T$. We also denote by $\Psi$ the elementary positive function: $\Psi(s):=s-\log s-1$, for any $s>0$.

Lemma 1 Under the following condition on the data

$$
\begin{equation*}
\left\|v^{0}\right\|_{L^{2}(\Omega)}+\left\|\eta^{0}\right\|_{L^{1}(\Omega)}+\left\|\theta^{0}\right\|_{L^{1}(\Omega)} \leqslant N \tag{16}
\end{equation*}
$$

1. The following mass-energy equality holds

$$
\begin{equation*}
\int_{\Omega}\left[\frac{1}{2} v^{2}+\eta+e\right] d x=\int_{\Omega}\left[\frac{1}{2}\left(v^{0}\right)^{2}+\eta^{0}+e^{0}\right] d x \tag{17}
\end{equation*}
$$

2. The following "entropy" inequality holds

$$
\begin{equation*}
\int_{\Omega} \Psi(\theta) d x+\int_{0}^{T} \int_{\Omega}\left(\frac{\kappa(\theta) r^{4}}{\eta \theta^{2}} \theta_{x}^{2}+\frac{\mu(\theta)}{\eta \theta}\left[\left(r^{2} v\right)_{x}\right]^{2}\right) d x d t \leqslant K(N) . \tag{18}
\end{equation*}
$$

3. The following estimates hold

$$
\begin{equation*}
\|\eta\|_{L^{\infty}\left(0, T ; L^{1}(\Omega)\right)}+\|v\|_{L^{\infty}\left(0, T ; L^{2}(\Omega)\right)}+\|\theta\|_{L^{\infty}\left(0, T ; L^{1}(\Omega)\right)} \leqslant K(N) . \tag{19}
\end{equation*}
$$

Proof: 1. Multiplying the second equation (3) by $v$, adding the result to the first and third equations (3), integrating on $\Omega$ and using (4), (5), one gets the energy identity (17).
2. Computing the time-derivative $(\log \theta)_{t}$ we get

$$
(\log \theta)_{t}=\left(\frac{\kappa(\theta) r^{4}}{\eta \theta} \theta_{x}\right)_{x}+\frac{\kappa(\theta) r^{4}}{\eta \theta^{2}} \theta_{x}^{2}+\frac{\mu(\theta)}{\eta \theta}\left[\left(r^{2} v\right)_{x}\right]^{2}
$$

Integrating on $\Omega$ and using (17) we get (18).
3. The estimate (19) follows from (17)

Proposition 1 The following uniform bound holds on $Q$

$$
\begin{equation*}
|v(x, t)| \leqslant\left\|v^{0}\right\|_{C(\Omega)} . \tag{20}
\end{equation*}
$$

Proof: Applying the strong maximum principle to the second equation (3) gives (20)

Proposition 2 The following uniform lower bound holds on $Q$

$$
\begin{equation*}
\theta(x, t) \geqslant \underline{\theta}>0 \tag{21}
\end{equation*}
$$

where $\underline{\theta}=\left(\left\|\frac{1}{\theta^{0}}\right\|_{C(\Omega)}\right)^{-1}$.
Proof: Multiplying, as in [1], the third equation (3) by $\theta^{-2}$, we get

$$
\omega_{t}=\left(\kappa \frac{r^{4}}{\eta} \omega_{x}\right)_{x}-2 \kappa \frac{r^{4}}{\eta \theta^{3}} \theta_{x}^{2}-\frac{\mu}{\eta \theta^{2}}\left[\left(r^{2} v\right)_{x}\right]^{2} \leqslant\left(\kappa \frac{r^{4}}{\eta} \omega_{x}\right)_{x}
$$

where $\omega:=\theta^{-1}$. Multiplying by $2 p \omega^{2 p-1}$, we get

$$
\left(\omega^{2 p}\right)_{t} \leqslant\left(\kappa \frac{r^{4}}{\eta}\left(\omega^{2 p}\right)_{x}\right)_{x}-\kappa \frac{r^{4}}{\eta} 2 p \omega^{2 p-2} \omega_{x}^{2}
$$

which implies

$$
\frac{d}{d t}\left(\int_{\Omega} \omega^{2 p} d x\right) \leqslant 0
$$

Integrating in $t$ and letting $p \rightarrow \infty$ gives $\|\omega(\cdot, t)\|_{\infty} \leqslant\left\|\omega^{0}\right\|_{\infty}$, which implies (21)

Lemma 2 One has the kinetic energy bound

$$
\begin{equation*}
\left\|\sqrt{\frac{\mu}{\eta}}\left(r^{2} v\right)_{x}\right\|_{L^{1}\left(0, T, L^{2}(\Omega)\right.} \leqslant K \tag{22}
\end{equation*}
$$

and the improved thermal bound

$$
\begin{equation*}
\left\|\sqrt{\frac{\kappa^{2} r^{4}}{\eta}} \theta_{x}\right\|_{L^{1}\left(0, T, L^{2}(\Omega)\right.} \leqslant K \tag{23}
\end{equation*}
$$

Proof: 1. Multiplying the second equation (3) by $v$ and integrating by parts, we get

$$
\frac{d}{d t} \int_{\Omega} \frac{1}{2} v^{2} d x=\int_{\Omega} r^{2} \sigma_{x} v d x=-\int_{\Omega} \frac{\mu}{\eta}\left[\left(r^{2} v\right)_{x}\right]^{2} d x
$$

which gives (22) by integrating in $t$.
2. Multiplying the third equation (3) by $\mathcal{K}(\theta):=\int_{\theta_{0}}^{\theta} \kappa(s) d s$, for $\theta_{0}>0$ arbitrary, and integrating by parts, we get

$$
\begin{gathered}
\int_{\Omega} \mathcal{K} \theta_{t}=\int_{\Omega} \mathcal{K}\left(\kappa \frac{r^{4}}{\eta} \theta_{x}\right)_{x} d x+\int_{\Omega} \mathcal{K} \frac{\mu}{\eta}\left[\left(r^{2} v\right)_{x}\right]^{2} d x \\
=-\int_{\Omega} \mathcal{K}_{x} \kappa \frac{r^{4}}{\eta} \theta_{x} d x+\int_{\Omega} \mathcal{K} \frac{\mu}{\eta}\left[\left(r^{2} v\right)_{x}\right]^{2} d x
\end{gathered}
$$

Then

$$
\begin{equation*}
\frac{d}{d t} \int_{\Omega}\left(\int_{1}^{\theta} \mathcal{K}(s) d s\right) d x+\int_{\Omega} \kappa^{2} \frac{r^{4}}{\eta} \theta_{x}^{2} d x=\int_{\Omega} \mathcal{K}(\theta) \frac{\mu}{\eta}\left[\left(r^{2} v\right)_{x}\right]^{2} d x \tag{24}
\end{equation*}
$$

After the growth property (7) of $\kappa$ and the lower bound (21) of $\theta$, we get

$$
\mathcal{K}(\theta)=-\Lambda \int_{\theta_{0}}^{\theta} \frac{d}{d s}(\log \mu(s)) d s \leqslant K
$$

which gives (23) by plugging into (24) after integrating in $t$, and using (22)
Lemma 3 One has the bounds

$$
\begin{equation*}
\left\|\sqrt{\frac{\mu}{\eta}}\left(r^{2} v\right)_{x}\right\|_{L^{\infty}\left(0, T, L^{2}(\Omega)\right.} \leqslant K, \quad\left\|\sqrt{\frac{\kappa}{\eta}} r^{4} \theta_{x}^{2}\right\|_{L^{\infty}\left(0, T, L^{2}(\Omega)\right.} \leqslant K \tag{25}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\left(\frac{\mu}{\eta}\left(r^{2} v\right)_{x}\right)_{x}\right\|_{L^{1}\left(0, T, L^{2}(\Omega)\right.} \leqslant K . \tag{26}
\end{equation*}
$$

Proof: All along the proof, we denote by $C$ a generic positive constant, possibly depending on the various physical constants of the problem, but which do not depend on $T$.

1. Observing that the second equation (3) rewrites $\left(r^{2} v\right)_{t}=r^{4} \sigma_{x}+2 r v^{2}$, multiplying by $\sigma_{x}$ and integrating on $\Omega$, we get

$$
\int_{\Omega} \sigma_{x}\left(r^{2} v\right)_{t} d x=\int_{\Omega} r^{4} \sigma_{x}^{2} d x+2 \int_{\Omega} r v^{2} \sigma_{x} d x
$$

Integrating by parts

$$
\begin{equation*}
\frac{d}{d t} \int_{\Omega} \frac{\mu}{\eta}\left[\left(r^{2} v\right)_{x}\right]^{2} d x+\int_{\Omega} r^{4} \sigma_{x}^{2} d x=-\int_{\Omega} r^{2} v \sigma_{x t} d x-2 \int_{\Omega} r v^{2} \sigma_{x} d x:=A_{1}+A_{2} \tag{27}
\end{equation*}
$$

Rewriting $A_{1}$, we have

$$
\begin{gathered}
A_{1}=\int_{\Omega}\left(r^{2} v\right)_{x} \sigma_{t} d x=\frac{d}{d t} \int_{\Omega} \frac{1}{2} \frac{\eta}{\mu} \sigma^{2} d x-\frac{1}{2} \int_{\Omega}\left(\frac{\eta}{\mu}\right)_{t} \sigma^{2} d x \\
=\frac{1}{2} \frac{d}{d t} \int_{\Omega} \frac{\mu}{\eta}\left[\left(r^{2} v\right)_{x}\right]^{2} d x-\frac{1}{2} \int_{\Omega} \frac{\mu}{\eta^{2}}\left[\left(r^{2} v\right)_{x}\right]^{3} d x+\frac{1}{2} \int_{\Omega} \frac{\mu^{\prime}}{\eta}\left[\left(r^{2} v\right)_{x}\right]^{2} \theta_{t} d x \\
=\frac{1}{2} \frac{d}{d t} \int_{\Omega} \frac{\mu}{\eta}\left[\left(r^{2} v\right)_{x}\right]^{2} d x-\frac{1}{2} \int_{\Omega} \frac{\mu}{\eta^{2}}\left[\left(r^{2} v\right)_{x}\right]^{3} d x+\frac{1}{2} \int_{\Omega} \frac{\mu^{\prime}}{\eta}\left[\left(r^{2} v\right)_{x}\right]^{2}\left(\kappa \frac{r^{4}}{\eta} \theta_{x}\right)_{x} d x
\end{gathered}
$$

$$
+\frac{1}{2} \int_{\Omega} \frac{\mu \mu^{\prime}}{\eta^{2}}\left[\left(r^{2} v\right)_{x}\right]^{4} d x
$$

In the same stroke

$$
A_{2}=2 \int_{\Omega}\left(r v^{2}\right)_{x} \sigma d x=4 \int_{\Omega} \frac{\mu v}{r \eta}\left[\left(r^{2} v\right)_{x}\right]^{2} d x-6 \int_{\Omega} \frac{\mu v^{2}}{r^{2}}\left(r^{2} v\right)_{x} d x
$$

Plugging into (27), we obtain

$$
\begin{gather*}
\frac{1}{2} \frac{d}{d t} \int_{\Omega} \frac{\mu}{\eta}\left[\left(r^{2} v\right)_{x}\right]^{2} d x+\int_{\Omega} r^{4} \sigma_{x}^{2} d x \\
=-\frac{1}{2} \int_{\Omega} \frac{\mu}{\eta^{2}}\left[\left(r^{2} v\right)_{x}\right]^{3} d x+\frac{1}{2} \int_{\Omega} \frac{\mu^{\prime}}{\eta}\left[\left(r^{2} v\right)_{x}\right]^{2}\left(\kappa \frac{r^{4}}{\eta} \theta_{x}\right)_{x} d x \\
+\frac{1}{2} \int_{\Omega} \frac{\mu \mu^{\prime}}{\eta^{2}}\left[\left(r^{2} v\right)_{x}\right]^{4} d x+4 \int_{\Omega} \frac{\mu v}{r \eta}\left[\left(r^{2} v\right)_{x}\right]^{2} d x-6 \int_{\Omega} \frac{\mu v^{2}}{r^{2}}\left(r^{2} v\right)_{x} d x=: \sum_{j=1}^{5} B_{j} . \tag{28}
\end{gather*}
$$

Let us estimate the contributions in the right-hand side.
One observes first that, after the boundary conditions (4)

$$
\forall t \in[0, T], \exists \xi(t):\left(r^{2} v\right)_{x}(\xi(t), t)=0
$$

So splitting $\Omega$ accordingly, we have

$$
B_{1}=-\frac{1}{2} \int_{0}^{\xi} \frac{\mu}{\eta^{2}}\left[\left(r^{2} v\right)_{x}\right]^{3} d x-\frac{1}{2} \int_{\xi}^{M} \frac{\mu}{\eta^{2}}\left[\left(r^{2} v\right)_{x}\right]^{3} d x
$$

Integrating by part, we find first

$$
-\frac{1}{2} \int_{0}^{\xi} \frac{\mu}{\eta}\left(r^{2} v\right)_{x} \frac{1}{\eta}\left[\left(r^{2} v\right)_{x}\right]^{2} d x=\frac{1}{2} \int_{0}^{\xi}\left(\frac{\mu}{\eta}\left(r^{2} v\right)_{x}\right)_{x} \int_{0}^{x} \frac{1}{\eta}\left[\left(r^{2} v\right)_{y}\right]^{2} d y d x
$$

So

$$
\left|\frac{1}{2} \int_{0}^{\xi} \frac{\mu}{\eta}\left(r^{2} v\right)_{x} \frac{1}{\eta}\left[\left(r^{2} v\right)_{x}\right]^{2} d x\right| \leqslant \frac{1}{2} \int_{0}^{\xi} r^{2}\left|\left(\frac{\mu}{\eta}\left(r^{2} v\right)_{x}\right)_{x}\right|\left(\frac{1}{r^{2}} \int_{0}^{x} \frac{1}{\eta}\left[\left(r^{2} v\right)_{y}\right]^{2} d y\right) d x
$$

and by Cauchy-Schwarz

$$
\left|\frac{1}{2} \int_{0}^{\xi} \frac{\mu}{\eta}\left(r^{2} v\right)_{x} \frac{1}{\eta}\left[\left(r^{2} v\right)_{x}\right]^{2} d x\right| \leqslant \frac{\epsilon_{1}}{6} \int_{\Omega} r^{4} \sigma_{x}^{2} d x+C\left(\int_{\Omega} \frac{\mu}{\eta}\left[\left(r^{2} v\right)_{x}\right]^{2} d x\right)^{2}
$$

for any $\epsilon_{1}>0$, and a $C\left(\epsilon_{1}, \underline{\mu}, R_{0}\right)$.
As the same bound clearly holds for $\frac{1}{2} \int_{\xi}^{M} \frac{\mu}{\eta^{2}}\left[\left(r^{2} v\right)_{x}\right]^{3} d x$, we have

$$
\begin{equation*}
\left|B_{1}\right| \leqslant \frac{1}{3} \epsilon_{1} \int_{\Omega} r^{4} \sigma_{x}^{2} d x+C\left(\int_{\Omega} \frac{\mu}{\eta}\left[\left(r^{2} v\right)_{x}\right]^{2} d x\right)^{2} \tag{29}
\end{equation*}
$$

By Cauchy-Schwarz in $B_{2}$, we have

$$
\begin{equation*}
\left|B_{2}\right| \leqslant-\frac{1}{4} \epsilon_{2} \int_{\Omega} \frac{\mu \mu^{\prime}}{\eta^{2}}\left[\left(r^{2} v\right)_{x}\right]^{4} d x+\frac{1}{4 \epsilon_{2}} \int_{\Omega} \frac{1}{\mu \kappa} \kappa\left[\left(\kappa \frac{r^{4}}{\eta} \theta_{x}\right)_{x}\right]^{2} d x \tag{30}
\end{equation*}
$$

Using the same splitting: $\Omega=(0, \xi) \cup(\xi, M)$ ( as in $B_{1}$ ) for $B_{4}$ and integrating by parts, we get

$$
B_{4}=4 \int_{\Omega} \frac{\mu\left(r^{2} v\right)_{x}}{\eta} \frac{v\left(r^{2} v\right)_{x}}{r} d x=-4 \int_{\Omega} r^{2}\left(\frac{\mu\left(r^{2} v\right)_{x}}{\eta}\right)_{x}\left(\frac{1}{r^{2}} \int_{0}^{x} \frac{v\left(r^{2} v\right)_{y}}{r} d y\right) d x
$$

So by Cauchy-Schwarz

$$
\begin{gathered}
\left.\left|B_{4}\right| \leqslant 4 \int_{\Omega} r^{2}\left|\left(\frac{\mu\left(r^{2} v\right)_{x}}{\eta}\right)_{x}\right| \frac{1}{r^{2}} \int_{0}^{x} \frac{v\left(r^{2} v\right)_{y}}{r} d y \right\rvert\, d x \\
\leqslant \frac{1}{3} \epsilon_{1} \int_{\Omega} r^{4} \sigma_{x}^{2} d x+C \int_{\Omega}\left(\int_{0}^{x} \frac{v\left(r^{2} v\right)_{x}}{r} d y\right)^{2} d x . \\
\leqslant \frac{1}{3} \epsilon_{1} \int_{\Omega} r^{4} \sigma_{x}^{2} d x+C\left(\int_{\Omega} \frac{\mu}{\eta}\left[\left(r^{2} v\right)_{x}\right]^{2} d x\right)\left(\int_{\Omega} \frac{\eta v^{2}}{\mu} d x\right) .
\end{gathered}
$$

Using the energy estimate, Proposition 1 and (6) the last integral is bounded, so

$$
\begin{equation*}
\left|B_{4}\right| \leqslant \frac{1}{3} \epsilon_{1} \int_{\Omega} r^{4} \sigma_{x}^{2} d x+C \int_{\Omega} \frac{\mu}{\eta}\left[\left(r^{2} v\right)_{x}\right]^{2} d x \tag{31}
\end{equation*}
$$

Using Cauchy-Schwarz in $B_{5}$ gives

$$
B_{5} \leqslant C \int_{\Omega} \frac{\mu}{\eta}\left(r^{2} v\right)_{x}^{2} d x+C \int_{\Omega} \mu \eta v^{4} d x
$$

But after energy estimate

$$
v^{2} \leqslant C \max _{\Omega}\left(r^{2} v\right)^{2} \leqslant C\left(\int_{\Omega} \frac{\mu}{\eta}\left(r^{2} v\right)_{x}^{2} d x\right)^{1 / 2}
$$

$$
\begin{equation*}
\left|B_{5}\right| \leqslant C \int_{\Omega} \frac{\mu}{\eta}\left(r^{2} v\right)_{x}^{2} d x \tag{32}
\end{equation*}
$$

Plugging (29), (30), (31) and (32) into (28), we get

$$
\begin{gather*}
\frac{1}{2} \frac{d}{d t} \int_{\Omega} \frac{\mu}{\eta}\left[\left(r^{2} v\right)_{x}\right]^{2} d x+\int_{\Omega} r^{4} \sigma_{x}^{2} d x-\frac{1}{2} \int_{\Omega} \frac{\mu \mu^{\prime}}{\eta^{2}}\left[\left(r^{2} v\right)_{x}\right]^{4} d x \leqslant \epsilon_{1} \int_{\Omega} r^{4} \sigma_{x}^{2} d x \\
+C\left(\int_{\Omega} \frac{\mu}{\eta}\left[\left(r^{2} v\right)_{x}\right]^{2} d x\right)^{2} \\
-\frac{1}{4} \epsilon_{2} \int_{\Omega} \frac{\mu \mu^{\prime}}{\eta^{2}}\left[\left(r^{2} v\right)_{x}\right]^{4} d x-\frac{1}{4 \epsilon_{2}} \int_{\Omega} \frac{\mu^{\prime}}{\mu \kappa} \kappa\left[\left(\kappa \frac{r^{4}}{\eta} \theta_{x}\right)_{x}\right]^{2} d x \tag{33}
\end{gather*}
$$

2. Multiplying now the third equation (3) by $\alpha \kappa\left(\kappa \frac{r^{4}}{\eta} \theta_{x}\right)_{x}$, where $\alpha>0$ will be defined later, we find

$$
\alpha \kappa\left(\kappa \frac{r^{4}}{\eta} \theta_{x}\right)_{x} \theta_{t}=\alpha \kappa\left[\left(\kappa \frac{r^{4}}{\eta} \theta_{x}\right)_{x}\right]^{2}+\alpha \frac{\mu}{\eta}\left[\left(r^{2} v\right)_{x}\right]^{2} \kappa\left(\kappa \frac{r^{4}}{\eta} \theta_{x}\right)_{x} .
$$

As the left-hand side rewrites $\alpha \mathcal{K}_{t}\left(\frac{r^{4}}{\eta} \mathcal{K}_{x}\right)$, we easily compute

$$
\begin{gathered}
\alpha \mathcal{K}_{t}\left(\frac{r^{4}}{\eta} \mathcal{K}_{x}\right)_{x}=\alpha\left(\mathcal{K}_{t} \frac{r^{4}}{\eta} \mathcal{K}_{x}\right)_{x}-\alpha \mathcal{K}_{t x} \frac{r^{4}}{\eta} \mathcal{K}_{x} \\
=\alpha\left(\mathcal{K}_{t} \frac{r^{4}}{\eta} \mathcal{K}_{x}\right)_{x}-\frac{1}{2} \alpha\left(\mathcal{K}_{x}^{2} \frac{r^{4}}{\eta}\right)_{t}+\frac{1}{2} \alpha \mathcal{K}_{x}^{2}\left(\frac{r^{4}}{\eta}\right)_{t} . \\
=\alpha\left(\mathcal{K}_{t} \frac{r^{4}}{\eta} \mathcal{K}_{x}\right)_{x}-\frac{1}{2} \alpha\left(\mathcal{K}_{x}^{2} \frac{r^{4}}{\eta}\right)_{t}+2 \alpha \mathcal{K}_{x}^{2} \frac{r^{3} v}{\eta}-\frac{1}{2} \alpha \mathcal{K}_{x}^{2} \frac{r^{4}\left(r^{2} v\right)_{x}}{\eta^{2}} .
\end{gathered}
$$

So integrating on $\Omega$ and using (4)

$$
\begin{gather*}
\frac{1}{2} \frac{d}{d t} \int_{\Omega} \alpha \frac{r^{4} \mathcal{K}_{x}^{2}}{\eta} d x+\alpha \int_{\Omega} \kappa\left[\left(\kappa \frac{r^{4}}{\eta} \theta_{x}\right)_{x}\right]^{2} d x \\
=2 \alpha \int_{\Omega} \mathcal{K}_{x}^{2} \frac{r^{3} v}{\eta} d x-\frac{\alpha}{2} \int_{\Omega} \mathcal{K}_{x}^{2} \frac{r^{4}\left(r^{2} v\right)_{x}}{\eta^{2}} d x-\alpha \int_{\Omega} \frac{\mu}{\eta}\left[\left(r^{2} v\right)_{x}\right]^{2} \kappa\left(\kappa \frac{r^{4}}{\eta} \theta_{x}\right)_{x} d x=: \sum_{j=1}^{3} C_{j} . \tag{34}
\end{gather*}
$$

In order to estimate the contributions on the right-hand side, we first integrate by parts in $C_{1}$

$$
\begin{gathered}
C_{1}=2 \alpha \int_{\Omega} \frac{r^{4} \mathcal{K}_{x}^{2}}{\eta} \frac{r^{2} v}{r^{3}} d x=-2 \alpha \int_{\Omega}\left(\frac{r^{2} v}{r^{3}}\right)_{x} \int_{0}^{x} \frac{r^{4} \mathcal{K}_{y}^{2}}{\eta} d y d x \\
=-2 \alpha \int_{\Omega} \frac{\left(r^{2} v\right)_{x}}{r^{3}}\left(\int_{0}^{x} \frac{r^{4} \mathcal{K}_{y}^{2}}{\eta} d y\right) d x+6 \alpha \int_{\Omega} \frac{\eta v}{r^{4}}\left(\int_{0}^{x} \frac{r^{4} \mathcal{K}_{y}^{2}}{\eta} d y\right) d x .
\end{gathered}
$$

The first integral gives by Cauchy-Schwarz

$$
\begin{gathered}
\left|2 \alpha \int_{\Omega} \frac{\left(r^{2} v\right)_{x}}{r^{3}}\left(\int_{0}^{x} \frac{r^{4} \mathcal{K}_{y}^{2}}{\eta} d y\right) d x\right| \leqslant 2 \alpha \int_{\Omega} \sqrt{\frac{\mu}{\eta}} \frac{\left|\left(r^{2} v\right)_{x}\right|}{r^{3}} \sqrt{\frac{\eta}{\mu}}\left(\int_{0}^{x} \frac{r^{4} \mathcal{K}_{y}^{2}}{\eta} d y\right) d x \\
\leqslant \frac{\alpha}{2} \int_{\Omega} \frac{\mu}{\eta}\left[\left(r^{2} v\right)_{x}\right]^{2} \left\lvert\, d x+2 \alpha \int_{\Omega} \frac{\eta}{\mu}\left(\int_{0}^{x} \frac{r^{4} \mathcal{K}_{y}^{2}}{\eta} d y\right)^{2} d x\right.
\end{gathered}
$$

so, using energy estimate
$\left.\left|2 \alpha \int_{\Omega} \frac{\left(r^{2} v\right)_{x}}{r^{3}}\left(\int_{0}^{x} \frac{r^{4} \mathcal{K}_{y}^{2}}{\eta} d y\right) d x\right| \leqslant \frac{1}{2} \int_{\Omega} \frac{\mu}{\eta}\left[\left(r^{2} v\right)_{x}\right]^{2} \right\rvert\, d x+\frac{1}{2} C\left(\int_{\Omega} \frac{r^{4} \mathcal{K}_{x}^{2}}{\eta} d x\right)^{2}$,
for a positive constant $C$.
As the second integral gives clearly the same estimate, one gets

$$
\begin{equation*}
\left|C_{1}\right| \leqslant \int_{\Omega} \frac{\mu}{\eta}\left[\left(r^{2} v\right)_{x}\right]^{2} d x+C\left(\int_{\Omega} \frac{r^{4} \mathcal{K}_{x}^{2}}{\eta} d x\right)^{2} \tag{35}
\end{equation*}
$$

In the same way, we get
$C_{2}=-\frac{1}{2} \alpha \int_{\Omega} \frac{\kappa r^{4}}{\eta} \theta_{x} \frac{\kappa}{\eta} \theta_{x}\left(r^{2} v\right)_{x} d x=\frac{1}{2} \int_{\Omega} \sqrt{\kappa}\left(\frac{\kappa r^{4}}{\eta} \theta_{x}\right)_{x} \frac{1}{\sqrt{\kappa}} \int_{0}^{x} \frac{\kappa}{\eta} \theta_{y}\left(r^{2} v\right)_{y} d y d x$.
Using once more Cauchy-Schwarz, we get

$$
\left|C_{2}\right| \leqslant \frac{1}{2} \epsilon_{3} \int_{\Omega} \kappa\left[\left(\frac{\kappa r^{4}}{\eta} \theta_{x}\right)_{x}\right]^{2} d x+C \int_{\Omega} \frac{1}{\kappa}\left(\int_{0}^{x} \frac{\kappa}{\eta} \theta_{y}\left(r^{2} v\right)_{y} d y\right)^{2} d x
$$

So

$$
\begin{equation*}
\left|C_{2}\right| \leqslant \frac{1}{2} \epsilon_{3} \int_{\Omega} \kappa\left[\left(\frac{\kappa r^{4}}{\eta} \theta_{x}\right)_{x}\right]^{2} d x+C\left(\int_{\Omega} \frac{\kappa^{2} r^{4}}{\eta} \theta_{x}^{2} d x\right)\left(\int_{\Omega} \frac{\mu}{\eta}\left[\left(r^{2} v\right)_{x}\right]^{2} d x\right) \tag{36}
\end{equation*}
$$

Finally by Cauchy-Schwarz in $C_{3}$, we have

$$
\begin{equation*}
\left|C_{3}\right| \leqslant-\frac{1}{4} \epsilon_{3} \int_{\Omega} \frac{\mu \mu^{\prime}}{\eta^{2}}\left[\left(r^{2} v\right)_{x}\right]^{4} d x+\frac{\alpha^{2}}{4 \epsilon_{3}} \int_{\Omega} \frac{\mu \kappa}{\mu^{\prime}} \kappa\left[\left(\kappa \frac{r^{4}}{\eta} \theta_{x}\right)_{x}\right]^{2} d x \tag{37}
\end{equation*}
$$

Plugging (35), (36) and (37) into (34), we get

$$
\begin{align*}
& \frac{1}{2} \frac{d}{d t} \int_{\Omega} \alpha \frac{r^{4} \mathcal{K}_{x}^{2}}{\eta} d x+\alpha \int_{\Omega} \kappa\left[\left(\kappa \frac{r^{4}}{\eta} \theta_{x}\right)_{x}\right]^{2} d x \leqslant \int_{\Omega} \frac{\mu}{\eta}\left[\left(r^{2} v\right)_{x}\right]^{2} d x \\
& +C\left(\int_{\Omega} \frac{r^{4} \mathcal{K}_{x}^{2}}{\eta} d x\right)^{2}+\frac{1}{2} \epsilon_{3} \int_{\Omega} \kappa\left[\left(\frac{\kappa r^{4}}{\eta} \theta_{x}\right)_{x}\right]^{2} d x \\
& \quad+C\left(\int_{\Omega} \frac{\kappa^{2} r^{4}}{\eta} \theta_{x}^{2} d x\right)\left(\int_{\Omega} \frac{\mu}{\eta}\left[\left(r^{2} v\right)_{x}\right]^{2} d x\right) \\
& -\frac{1}{4} \epsilon_{3} \int_{\Omega} \frac{\mu \mu^{\prime}}{\eta^{2}}\left[\left(r^{2} v\right)_{x}\right]^{4} d x+\frac{\alpha^{2}}{4 \epsilon_{3}} \int_{\Omega} \frac{\mu \kappa}{\mu^{\prime}} \kappa\left[\left(\kappa \frac{r^{4}}{\eta} \theta_{x}\right)_{x}\right]^{2} d x . \tag{38}
\end{align*}
$$

Now adding the inequalities (38) and (33), we obtain

$$
\begin{gather*}
\frac{1}{2} \frac{d}{d t} \int_{\Omega}\left[\alpha \frac{r^{4} \mathcal{K}_{x}^{2}}{\eta}+\frac{\mu}{\eta}\left[\left(r^{2} v\right)_{x}\right]^{2}\right] d x+\alpha \int_{\Omega} \kappa\left[\left(\kappa \frac{r^{4}}{\eta} \theta_{x}\right)_{x}\right]^{2} d x \\
+\int_{\Omega} r^{4} \sigma_{x}^{2} d x-\frac{1}{2} \int_{\Omega} \frac{\mu \mu^{\prime}}{\eta^{2}}\left[\left(r^{2} v\right)_{x}\right]^{4} d x \\
\leqslant \int_{\Omega} \frac{\mu}{\eta}\left[\left(r^{2} v\right)_{x}\right]^{2} d x+C\left(\int_{\Omega} \frac{r^{4} \mathcal{K}_{x}^{2}}{\eta} d x\right)^{2}+\frac{1}{2} \epsilon_{3} \int_{\Omega} \kappa\left[\left(\frac{\kappa r^{4}}{\eta} \theta_{x}\right)_{x}\right]^{2} d x \\
+C\left(\int_{\Omega} \frac{\kappa^{2} r^{4}}{\eta} \theta_{x}^{2} d x\right)\left(\int_{\Omega} \frac{\mu}{\eta}\left[\left(r^{2} v\right)_{x}\right]^{2} d x\right) \\
+C\left(\int_{\Omega} \frac{\mu}{\eta}\left[\left(r^{2} v\right)_{x}\right]^{2} d x\right)^{2}+\epsilon_{1} \int_{\Omega} r^{4} \sigma_{x}^{2} d x \\
-\frac{1}{4}\left(\epsilon_{2}+\epsilon_{3}\right) \int_{\Omega} \frac{\mu \mu^{\prime}}{\eta^{2}}\left[\left(r^{2} v\right)_{x}\right]^{4} d x-\frac{1}{4} \int_{\Omega}\left(\frac{\mu^{\prime}}{\epsilon_{2} \mu \kappa}+\alpha^{2} \frac{\mu \kappa}{\epsilon_{3} \mu^{\prime}}\right) \kappa\left[\left(\kappa \frac{r^{4}}{\eta} \theta_{x}\right)_{x}\right]^{2} d x . \tag{39}
\end{gather*}
$$

Under the conditions

$$
\left\{\begin{array}{c}
\epsilon_{2}+\epsilon_{3} \leqslant 2,  \tag{40}\\
\frac{\mu^{\prime}}{\epsilon_{2} \mu \kappa}+\alpha^{2} \frac{\mu \kappa}{\epsilon_{3} \mu^{\prime}} \leqslant 2 \alpha,
\end{array}\right.
$$

the two last contributions are absorbed by the left-hand side. One checks that for this system to have a solution it is necessary that $\epsilon_{2}=\epsilon_{3}=1$. The second inequality then rewrites $x+\frac{\alpha^{2}}{x} \leqslant 2 \alpha$, with $x=-\mu^{\prime} /(\mu \kappa)$, and has the unique solution $x=\alpha$. Choosing then $\alpha=\Lambda$ after (7), inequality (39) implies the following

$$
\begin{gathered}
\frac{1}{2} \frac{d}{d t} \int_{\Omega}\left[\frac{r^{4} \mathcal{K}_{x}^{2}}{\eta}+\frac{\mu}{\eta}\left[\left(r^{2} v\right)_{x}\right]^{2}\right] d x \leqslant \int_{\Omega} \frac{\mu}{\eta}\left[\left(r^{2} v\right)_{x}\right]^{2} d x+C\left(\int_{\Omega} \frac{r^{4} \mathcal{K}_{x}^{2}}{\eta} d x\right)^{2} \\
+C\left(\int_{\Omega} \frac{\kappa^{2} r^{4}}{\eta} \theta_{x}^{2} d x\right)\left(\int_{\Omega} \frac{\mu}{\eta}\left[\left(r^{2} v\right)_{x}\right]^{2} d x\right) \\
+C\left(\int_{\Omega} \frac{\mu}{\eta}\left[\left(r^{2} v\right)_{x}\right]^{2} d x\right)^{2}
\end{gathered}
$$

If we define $X(t):=\int_{\Omega} \frac{r^{4} \mathcal{K}_{x}^{2}}{\eta} d x$ and $Y(t):=\int_{\Omega} \frac{\mu}{\eta}\left[\left(r^{2} v\right)_{x}\right]^{2} d x$, we observe that, as the functions $X, Y$ and $\int_{\Omega} \eta v^{2} d x$ are $L^{1}(0, T)$ for any $T>0$, the previous inequality is easily rewriten as

$$
\frac{d}{d t}(X+Y) \leqslant f(t)(X+Y)+g(t)
$$

where $f, g \in L^{1}(0, T)$. Applying Gronwall's lemma ends the proof
Lemma 4 Under the previous condition on the data, there exists two positive constants $\underline{\eta}$ and $\bar{\eta}$ independent of $T$ such that

$$
\begin{equation*}
0<\underline{\eta} \leqslant \eta(x, t) \leqslant \bar{\eta} \quad \text { for }(t, x) \in Q_{T} . \tag{41}
\end{equation*}
$$

Proof: The second equation (3) rewrites

$$
\begin{equation*}
(\log \eta)_{t x}=\frac{\mu^{\prime}}{\mu} \theta_{x}(\log \eta)_{t}+\left(\frac{v}{r^{2} \mu}\right)_{t}+\frac{2}{r^{3} \mu} v^{2}+\frac{\mu^{\prime}}{r^{2} \mu^{2}} v \theta_{t} . \tag{42}
\end{equation*}
$$

Using the first equation (3) and (4), there exists for any $t \in[0, T]$ a $\xi(t) \in \Omega$ such that

$$
\eta_{t}(\xi(t), t)=0
$$

Integrating (42) on $[x, \xi(t)] \times[0, t]$, we find

$$
\int_{0}^{t} \int_{x}^{\xi}\left[(\log \eta)_{s}\right]_{y} d y d s=\int_{0}^{t} \int_{x}^{\xi} \frac{\mu^{\prime}}{\mu} \theta_{y}(\log \eta)_{s} d y d s
$$

$$
+\int_{0}^{t} \int_{x}^{\xi}\left(\frac{v}{r^{2} \mu}\right)_{s} d y d s+\int_{0}^{t} \int_{x}^{\xi} \frac{2 v^{2}}{r^{3} \mu} d y d s+\int_{0}^{t} \int_{x}^{\xi} \frac{\mu^{\prime}}{r^{2} \mu^{2}} v \theta_{s} d y d s
$$

Then using (7) we get

$$
|\log \eta(x, t)| \leqslant C+\Lambda \int_{Q_{T}} \kappa\left|\theta_{x}\right| \frac{\left|\left(r^{2} v\right)_{x}\right|}{\eta} d x d t
$$

Applying Cauchy-Schwarz inequality and Lemma 3, we obtain

$$
\left|\log \frac{\eta(x, t)}{\eta^{0}(x)}\right| \leqslant C+C \int_{Q_{T}}\left[\kappa r^{4} \frac{\mathcal{K}_{x}^{2}}{\eta}+\frac{\mu}{\eta}\left[\left(r^{2} v\right)_{x}\right]^{2}\right] d x d t \leqslant C
$$

Lemma 5 Under the previous condition on the data, there exists a positive constant $\bar{\theta}$ independent of $T$ such that

$$
\begin{equation*}
\theta(x, t) \leqslant \bar{\theta} \quad \text { for }(t, x) \in Q_{T} \tag{43}
\end{equation*}
$$

Proof: Multiplying, as in [1], the third equation (3) by $n \theta^{n-1}$ for $n \geqslant 1$, we get

$$
\left(\theta^{n}\right)_{t}=\left(n \theta^{n-1} \kappa \frac{r^{4}}{\eta} \theta_{x}\right)_{x}-n(n-1) \kappa \frac{r^{4}}{\eta} \theta^{n-2} \theta_{x}^{2}+n \theta^{n-1} \frac{\mu}{\eta}\left[\left(r^{2} v\right)_{x}\right]^{2}
$$

Integrating on $\Omega$

$$
\frac{d}{d t} \int_{\Omega} \theta^{n} d x+n(n-1) \int_{\Omega} \kappa \frac{r^{4}}{\eta} \theta^{n-2} \theta_{x}^{2}=n \int_{\Omega} \theta^{n-1} \frac{\mu}{\eta}\left[\left(r^{2} v\right)_{x}\right]^{2}
$$

Then

$$
\frac{d}{d t} \int_{\Omega} \theta^{n} d x \leqslant \frac{n}{\underline{\theta}} \int_{\Omega} \theta^{n}\left\|\frac{\mu}{\eta}\left[\left(r^{2} v\right)_{x}\right]^{2}\right\|_{L^{\infty}(\Omega)}
$$

Using the inequality

$$
\left\|\frac{\mu}{\eta}\left[\left(r^{2} v\right)_{x}\right]^{2}\right\|_{L^{\infty}(\Omega)} \leqslant C \int_{\Omega} r^{4} \sigma_{x}^{2} d x
$$

after Lemma 3 and Gronwall's lemma, we get

$$
\|\theta\|_{L^{n}(\Omega)}^{n} \leqslant\left\|\theta^{0}\right\|_{L^{n}(\Omega)}^{n} \exp \left(\frac{n}{\underline{\theta}}\left\|\frac{\mu}{\eta}\left[\left(r^{2} v\right)_{x}\right]^{2}\right\|_{L^{\infty}\left(0, T ; L^{2}(\Omega)\right)}\right) .
$$

Finally taking the $1 / n$-power and passing to the limit $n \rightarrow \infty$ ends the proof

Corollary 1 For any $T>0$

$$
\begin{equation*}
\max _{[0, T]} \int_{\Omega}\left[\left(r^{2} v\right)_{x}\right]^{2} d x \leqslant K, \quad \max _{[0, T]} \int_{\Omega} \theta_{x}^{2} d x \leqslant K \tag{44}
\end{equation*}
$$

and

$$
\begin{equation*}
\max _{\Omega}\left[\left(r^{2} v\right)_{x}\right]^{2} \in L^{1}(0, T), \quad \max _{\Omega} \theta_{x}^{2} \in L^{1}(0, T) \tag{45}
\end{equation*}
$$

## Proof:

1. Inequalities (44) follow directly from Lemma 3.
2. As $\left(r^{2} v\right)_{x}=\frac{\eta}{\mu} \sigma$, after Lemma 4 and 5 , one gets

$$
\left[\left(r^{2} v\right)_{x}\right]^{2} \leqslant C \sigma^{2} \leqslant C \int_{\Omega} r^{4} \sigma_{x}^{2} d x
$$

implying the first inequality (45), after Lemma 3.
After Lemma 3

$$
\frac{1}{2} \int_{\Omega} \frac{r^{4} \mathcal{K}_{x}^{2}}{\eta} d x+\int_{Q_{T}} \kappa\left[\left(\kappa \frac{r^{4}}{\eta} \theta_{x}\right)_{x}\right]^{2} d x d t \leqslant K
$$

which implies directly the second inequality(45), by using Lemma 4 and 5
Proposition 3 For any $T>0$, the following uniform bounds hold

$$
\begin{equation*}
\max _{[0, T]}\left\|v_{x}\right\|_{L^{2}(\Omega)} \leqslant K, \max _{[0, T]}\left\|\theta_{x}\right\|_{L^{2}(\Omega)} \leqslant K \tag{46}
\end{equation*}
$$

and the $T$-dependent bound holds

$$
\begin{equation*}
\max _{[0, T]}\left\|\eta_{x}\right\|_{L^{2}(\Omega)} \leqslant C(T) . \tag{47}
\end{equation*}
$$

Proof: Bounds (46) follows from Lemma 3.
To prove (47), we observe that the first equation (3) rewrites

$$
(\log \eta)_{t}=\frac{\sigma}{\mu}
$$

Derivating with respect to $x$, multiplying by $(\log \eta)_{x}$ and integrating on $\Omega$, we get

$$
\frac{d}{d t}\left(\frac{1}{2} \int_{\Omega}\left[(\log \eta)_{x}\right]^{2} d x\right)=\int_{\Omega}(\log \eta)_{x}\left(\frac{\sigma}{\mu}\right)_{x} d x=-\int_{\Omega}(\log \eta)_{x} \frac{\mu^{\prime}}{\mu^{2}} \theta_{x} \sigma d x+\int_{\Omega}(\log \eta)_{x} \frac{\sigma_{x}}{\mu} d x
$$

Then using Cauchy-Schwarz inequality together with Lemma 5, we find

$$
\begin{gathered}
\frac{d}{d t}\left(\frac{1}{2} \int_{\Omega}\left[(\log \eta)_{x}\right]^{2} d x\right) \leqslant \sup _{\Omega} \sigma^{2} \int_{\Omega}\left[(\log \eta)_{x}\right]^{2} d x+C \int_{\Omega} \theta_{x}^{2} d x \\
+\frac{1}{2} \int_{\Omega} r^{2} \sigma_{x}^{2} d x+\frac{1}{2} \int_{\Omega}\left[(\log \eta)_{x}\right]^{2} d x
\end{gathered}
$$

As, after Corollary $1, \sup _{\Omega} \sigma^{2}(\cdot, t) \in L^{1}(0, T)$ for any $T>0$, this implies (47) by applying Gronwall's lemma

Proposition 4 For any $T>0$, the following uniform bounds hold

$$
\begin{gather*}
\max _{[0, T]}\left\|v_{t}\right\|_{L^{2}(\Omega)} \leqslant C, \quad \max _{[0, T]}\left\|\theta_{t}\right\|_{L^{2}(\Omega)} \leqslant C,  \tag{48}\\
\left\|\left(r^{2} v\right)_{x t}\right\|_{L^{1}\left(0, T ; L^{2}(\Omega)\right)} \leqslant C, \quad\left\|\theta_{x t}\right\|_{L^{1}\left(0, T ; L^{2}(\Omega)\right)} \leqslant C, \tag{49}
\end{gather*}
$$

and the (non uniform) ones

$$
\begin{equation*}
\max _{[0, T]}\left\|\left(r^{2} v\right)_{x x}\right\|_{L^{2}(\Omega)} \leqslant C(T), \quad \max _{[0, T]}\left\|\theta_{x x}\right\|_{L^{2}(\Omega)} \leqslant C(T) \tag{50}
\end{equation*}
$$

## Proof:

1. The first equation (3) rewrites

$$
w_{t}=r^{4}\left(\frac{\mu}{\eta} w_{x}\right)_{x}+\frac{2 w^{2}}{r^{3}}
$$

with $w:=r^{2} v$.
We derivate formally this equation with respect to $t$ (this can be made rigorous by taking finite difference and passing to the limit (see [1])), multiply by $w_{t}$ and integrate by parts in $x$
$\frac{d}{d t}\left(\int_{\Omega} \frac{1}{2} w_{t}^{2} d x\right)+\int_{\Omega} r^{4} \frac{\mu}{\eta} w_{x t}^{2} d x=\int_{\Omega} 4 r w w_{t}\left(\frac{\mu}{\eta} w_{x}\right)_{x} d x+\int_{\Omega} 4 r \mu w_{t} w_{x t} d x$

$$
\begin{gathered}
+\int_{\Omega} r^{4} \frac{\mu^{\prime}}{\eta} \theta_{t} w_{x t} w_{x} d x+\int_{\Omega} r^{4} \frac{\mu}{\eta^{2}} w_{x}^{2} w_{x t} d x-\int_{\Omega} 4 r \mu^{\prime} \theta_{t} w_{t} w_{x} d x+\int_{\Omega} 4 r \frac{\mu}{\eta} w_{t} w_{x}^{2} d x \\
+\int_{\Omega} \frac{4}{r^{3}} w w_{t}^{2} d x-\int_{\Omega} \frac{6}{r^{6}} w^{3} w_{t} d x=: \sum_{j=1}^{8} D_{j}
\end{gathered}
$$

Let us estimate all of these terms.

$$
\begin{gathered}
\left|D_{1}\right| \leqslant C \int_{\Omega}\left|w w_{t} \sigma_{x}\right| d x \leqslant C \int_{\Omega} w^{2} w_{t}^{2} d x+\int_{\Omega} r^{4} \sigma_{x}^{2} d x \\
\leqslant C \max _{\Omega} v^{2} \int_{\Omega} w_{t}^{2} d x+\int_{\Omega} r^{4} \sigma_{x}^{2} d x \\
\left|D_{2}\right| \leqslant C \int_{\Omega} \left\lvert\, w_{t} w_{x t} d x \leqslant \frac{\epsilon}{3} \int_{\Omega} r^{4} \frac{\mu}{\eta} w_{x t}^{2} d x+C \int_{\Omega} w_{t}^{2} d x\right. \\
\left|D_{3}\right| \leqslant C \int_{\Omega}\left|\theta_{t} w_{x t} w_{x}\right| d x \leqslant \frac{\epsilon}{3} \int_{\Omega} r^{4} \frac{\mu}{\eta} w_{x t}^{2} d x+C \int_{\Omega} \theta_{t}^{2} d x
\end{gathered}
$$

where we used Proposition 3.

$$
\begin{gathered}
\left|D_{4}\right| \leqslant C \int_{\Omega} w_{x}^{2}\left|w_{x t}\right| d x \leqslant C \max _{\Omega} w_{x}^{2} \int_{\Omega}\left|w_{x t}\right| d x \leqslant C \max _{\Omega} w_{x}^{2}\left(1+\int_{\Omega} w_{x t}^{2} d x\right) \\
\left|D_{5}\right| \leqslant C \int_{\Omega}\left|w_{t} \theta_{t} w_{x}\right| d x \leqslant \frac{C}{2}\left(\int_{\Omega} w_{t}^{2} d x+\int_{\Omega} \theta_{t}^{2} d x\right)
\end{gathered}
$$

where we used Proposition 3.

$$
\begin{gathered}
\left|D_{6}\right| \leqslant C \int_{\Omega}\left|w_{t}\right| w_{x}^{2} d x \leqslant C \max _{\Omega} w_{x}^{2} \int_{\Omega}\left|w_{t}\right| d x \leqslant C \max _{\Omega} w_{x}^{2}\left(1+\int_{\Omega} w_{t}^{2} d x\right) . \\
\left|D_{7}\right| \leqslant C \int_{\Omega} w_{t}^{2}|w| d x \leqslant C \max _{\Omega}\left|v^{0}\right| \int_{\Omega} w_{t}^{2} d x \\
\left|D_{8}\right| \leqslant C \int_{\Omega}\left|w_{t} w^{3}\right| d x \leqslant C\left(\max _{\Omega}\left|v^{0}\right|\right)^{3} \int_{\Omega} w_{t}^{2} d x
\end{gathered}
$$

So finally

$$
\begin{equation*}
\frac{d}{d t}\left(\int_{\Omega} \frac{1}{2} w_{t}^{2} d x\right)+\int_{\Omega} r^{4} \frac{\mu}{\eta} w_{x t}^{2} d x \leqslant f(t)+g(t) \int_{\Omega}\left(w_{t}^{2}+\theta_{t}^{2}\right) d x \tag{51}
\end{equation*}
$$

where $f, g \in L^{1}(0, T)$, for any $T>0$.
2. We derivate formally the third equation (3) with respect to $t$ (this can be made rigorous as previously), and multiply by $\theta_{t}$

$$
\left(\frac{1}{2} \theta_{t}^{2}\right)_{t}=\theta_{t} q_{x t}+\theta_{t}\left(\frac{\mu}{\eta} w^{2}\right)_{t} .
$$

Integrating by parts in $x$, we get

$$
\begin{aligned}
& \frac{d}{d t} \int_{\Omega} \frac{1}{2} \theta_{t}^{2} d x+\int_{\Omega} \kappa \frac{r^{4}}{\eta} \theta_{x t}^{2} d x-\int_{\Omega} \frac{\mu^{\prime}}{\eta} \theta_{t}^{2} w^{2} d x=-\int_{\Omega} \frac{r^{4} \kappa^{\prime}}{\eta} \theta_{x} \theta_{t} \theta_{x t} d x \\
- & \int_{\Omega} \frac{4 r \kappa}{\eta} w \theta_{x} \theta_{x t} d x+\int_{\Omega} \frac{r^{4} \kappa}{\eta^{2}} w_{x} \theta_{x} \theta_{x t} d x-\int_{\Omega} \frac{\mu}{\eta^{2}} w^{2} w_{x} \theta_{t} d x+\int_{\Omega} \frac{2 \mu}{\eta} w w_{t} \theta_{t} d x=: \sum_{j=1}^{5} E_{j} .
\end{aligned}
$$

Let us estimate all of these terms.

$$
\begin{gathered}
\left|E_{1}\right| \leqslant C \int_{\Omega}\left|\theta_{x} \theta_{t} \theta_{x t}\right| d x \leqslant \frac{\epsilon}{3} \int_{\Omega} \frac{r^{4} \kappa}{\eta} \theta_{x t}^{2} d x+C \int_{\Omega} \theta_{x}^{2} \theta_{t}^{2} d x \\
\leqslant \frac{\epsilon}{3} \int_{\Omega} \frac{r^{4} \kappa}{\eta} \theta_{x t}^{2} d x+C \max _{\Omega} \theta_{x}^{2} \int_{\Omega} \theta_{t}^{2} d x \\
\left|E_{2}\right| \leqslant C \int_{\Omega}\left|w \theta_{x} \theta_{x t}\right| d x \leqslant \frac{\epsilon}{3} \int_{\Omega} \frac{r^{4} \kappa}{\eta} \theta_{x t}^{2} d x+C \int_{\Omega} v^{2} \theta_{x}^{2} d x \\
\leqslant \frac{\epsilon}{3} \int_{\Omega} \frac{r^{4} \kappa}{\eta} \theta_{x t}^{2} d x+C \max _{\Omega} \theta_{x}^{2} . \\
\left|E_{3}\right| \leqslant C \int_{\Omega}\left|w_{x} \theta_{x} \theta_{x t}\right| d x \leqslant \frac{\epsilon}{3} \int_{\Omega} \frac{r^{4} \kappa}{\eta} \theta_{x t}^{2} d x+C \int_{\Omega} w_{x}^{2} \theta_{x}^{2} d x \\
\leqslant \\
\frac{\epsilon}{3} \int_{\Omega} \frac{r^{4} \kappa}{\eta} \theta_{x t}^{2} d x+C \max _{\Omega} \theta_{x}^{2} \max _{[0, T]} \int_{\Omega} w_{x}^{2} d x \\
\left|E_{4}\right| \leqslant C \int_{\Omega}\left|w^{2} \theta_{t} w_{x}\right| d x \leqslant-\epsilon \int_{\Omega} \frac{\mu^{\prime}}{\eta} w^{2} \theta_{t}^{2} d x+C \int_{\Omega} w^{2} w_{x}^{2} d x \\
\leqslant
\end{gathered}
$$

after Proposition 3.

$$
\left|E_{5}\right| \leqslant C \int_{\Omega}\left|w \theta_{t} w_{t}\right| d x \leqslant C \int_{\Omega}\left(w_{t}^{2}+\theta_{t}^{2}\right) d x
$$

Finally, collecting all of the previous estimates, we get

$$
\begin{equation*}
\frac{d}{d t} \int_{\Omega} \frac{1}{2} \theta_{t}^{2} d x+\int_{\Omega} \kappa \frac{r^{4}}{\eta} \theta_{x t}^{2} d x+\int_{\Omega} \frac{\mu^{\prime}}{\eta} \theta_{t}^{2} w^{2} d x \leqslant g(t)\left(1+\int_{\Omega}\left(w_{t}^{2}+\theta_{t}^{2}\right) d x\right) \tag{52}
\end{equation*}
$$

where $g \in L^{1}(0, T)$, for any $T>0$.
Summing (51) and (52), we have

$$
\begin{equation*}
\frac{d}{d t} \int_{\Omega} \frac{1}{2}\left(w_{t}^{2}+\theta_{t}^{2}\right) d x+\int_{\Omega}\left(w_{x t}^{2}+\theta_{x t}^{2}\right) d x \leqslant g(t)\left(1+\int_{\Omega}\left(w_{t}^{2}+\theta_{t}^{2}\right) d x\right) \tag{53}
\end{equation*}
$$

which implies estimates (48) by Gronwall's Lemma. Bounds (49) then follows.
3. The second equation (3) rewrites

$$
\left(r^{2} v\right)_{x x}=\frac{\eta}{r^{2} \mu} v_{t}+\frac{\mu^{\prime}}{\mu} \theta_{x}\left(r^{2} v\right)_{x}-\frac{1}{\eta} \eta_{x}\left(r^{2} v\right)_{x}
$$

Taking the square and integrating on $\Omega$, we get

$$
\begin{gathered}
\int_{\Omega}\left(r^{2} v\right)_{x x}^{2} d x \leqslant C \int_{\Omega}\left(v_{t}^{2}+\theta_{x}^{2}\left[\left(r^{2} v\right)_{x}\right]^{2}+\eta_{x}^{2}\left[\left(r^{2} v\right)_{x}\right]^{2}\right) d x . \\
\leqslant C \int_{\Omega} v_{t}^{2} d x+C \max _{\Omega}\left[\left(r^{2} v\right)_{x}\right]^{2} \int_{\Omega}\left(\theta_{x}^{2}+\eta_{x}^{2}\right) d x .
\end{gathered}
$$

So

$$
\begin{equation*}
\int_{\Omega}\left(r^{2} v\right)_{x x}^{2} d x \leqslant C \int_{\Omega} v_{t}^{2} d x+C(T) \max _{\Omega}\left[\left(r^{2} v\right)_{x}\right]^{2} \tag{54}
\end{equation*}
$$

after Corollary 1 and Proposition 3. But

$$
\left|\left(r^{2} v\right)_{x}\right| \leqslant \int_{\Omega}\left|\left(r^{2} v\right)_{x x}\right| d x
$$

then

$$
\left[\left(r^{2} v\right)_{x}\right]^{2} \leqslant C+\frac{\epsilon}{2} \int_{\Omega}\left[\left(r^{2} v\right)_{x x}\right]^{2} d x
$$

Plugging into (54) and taking $\epsilon>0$ small enough gives the first estimate (50).

The third equation (3) rewrites

$$
\theta_{x x}=-\frac{\eta \kappa^{\prime}}{\kappa} \theta_{x}^{2}+\frac{4 \eta}{r^{3}} \theta_{x}-\frac{\mu}{\kappa r^{4}}\left[\left(r^{2} v\right)_{x}\right]^{2}+\frac{\mu}{\kappa r^{4}} \theta_{t}+\frac{1}{\eta} \eta_{x} \theta_{x} .
$$

Taking the square and integrating on $\Omega$, we get

$$
\int_{\Omega} \theta_{x x}^{2} d x \leqslant C \int_{\Omega}\left(\theta_{x}^{4}+\theta_{x}^{2}+\left[\left(r^{2} v\right)_{x}\right]^{4}+\theta_{t}^{2}+\eta_{x}^{2} \theta_{x}^{2}\right) d x
$$

Using the inequality $\left[\left(r^{2} v\right)_{x}\right]^{4} \leqslant 4 \int_{\Omega}\left[\left(r^{2} v\right)_{x}\right]^{2} d x \cdot \int_{\Omega}\left[\left(r^{2} v\right)_{x x}\right]^{2} d x$, and Corollary 1, together with Proposition 3 and the first bound (50), we can bound the right-hand side, which provide us with the last estimate (50)

Proof of Theorem 3

1. From the proof of Lemmal3 we have

$$
\begin{aligned}
& \left|\eta(x, t)-\eta\left(x, t^{\prime}\right)\right| \leqslant\left|t-t^{\prime}\right|^{1 / 2}\left(\int_{0}^{T}\left[\left(r^{2} v\right)_{x}\right]^{2} d t\right)^{1 / 2} \\
& \leqslant C\left|t-t^{\prime}\right|^{1 / 2}\left(\int_{0}^{T} \int_{\Omega} r^{4} \sigma_{x}^{2} d x d t\right)^{1 / 2} \leqslant C\left|t-t^{\prime}\right|^{1 / 2}
\end{aligned}
$$

After Proposition 3

$$
\left|\eta(x, t)-\eta\left(x^{\prime}, t\right)\right| \leqslant C\left|x-x^{\prime}\right|^{1 / 2}\left(1+\int_{\Omega} \eta_{x}^{2} d x\right) \leqslant C\left|x-x^{\prime}\right|^{1 / 2}
$$

so we find that $\eta \in C^{1 / 2,1 / 4}\left(Q_{T}\right)$.
2. From the proof of Lemmal3 we have

$$
\begin{gathered}
\left|\theta(x, t)-\theta\left(x, t^{\prime}\right)\right| \leqslant\left|t-t^{\prime}\right|^{1 / 2}\left(\int_{0}^{T} \theta_{t}^{2} d t\right)^{1 / 2} \\
\leqslant C\left|t-t^{\prime}\right|^{1 / 2}\left(\int_{0}^{T} \int_{\Omega} 2 \mid \theta_{t} \theta_{x t} d x d t\right)^{1 / 2} \leqslant C\left|t-t^{\prime}\right|^{1 / 2} .
\end{gathered}
$$

After Propositions 3 and 4
$\left|\eta(x, t)-\eta\left(x^{\prime}, t\right)\right| \leqslant C\left|x-x^{\prime}\right|^{1 / 2}\left(T \cdot \max _{[0, T]} \int_{\Omega} \theta_{t}^{2} d x+\int_{0}^{T} \int_{\Omega} \theta_{x t}^{2} d x\right) \leqslant C\left|x-x^{\prime}\right|^{1 / 2}$,
so we find that $\theta \in C^{1 / 2,1 / 4}\left(Q_{T}\right)$. As we have also after Propositions 4

$$
\left|\theta_{x}(x, t)-\theta_{x}\left(x^{\prime}, t\right)\right| \leqslant\left|x-x^{\prime}\right|^{1 / 2}\left(\int_{\Omega} \theta_{x x}^{2} d t\right)^{1 / 2} \leqslant\left|x-x^{\prime}\right|^{1 / 2}
$$

we deduce as in [21], using an interpolation argument of [22], that $\theta_{x} \in$ $C^{1 / 3,1 / 6}\left(Q_{T}\right)$.

The same arguments holding verbatim for $r^{2} v$ and $\left(r^{2} v\right)_{x}$, we have that $v, v_{x} \in C^{1 / 3,1 / 6}\left(Q_{T}\right)$, which ends the proof

## 3 Existence and uniqueness of solutions

To complete the proof of strong solution locally in time we apply the idea of Dafermos and Hisao [6] together with using the crucial Theorem 3. To get the existence of weak solution we apply method of [14].

### 3.1 Proof of existence

Theorem 4 Let the conditions on the data

$$
\begin{gathered}
v_{0}, \theta_{0} \in C^{2+\nu}(\Omega), \eta_{0} \in C^{1+\nu}(\Omega) \text { with } \nu=1 / 3 \\
\inf _{\Omega} \eta_{0}(x)>0, \inf _{\Omega} \theta_{0}(x)>0
\end{gathered}
$$

and the following extra condition of compatibility

$$
\left.v_{0}\right|_{x=0, M}=0,
$$

be satisfied.
The system of equations (1) together with conditions (3)-(7), where $r$ is defined in (2) then for $\bar{t} \in(0, \infty)$, has a solution $v, \eta, \theta$ such that

$$
v, \theta \in C^{2+\nu, 1+\frac{\nu}{2}}\left(\Omega \times\left(0, T^{*}\right)\right), \quad \rho \in C^{1+\nu, 1+\frac{\nu}{2}}\left(\Omega \times\left(0, T^{*}\right)\right) .
$$

## Proof:

We can rewrite our system (3) by the following way

$$
\begin{align*}
w_{t} & =a_{1}(x, t) w_{x x}+b_{1} w_{x}+c_{1}(x, t) \\
\theta_{t} & =a_{2}(x, t) \theta_{x x}+b_{2}(x, t) \theta_{x}+C_{2}(x, t)  \tag{55}\\
\eta_{t} & =w_{x},
\end{align*}
$$

where

$$
\begin{align*}
& w=r^{2} v \\
& a_{1}(x, t)=r^{4} \frac{\mu}{\eta} \\
& b_{1}(x, t)=r^{4}\left(\frac{\mu^{\prime} \theta_{x}}{\eta}-\frac{\mu \eta_{x}}{\eta^{2}}\right) \\
& c_{1}(x, t)=-\frac{2}{r^{3}} w^{2}  \tag{56}\\
& a_{2}(x, t)=r^{4} \frac{\kappa}{\eta} \\
& b_{2}(x, t)=\frac{\kappa^{\prime} \theta_{x}}{r} \eta+4 r \kappa+r^{4} \frac{\kappa \eta_{x}}{\eta^{2}} \\
& c_{2}(x, t)=\frac{\mu}{\eta}\left(w_{x}\right)^{2} .
\end{align*}
$$

From Theorem 3, it follows that

$$
\begin{align*}
& \left\|a_{i}\right\|_{C^{1 / 3,1 / 6}} \leqslant N_{1}, \quad\left\|c_{i}\right\|_{C^{1 / 3,1 / 6}} \leqslant N_{2}, \\
& \left\|b_{i}\right\|_{C^{1 / 3,1 / 6}} \leqslant N_{3}+N_{4}\left\|\eta_{x}\right\|_{C^{1 / 3,1 / 6}}, \text { for } i=1,2 . \tag{57}
\end{align*}
$$

Applying the Schauder estimates to the solutions (55) 1,2 $^{\text {gives }}$

$$
\begin{align*}
& \|u\|_{C^{2+1 / 3,1+1 / 6}} \leqslant N_{5}+N_{6}\left\|\eta_{x}\right\|_{C^{1 / 3,1 / 6}},  \tag{58}\\
& \|\eta\|_{C^{2+1 / 3,1+1 / 6}} \leqslant N_{7}+N_{8}\left\|\eta_{x}\right\|_{C^{1 / 3,1 / 6}} .
\end{align*}
$$

Derivating $(55)_{3}$ with respect to x and integrating over $\left(0, T^{*}\right), T^{*}<1$ with respect to $t$, we get

$$
\begin{equation*}
\left\|\eta_{x}\right\|_{C^{1 / 3,1 / 6}} \leqslant N_{9} T_{*}^{1-1 / 6}\left\|w_{x x}\right\|_{C^{1 / 3,1 / 6}}+N_{10} . \tag{59}
\end{equation*}
$$

All of the previous estimates give us the following

$$
\begin{align*}
& \|w\|_{C^{2+1 / 3,1+1 / 6}\left(Q_{T^{*}}\right)} \leqslant N_{11},  \tag{60}\\
& \|\theta\|_{C^{2+1 / 3,1+1 / 6}\left(Q_{T^{*}}\right)} \leqslant N_{12},
\end{align*}
$$

where $N_{i}, i=1, \ldots 12$ are constants.
From the previous arguments and a priori estimates, we know that there exist subsequences $\left(v_{k}, \eta_{k}, \theta_{k}, r_{k}\right)$ such that

- $v_{k} \rightarrow v$ in $L^{p}\left(0, T^{*}, C^{0}(\Omega)\right)$ strongly and in $L^{p}\left(0, T^{*}, H^{1}(\Omega)\right)$, weakly for any $1<p<\infty$,
- $v_{k} \rightarrow v$ a.e. in $\Omega \times\left(0, T^{*}\right)$ and in $L^{\infty}\left(0, T^{*}, L^{4}(\Omega)\right)^{*}$ weakly,
- $\left(v_{k}\right)_{t} \rightarrow v_{t}$ in $L^{2}\left(0, T^{*}, L^{2}(\Omega)\right)$ weakly,
- $\theta_{k} \rightarrow \theta$ in $L^{2}\left(0, T^{*}, C^{0}(\Omega)\right)$ strongly and in $L^{2}\left(0, T^{*}, H^{1} \Omega\right)$ weakly,
- $\theta_{k} \rightarrow \theta$ a.e. in $\Omega \times\left(0, T^{*}\right)$ and in $L^{\infty}\left(0, T^{*} ; L^{2}(\Omega)\right)$ weakly,
- $r_{k} \rightarrow r$ in $C^{0}\left(\Omega \times\left(0, T^{*}\right)\right)$,
- $r^{2}\left(\frac{\mu}{\eta_{k}}\left(r^{2} v_{k}\right)_{x}\right)$ converge to $A_{1}$ in $L^{2}\left(0, T^{*}, H^{1}(\Omega)\right)$ weakly,
- $\frac{\kappa(\eta, \theta) r^{4}}{\eta}\left(\theta_{k}\right)_{x} \rightarrow A_{2}$ in $L^{2}\left(0, T^{*}, L^{2}(\Omega)\right)$ weakly,
- $\frac{\underline{\bar{\eta}}}{\bar{\eta}} \partial_{x}\left(r^{2} u_{k}\right) \rightarrow A_{3}$ in $L^{\infty}\left(0, \bar{t}, L^{2}(\Omega)\right)$ weakly ${ }^{*}$,
- $\frac{\kappa(\theta) r^{4}}{\underline{\eta}} \theta_{x}$ converge to $A_{4}$ in $L^{2}\left(0, T^{*} ; L^{2}(\Omega)\right)$ weakly.

After the definition of $r(x, t)$, one has

$$
r(x, t)=r_{0}(x)+\int_{0}^{t} v\left(x, t^{\prime}\right) d t^{\prime} \text { a. e. } \Omega \times\left(0, T^{*}\right)
$$

then

$$
\begin{gathered}
r_{k}(x, t)-r_{k}(y, t)=\left(\int_{y}^{x} \eta_{k}(s, t) d s\right)^{1 / 3} \\
\geqslant \epsilon(x-y) \bigvee(x, y, t) \in \Omega \times(0, x) \times\left(0, T^{*}\right) .
\end{gathered}
$$

Then from the previous computations we get

$$
r(x, t)-r(y, t) \geqslant \epsilon(x-y) \bigvee(x, y, t) \in \Omega \times(0, x) \times\left(0, T^{*}\right)
$$

and finally

$$
f_{k} r_{k} \rightarrow f r \text { in } C^{0}\left(\Omega \times\left(0, T^{*}\right)\right)
$$

Moreover, it implies that

- $\eta_{k} \rightarrow \eta$ a.e. in $\Omega \times\left(0, T^{*}\right)$ and $L^{s}\left(\Omega \times\left(0, T^{*}\right)\right)$ strongly for all $s \in(1, \infty)$,
- $A_{1}=\left(\frac{\mu}{\eta}\left(r^{2} v\right)_{x}\right)$ in $L^{2}\left(0, T^{*} ; H^{1}(\Omega)\right)$,
- $A_{2}=\frac{\kappa(\eta, \theta) r^{4}}{\eta} \theta_{x}$ in $L^{2}\left(0, T^{*}, L^{2}(\Omega)\right)$,
- $A_{3}=\frac{\mu}{\bar{\eta}}\left(r^{2} v\right)_{x}$ in $L^{\infty}\left(0, T^{*}, L^{2}(\Omega)\right)$,
- $A_{4}=\frac{\kappa r^{4}}{\bar{\eta}}\left(r^{2} v\right)_{x}$ in $L^{\infty}\left(0, T^{*}, L^{2}(\Omega)\right)$.

So we can pass to the limit in the weak formulation of $(1)_{2}$ and $(1)_{3}$, and we get a weak solution of (3).

### 3.2 Proof of uniqueness

Let $\eta_{i}, v_{i}, \theta_{i}, i=1,2$ be two solutions of (3), and let us consider the differences: $\eta=\eta_{1}-\eta_{2}, \theta=\theta_{1}-\theta_{2}$ and $v=v_{1}-v_{2}$.

The following auxiliary result holds

## Proposition 1

$$
\left|r_{2}^{m}-r_{1}^{m}\right| \leqslant c \int_{\Omega}\left(\eta_{2}-\eta_{1}\right) d x
$$

Proof. from the definition of $r(x, t)$, we see that

$$
\begin{aligned}
& r_{2}^{m}-r_{1}^{m}=\left(r_{2}^{4}\right)^{m / 2}-\left(r_{1}^{3}\right)^{m / 3} \\
& =\frac{m}{3} r_{*}^{m-3}\left(r_{2}^{3}-r_{1}^{3}\right)=\frac{m}{3} r_{*}^{m-3} 3 \int_{0}^{x}\left(\eta_{2}-\eta_{1}\right) d s \leqslant c \int_{0}^{1}\left(\eta_{2}-\eta_{1}\right) d x
\end{aligned}
$$

where

$$
1 \leqslant r_{k} \leqslant c, r_{*}=r_{1}+\epsilon\left(r_{2}-r_{1}\right)
$$

Now, we subtract (3) for $\eta_{2}, w_{2}, \theta_{2}$ from (3) $)_{2}$ for $\eta_{1}, w_{1}, \theta_{1}\left(w_{1}=r_{1}^{2} v_{1}, w_{2}=\right.$ $\left.r_{2}^{2} v_{2}\right)$ in order to get

$$
\begin{align*}
\int_{\Omega}\left(w_{2}\right. & \left.-w_{1}\right)_{t} \phi d x=-\left\{\int_{\Omega}\left\{\left(r_{2}^{4}-r_{1}^{4}\right) \frac{\mu_{1}}{\eta_{1}} w_{1 x}+r_{2}^{4} \frac{\eta_{1} \mu_{2}-\mu_{1} \eta_{2}}{\eta_{2} \eta_{1}} w_{1 x}\right\} \phi_{x} d x\right\}+ \\
& -\left\{\int_{\Omega}\left\{r_{2}^{4}\left(\frac{\mu_{2}}{\eta_{2}}\left(w_{2}-w_{1}\right)_{x}\right)+\frac{2}{r_{2}^{3}}\left(w_{2}^{2}-w_{1}^{2}\right)+2\left(\frac{\left(r_{1}^{3}-r_{2}^{3}\right)}{r_{2}^{3} r_{1}^{3}} w_{1}^{2}\right\} \phi_{x} d x\right\} .\right. \tag{61}
\end{align*}
$$

Setting $\phi=w_{2}-w_{1}$ we obtain

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t} \int_{\Omega} w^{2} d x+\int_{\Omega} r_{2}^{4} \frac{\mu_{2}}{\eta_{2}}\left(w_{x}\right)^{2}=-\sum_{i=1}^{4} I_{i} \tag{62}
\end{equation*}
$$

where

- $I_{1}=\int_{\Omega}\left\{\left(r_{2}^{4}-r_{1}^{4}\right) \frac{\mu_{1}}{\eta_{1}} w_{1 x} w_{x} d x\right.$,
- $I_{2}=\int_{\Omega} r_{2}^{4} \frac{\eta_{1} \mu_{2}-\mu_{1} \eta_{2}}{\eta_{2} \eta_{1}} w_{1 x} w_{x} d x$,
- $I_{3}=\int_{\Omega} \frac{2}{r_{2}^{3}}\left(w_{2}^{2}-w_{1}^{2}\right) w_{x} d x$,
- $I_{4}=\int_{\Omega} 2\left(\frac{\left(r_{1}^{3}-r_{2}^{3}\right)}{r_{2}^{3} r_{1}^{3}} w_{1}^{2} w_{x} d x\right.$.

Then it follows that

$$
\begin{align*}
& \frac{1}{2} \frac{d}{d t} \int_{\Omega}\left|w^{2}\right| d x+\int_{\Omega}\left|r_{2}^{4} \frac{\mu_{2}}{\eta_{2}}\left(w_{x}\right)^{2}\right| d x \leqslant \\
& \leqslant \quad c\left(\|\eta\|_{2}\left(\left\|\left(w_{1}\right)_{x}\right\|_{2}+\left\|\left(w_{1}\right)_{x}\right\|_{2}+\left\|\left(w_{1}\right)_{x x}\right\|_{2}\right)\left\|w_{x}\right\|_{2}+\left(\left\|\left(w_{1}\right)_{x}\right\|_{2}+\left\|\left(w_{2}\right)_{x}\right\|_{2}\right)\|w\|_{2}\left\|w_{x}\right\|_{2}\right) \tag{63}
\end{align*}
$$

where $c$ is a constant.
Now substracting $(3)_{3}$ for $\eta_{2}, w_{2}, \theta_{2}$ from $(3)_{3}$ for $\eta_{1}, w_{1}, \theta_{1}\left(w_{1}=r_{1}^{2} v_{1}, w_{2}=\right.$ $\left.r_{2}^{2} v_{2}\right)$ in order to get

$$
\begin{align*}
& \int_{\Omega} c_{v}\left(\theta_{2}-\theta_{1}\right)_{t} \psi d x=-\left\{\int_{\Omega}\left\{\frac{\kappa\left(\theta_{2}\right) r_{2}}{\eta_{2}}\left(\theta_{2}-\theta_{1}\right)_{x}+\frac{\kappa\left(\theta_{2}\right) r_{2}}{\eta_{1} \eta_{2}}\left(\eta_{1}-\eta_{2}\right)\left(\theta_{1}\right)_{x}\right\} \psi_{x} d x+\right. \\
& \left.\int_{\Omega}\left\{\frac{\kappa\left(\theta_{2}\right)}{\eta_{1}}\left(r_{2}-r_{1}\right)\left(\theta_{1}\right)_{x}+\frac{\left(\kappa\left(\theta_{2}\right)-\kappa\left(\theta_{1}\right)\right) r_{1}}{\eta_{1}}\left(\theta_{1}\right)_{x}\right\} \psi_{x} d x\right\}+ \\
& \quad+\int_{\Omega}\left\{\frac{\mu_{2}}{\eta_{2}}\left(\left(w_{2}-w_{1}\right)_{x}\left(w_{1}+w_{2}\right)_{x}+\frac{\mu_{2}\left(\eta_{1}-\eta_{2}\right)}{\eta_{2} \eta_{1}}\left(w_{1}\right)_{x}^{2}+\frac{\mu_{2}-\mu_{1}}{\eta_{1}}\left(w_{1}\right)_{x}^{2}\right\} \psi d x .\right. \tag{64}
\end{align*}
$$

Setting $\psi=\theta_{2}-\theta_{1}$ we get the following estimate

$$
\begin{equation*}
\frac{d}{d t} \frac{1}{2} \int_{\Omega}|\theta|^{2}+d x \int_{\Omega} \frac{\kappa\left(\theta_{2}\right) r_{2}}{\eta-2}(\theta-x)^{2} d x \leqslant \sum_{i=1}^{6}\left|J_{i}\right| \tag{65}
\end{equation*}
$$

where

- $\left.J_{1}=\int_{\Omega} \frac{\kappa\left(\theta_{2}\right) r_{2}}{\eta_{1} \eta_{2}}\left(\eta_{1}-\eta_{2}\right)\left(\theta_{1}\right)_{x}\right\} \theta_{x} d x$
- $J_{2}=\int_{\Omega} \frac{\kappa\left(\theta_{2}\right)}{\eta_{1}}\left(r_{2}-r_{1}\right)\left(\theta_{1}\right)_{x} \theta_{x} d x$
- $J_{3}=\int_{\Omega} \frac{\left(\kappa\left(\theta_{2}\right)-\kappa\left(\theta_{1}\right)\right) r_{1}}{\eta_{1}}\left(\theta_{1}\right)_{x} \theta_{x} d x$
- $J_{4}=\int_{\Omega} \frac{\mu_{2}}{\eta_{2}}\left(\left(w_{2}-w_{1}\right)_{x}\left(w_{1}+w_{2}\right)_{x} \theta d x\right.$
- $J_{5}=\int_{\Omega} \frac{\mu_{2}\left(\eta_{1}-\eta_{2}\right)}{\eta_{2} \eta_{1}}\left(w_{1}\right)_{x}^{2} \theta d x$
- $J_{6}=\int_{\Omega} \frac{\mu_{2}-\mu_{1}}{\eta_{1}}\left(w_{1}\right)_{x}^{2} \theta d x$

Assuming that $\mu \in C^{2}\left(R^{+}\right)$then

$$
\begin{align*}
& \frac{d}{d t} \frac{1}{2} \int_{\Omega}|\theta|^{2} d x+\int_{\Omega} \frac{\kappa\left(\theta_{2}\right) r_{2}}{\eta-2}\left(\theta_{x}\right)^{2} d x \leqslant\left\{d_{1}\|\eta\|_{2}\| \|\left(\theta_{1}\right)_{x x}\left\|_{2}+d_{2}\right\| \eta\left\|_{2}\right\|\left(\theta_{1}\right)_{x}\left\|_{2}+d_{3}\right\| \theta\left\|_{2}\right\|\left(\theta_{1}\right)_{x x} \|_{2}\right\}\left\|\theta_{x}\right\|_{2}+ \\
& \left\{d_{4}\left\|w_{x}\right\|_{2}\left(\left\|\left(w_{2}\right)_{x}\right\|_{2}+\left\|\left(w_{1}\right)_{x}\right\|_{2}\right)+d_{5}\|\eta\|_{2}\left\|\left(w_{1}\right)_{x x}\right\|_{2}+d_{6}\|\eta\|_{2}\left\|\left(w_{1}\right)_{x x}\right\|_{2}\right\}\|\theta\|_{2} \tag{66}
\end{align*}
$$

where $d_{i}, i=1, . .6$ are constants. From continuity equation it follows that

$$
\begin{equation*}
\frac{d}{d t}\|\eta\|_{2}^{2} \leqslant\left\|w_{x}\right\|_{2}\|\eta\|_{2} \tag{67}
\end{equation*}
$$

Finally, $w_{2}-w_{1}=r^{2}\left(v_{2}-v_{1}\right)+\left(r_{2}^{2}-r_{1}^{2}\right) v_{1}$ and using (55) ${ }_{2}$ it implies

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t} \int_{\Omega}\left|v^{2}\right| d x+\int_{\Omega}\left|r_{2}^{2} \frac{\mu_{2}}{\eta_{2}}\left(r_{2}^{2} v_{x}\right)^{2}\right| d x \leqslant D\left\|v^{2}\right\|_{2} \tag{68}
\end{equation*}
$$

Putting together previous estimates it implies the uniqueness of the problem.

## 4 Asymptotic behaviour

We partially use the technique developped in [10].
Lemma 6 There exists a positive function $\Phi \in L^{1}\left(\mathbb{R}_{+}\right)$such that

$$
\begin{equation*}
\frac{d}{d t} \int_{\Omega}\left(\frac{1}{2} v^{2}+\theta\right)^{2} d x \leqslant \Phi(t) \tag{69}
\end{equation*}
$$

Proof: Multiplying the second equation (3) by $v$, adding to the third equation (3), multiplying the result by the energy $\frac{1}{2} v^{2}+\theta$ and integrating on $\Omega$, we get

$$
\frac{1}{2} \frac{d}{d t} \int_{\Omega}\left(\frac{1}{2} v^{2}+\theta\right)^{2} d x=\int_{\Omega}\left(q+r^{2} v \sigma\right)_{x}\left(\frac{1}{2} v^{2}+\theta\right) d x
$$

Integrating by parts

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t} \int_{\Omega}\left(\frac{1}{2} v^{2}+\theta\right)^{2} d x+\int_{\Omega} \frac{\kappa r^{4}}{\eta} \theta_{x}^{2} d x+\int_{\Omega} \frac{\mu}{\eta} v^{2}\left[\left(r^{2} v\right)_{x}\right]^{2} d x \\
= & -\int_{\Omega} q v v_{x} d x+2 \int_{\Omega} \mu \frac{v^{3}}{r}\left(r^{2} v\right)_{x} d x-\int_{\Omega} \sigma \theta_{x} r^{2} v d x=: \sum_{j=1}^{3} F_{j} .
\end{aligned}
$$

Let us majorize the right-hand side.
By using Cauchy-Schwarz

$$
\begin{gathered}
\left|F_{1}\right| \leqslant C \int_{\Omega} \frac{\kappa r^{4}}{\eta} \theta_{x}^{2} d x+C \int_{\Omega} v_{x}^{2} d x \\
\leqslant C \int_{\Omega} \frac{\kappa r^{4}}{\eta} \theta_{x}^{2} d x+C \int_{\Omega} \frac{\mu}{\eta}\left[\left(r^{2} v\right)_{x}\right]^{2} d x+C \max _{\Omega} v_{x}^{2}
\end{gathered}
$$

and finally

$$
\begin{gathered}
\left|F_{1}\right| \leqslant C \int_{\Omega} \frac{\kappa r^{4}}{\eta} \theta_{x}^{2} d x+C \int_{\Omega} \frac{\mu}{\eta}\left[\left(r^{2} v\right)_{x}\right]^{2} d x . \\
\left|F_{2}\right| \leqslant C \int_{\Omega} \frac{\mu}{\eta}\left[\left(r^{2} v\right)_{x}\right]^{2} d x+C \int_{\Omega} \mu \eta v^{6} d x \leqslant C \int_{\Omega} \frac{\mu}{\eta}\left[\left(r^{2} v\right)_{x}\right]^{2} d x+C \max _{\Omega}\left(r^{2} v\right)^{2} .
\end{gathered}
$$

Then

$$
\left|F_{2}\right| \leqslant C \int_{\Omega} \frac{\mu}{\eta}\left[\left(r^{2} v\right)_{x}\right]^{2} d x
$$

Finally

$$
\left|F_{3}\right| \leqslant C \int_{\Omega}\left|v \sigma \theta_{x}\right| d x \leqslant C \int_{\Omega} \frac{\kappa r^{4}}{\eta} \theta_{x}^{2} d x+C \int_{\Omega} \frac{\mu}{\eta}\left[\left(r^{2} v\right)_{x}\right]^{2} d x
$$

Applying Lemma 2 to these bounds ends the proof
Theorem 5 The solution of the problem (3)(4)(5) has the following properties

1. There exist a constant $K_{v}$ depending only of the physical data of the problem and the initial data such that for any $t>0$

$$
\begin{equation*}
\|v(\cdot, t)\|_{L^{2}(\Omega)} \leqslant K_{v} e^{-\lambda_{v} t} \tag{70}
\end{equation*}
$$

where $\lambda_{v}=\frac{2 R_{0}^{4} \mu(\theta)}{M^{2} \bar{\eta}}$.
Moreover when $t \rightarrow \infty$

$$
\begin{equation*}
\|v(\cdot, t)\|_{C(\Omega)} \rightarrow 0 \tag{71}
\end{equation*}
$$

2. When $t \rightarrow \infty$

$$
\begin{equation*}
\left\|\theta(\cdot, t)-\theta_{\infty}\right\|_{C(\Omega)} \rightarrow 0 \tag{72}
\end{equation*}
$$

where $\theta_{\infty}=\frac{1}{M} \int_{\Omega}\left(\frac{1}{2}\left(v^{0}\right)^{2}+\theta^{0}\right) d x$.
3. When $t \rightarrow \infty$

$$
\begin{equation*}
\left\|\eta_{t}(\cdot, t)\right\|_{L^{2}(\Omega)} \rightarrow 0 \tag{73}
\end{equation*}
$$

## Proof:

1. From Lemma 1, 4 and 5

$$
\frac{d}{d t} \int_{\Omega} v^{2} d x+\frac{2 \mu(\underline{\theta})}{\bar{\eta}} \int_{\Omega}\left[\left(r^{2} v\right)_{x}\right]^{2} d x \leqslant 0 .
$$

As $\left|r^{2} v\right| \leqslant \int_{\Omega}\left|\left(r^{2} v\right)_{x}\right| d x$, we get

$$
\int_{\Omega}\left[\left(r^{2} v\right)_{x}\right]^{2} d x \geqslant \frac{R_{0}^{4}}{M^{2}} \int_{\Omega} v^{2} d x
$$

so

$$
\frac{d}{d t} \int_{\Omega} v^{2} d x+K_{v} \int_{\Omega} v^{2} d x \leqslant 0
$$

which gives (70).
After Lemma 3, we know that

$$
t \rightarrow \frac{d}{d t} \int_{\Omega} \frac{\mu}{\eta}\left[\left(r^{2} v\right)_{x}\right]^{2} d x \in L^{1}\left(\mathbb{R}_{+}\right),
$$

which implies that $\|v(\cdot, t)\|_{H^{1}(\Omega)} \rightarrow 0$ and then (71).
2. Revisiting the proof of Lemma 6, we get

$$
\begin{aligned}
\frac{1}{2} & \frac{d}{d t} \int_{\Omega}\left(\frac{1}{2} v^{2}+\theta-\theta_{\infty}\right)^{2} d x+\int_{\Omega} \frac{\kappa r^{4}}{\eta} \theta_{x}^{2} d x+\int_{\Omega} \frac{\mu}{\eta} v^{2}\left[\left(r^{2} v\right)_{x}\right]^{2} d x \\
& =-\int_{\Omega} q v v_{x} d x+2 \int_{\Omega} \mu \frac{v^{3}}{r}\left(r^{2} v\right)_{x} d x-\int_{\Omega} \sigma \theta_{x} r^{2} v d x=: \sum_{j=1}^{3} F_{j}
\end{aligned}
$$

First we observe, after (70) and (71), we see that

$$
F(t):=\int_{\Omega} \frac{\mu}{r^{4} \eta}\left[\left(r^{2} v\right)_{x}\right]^{2} d x \leqslant C \int_{\Omega}\left[v^{2}+v_{x}^{2}\right] d x \rightarrow 0
$$

as $t \rightarrow \infty$.
By using Cauchy-Schwarz

$$
\begin{gathered}
\left|F_{1}\right| \leqslant \frac{1}{3} \epsilon \int_{\Omega} \frac{\kappa r^{4}}{\eta} \theta_{x}^{2} d x+C_{\epsilon} \int_{\Omega} v_{x}^{2} d x . \\
\left|F_{2}\right| \leqslant F(t)+C \int_{\Omega} v^{6} d x \leqslant F(t)+C \max _{\Omega} v^{4} .
\end{gathered}
$$

But as $v^{2} \leqslant \int_{\Omega} 2\left|v v_{x}\right| d x \leqslant C\left(\int_{\Omega} v_{x}^{2} d x\right)^{1 / 2}$, we have

$$
\left|F_{2}\right| \leqslant F(t)+C \int_{\Omega} v_{x}^{2} d x
$$

Finally

$$
\left|F_{3}\right| \leqslant \frac{1}{3} \epsilon \int_{\Omega} \frac{\kappa r^{4}}{\eta} \theta_{x}^{2} d x+C_{\epsilon} F(t)
$$

Collecting all of these bounds we find

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t} \int_{\Omega}\left(\frac{1}{2} v^{2}+\theta-\theta_{\infty}\right)^{2} d x+\int_{\Omega} \frac{\kappa r^{4}}{\eta} \theta_{x}^{2} d x+\int_{\Omega} \frac{\mu}{r^{4} \eta}\left[\left(r^{2} v\right)_{x}\right]^{2} d x \leqslant G(t) \tag{74}
\end{equation*}
$$

where $G(t) \rightarrow 0$, as $t \rightarrow \infty$.
Now integrating with respect to $y$ the equality $\theta(x, t)-\theta(y, t)=\int_{y}^{x} \theta_{x} d x$, we get

$$
\theta(x, t)-\theta_{\infty} \leqslant M\left(\int_{\Omega} \frac{\kappa r^{4}}{\eta} \theta_{x} d x\right)^{1 / 2}
$$

which implies

$$
\int_{\Omega}\left(\theta-\theta_{\infty}\right)^{2} d x \leqslant \frac{M^{2} \bar{\eta}}{R_{0}^{4} \kappa(\underline{\theta})} \int_{\Omega} \frac{\kappa r^{4}}{\eta} \theta_{x} d x
$$

The left-hand side of (74) rewrites

$$
\frac{1}{8} \frac{d}{d t} \int_{\Omega} v^{4} d x+\frac{1}{2} \frac{d}{d t} \int_{\Omega} v^{2}\left(\theta-\theta_{\infty}\right) d x+\frac{1}{2} \frac{d}{d t} \int_{\Omega}\left(\theta-\theta_{\infty}\right)^{2} d x
$$

Multiplying the second equation (3) by $v^{3}$ and integrating by parts, we have

$$
\frac{d}{d t} \int_{\Omega} v^{4} d x=-4 \int_{\Omega}\left(r^{2} v^{3}\right)_{x} \sigma d x
$$

which gives

$$
\left|\frac{d}{d t} \int_{\Omega} v^{4} d x\right| \leqslant 4 \int_{\Omega} r^{2}\left|v^{3} \sigma_{x}\right| d x d x \leqslant C \int_{\Omega}\left(v^{2}+\left|v_{x}\right|+v_{x}^{2}\right) d x
$$

then using (70) and (71), we have

$$
\left|\frac{d}{d t} \int_{\Omega} v^{4} d x\right| \rightarrow 0
$$

as $t \rightarrow \infty$.
In the same stroke, multiplying the second equation (3) by $v \theta$ and integrating by parts, we have

$$
\frac{d}{d t} \int_{\Omega} v^{2} \theta d x=\int_{\Omega}\left(-2 v v_{x} q+\sigma v^{2}\left(r^{2} v\right)_{x}-2\left(r^{2} v \theta\right)_{x} \sigma\right) d x
$$

Then

$$
\left|\frac{d}{d t} \int_{\Omega} v^{2} \theta d x\right| \leqslant \frac{1}{3} \epsilon \int_{\Omega} \frac{\kappa r^{4}}{\eta} \theta_{x} d x+H(t)
$$

Collecting all of the previous estimates, we get finally

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t} \int_{\Omega}\left(\theta-\theta_{\infty}\right)^{2} d x+\frac{R_{0}^{4} \kappa(\underline{\theta})}{M^{2} \bar{\eta}} \int_{\Omega}\left(\theta-\theta_{\infty}\right)^{2} d x \leqslant \Psi(t) \tag{75}
\end{equation*}
$$

where $\Psi \in L^{1}\left(\mathbb{R}_{+}\right)$and $\Psi(t) \rightarrow 0$ as $t \rightarrow \infty$. Integrating this differential inequality, we get

$$
\int_{\Omega}\left(\theta-\theta_{\infty}\right)^{2} d x \leqslant e^{-\frac{R_{0}^{4} \kappa(\theta)}{M^{2} \bar{\eta}}} t \int_{\Omega}\left(\theta^{0}-\theta_{\infty}\right)^{2} d x+\int_{0}^{t} e^{-\frac{R_{0}^{4} \kappa(\theta)}{M^{2} \bar{\eta}}(t-s)} \Psi(s) d s
$$

As the last integral converges to zero when $t \rightarrow \infty$ due to the dominated convergence theorem, we get that $\left\|\theta(\cdot, t)-\theta_{\infty}\right\|_{L^{2}(\Omega)} \rightarrow 0$.

After Lemma 3, we know that

$$
t \rightarrow \frac{d}{d t} \int_{\Omega} \frac{r^{4} \mathcal{K}_{x}^{2}}{\eta} d x \in L^{1}\left(\mathbb{R}_{+}\right)
$$

which implies that $\left\|\theta(\cdot, t)-\theta_{\infty}\right\|_{H^{1}(\Omega)} \rightarrow 0$ and then (72).
3. Clearly (73) follows directly from (71)

Remark 1 An asymptotic result for the specific volume $\eta$ would easily follow from a uniform-in-time bound for the gradient $\left\|\eta_{x}\right\|_{L^{2}(\Omega)}$. Unfortunately the result of Proposition 3 is not sufficient for this purpose. This fact seems to be a consequence of the pressureless model with variable viscosity.

## 5 The constant coefficient case

In order to check Remark 1, we briefly study the case where $\mu$ and $\kappa$ are constant (after (7), notice that this case is not strictly included in the previous study).

1. One checks first that the energy estimates of Lemma 1 and the pointwise bounds of Propositions 1 and 2 for $v$ and $\theta$ are valid. Lemma 2 also holds provided that the multiplicator $\mathcal{K}$ is replaced by $\theta$.
2. The proof of Lemma 3 is modified as follows.

One checks fist the analogous of (33)

$$
\begin{equation*}
\frac{d}{d t} \int_{\Omega} \frac{\mu}{\eta}\left[\left(r^{2} v\right)_{x}\right]^{2} d x+\int_{\Omega} r^{4} \sigma_{x}^{2} d x \leqslant\left(\int_{\Omega} \frac{\mu}{\eta}\left[\left(r^{2} v\right)_{x}\right]^{2} d x\right)^{2}, \tag{76}
\end{equation*}
$$

which gives the first bound (25) and (26).
Inequality (38) is replaced by

$$
\begin{align*}
& \frac{1}{2} \frac{d}{d t} \int_{\Omega} \frac{r^{4} \mathcal{K}_{x}^{2}}{\eta} d x+\int_{\Omega} \kappa\left[\left(\kappa \frac{r^{4}}{\eta} \theta_{x}\right)_{x}\right]^{2} d x \leqslant \int_{\Omega} \frac{\mu}{\eta}\left[\left(r^{2} v\right)_{x}\right]^{2} d x \\
& +C\left(\int_{\Omega} \frac{r^{4} \mathcal{K}_{x}^{2}}{\eta} d x\right)^{2}+\frac{1}{2} \epsilon_{3} \int_{\Omega} \kappa\left[\left(\frac{\kappa r^{4}}{\eta} \theta_{x}\right)_{x}\right]^{2} d x \\
& +C\left(\int_{\Omega} \frac{\kappa^{2} r^{4}}{\eta} \theta_{x}^{2} d x\right)\left(\int_{\Omega} \frac{\mu}{\eta}\left[\left(r^{2} v\right)_{x}\right]^{2} d x\right) \\
& -\frac{1}{2 \epsilon_{3}} \int_{\Omega} \frac{\mu^{2}}{\kappa \eta^{2}}\left[\left(r^{2} v\right)_{x}\right]^{4} d x+\frac{1}{2} \epsilon_{3} \int_{\Omega} \frac{\mu \kappa}{\mu^{\prime}} \kappa\left[\left(\kappa \frac{r^{4}}{\eta} \theta_{x}\right)_{x}\right]^{2} d x . \tag{77}
\end{align*}
$$

As $\left[\left(r^{2} v\right)_{x}\right]^{4} \leqslant C \int_{\Omega} \sigma^{2} d x \int_{\Omega} r^{4} \sigma_{x}^{2} d x$, using (76), we get the second bound (25) for $\epsilon_{3}$ small enough.
3. Uniform bounds for $\eta$ and $\theta$ (Lemma 45) and for $\left(r^{2} v\right)_{x}$ and $\theta_{x}$ ( Corollary 1) are proved as previously and the bound for $\eta_{x}$ may be improved as follows.

As the second equation (3) rewrites $\mu(\log \eta)_{x t}=\left(\frac{v}{r^{2}}\right)_{t}+\frac{2 v^{2}}{r^{3}}$, we have

$$
\frac{1}{2} \frac{d}{d t} \int_{\omega}\left[\mu(\log \eta)_{x}-\frac{v}{r^{2}}\right]^{2} d x=\int_{\omega} \frac{2 v^{2}}{r^{3}}\left[\mu(\log \eta)_{x}-\frac{v}{r^{2}}\right] d x .
$$

So if $X(t):=\int_{\omega}\left[\mu(\log \eta)_{x}-\frac{v}{r^{2}}\right]^{2} d x$, we find the differential inequality

$$
\begin{equation*}
\frac{d}{d t} Y(t) \leqslant F(t)(1+Y(t)) \tag{78}
\end{equation*}
$$

where $F \in L^{1}\left(\mathbb{R}_{+}\right)$, which implies that $Y(t) \leqslant C$, and using energy estimate we have finally the uniform bound

$$
\begin{equation*}
\left\|\eta_{x}\right\|_{L^{2}(\Omega)} \leqslant C . \tag{79}
\end{equation*}
$$

This allows us to improve Theorem 5 .

Theorem 6 The solution ( $v, \theta, \eta$ ) of the problem (3)(4)(5), for $\mu=$ Cte and $\kappa=$ Cte satisfies (70) (71) (72) and (73). Moreover, when $t \rightarrow \infty$

$$
\begin{equation*}
\left\|\eta(\cdot, t)-\eta_{\infty}\right\|_{C(\Omega)} \rightarrow 0 \tag{80}
\end{equation*}
$$

where $\eta_{\infty}=\frac{1}{M} \int_{\Omega} \eta^{0} d x$.
Proof: Only the last item has to be checked. After (78) and (79) we have

$$
\int_{0}^{\infty}\left|\frac{d}{d t} \int_{\Omega}\left[(\log \eta)_{x}\right]^{2} d x\right| d t \leqslant C
$$

implying

$$
\begin{equation*}
\int_{\Omega} \eta_{x}^{2} d x \rightarrow 0 \text { when } t \rightarrow \infty \tag{81}
\end{equation*}
$$

Now one observes that there exits a $\xi(t) \in \Omega$ such that $\eta(\xi(t), t)=$ $\frac{1}{M} \int_{\Omega} \eta^{0}(x) d x \equiv \eta_{\infty}$. Then one gets

$$
\eta(x, t)-\eta(\xi(t), t)=\int_{\xi}^{x} \eta_{y} d y
$$

and so

$$
\left|\eta(x, t)-\eta_{\infty}\right| \leqslant C\left(\int_{\Omega} \eta_{x}^{2} d x\right)^{1 / 2}
$$

which gives (80) after (81)

Acknowlegment $\check{S}$. N. was supported by the Grant Agency of the Czech Republic n. 201/08/0012 and by the Academy of Sciences of the Czech Republic, Institutional Research Plan N. AV0Z10190503. The paper was finishing during stay of $\check{S}$. N. in CEA/DAM. She would like to express her gratitude to Prof. Ducomet and his collegues for kind hospitality during her stay.

## References

[1] S.N. Antonsev, A.V. Kazhikov, V.N. Monakov: Boundary value problems in mechanics of nonhomogeneous fluids, North-Holland, 1990.
[2] S. Ya. Belov: On the resolution of a boundary problem for a viscous compressible medium with temperature dependant viscosity (in Russian), Siberian Section of the Acad. of Sciences of SSSR, Publ. of the Institute of Hydrodynamics 1991; 102:3-11
[3] D. Bresch, B. Desjardins: On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids, J. Math. Pures Appl. 2007; 87: 57-90
[4] F. Boujut, F. James: Duality solutions for pressureless gases, monotone scalar conservation laws and uniqueness, Comm. Partial Diff. Eq., 1999; 24:2173-2189
[5] L. Boudin: A solution with bounded expansion rate to the model of viscous pressureless gases, SIAM J. Math. Anal., 2000; 32:172-193
[6] C. Dafermos, L. Hsiao: Adiabatic shearing of incompressible fluids with temperature-dependent viscosity, Quart. of Appl. Math., 1983; 61:45-58
[7] J-F. Coulombel: From gas dynamics to pressureless gas dynamics, Preprint, 2007
[8] A. Dermoune, B. Djehiche: Global solution of the pressureless gas equation with viscosity, Physica D, 2002; 163:184-190
[9] B. Ducomet, Š. Nečasova: Free boundary problem for the equation of spherically symmetric motion of compressible gas with densitydependent viscosity, Submitted
[10] B. Ducomet: Some asymptotics for a Navier-Stokes-Poisson system. Math. Models and Methods in Appl. Sci. 1999; 9:1039-1076
[11] E. Feireisl: On the motion of a viscous, compressible and heat conducting fluids. Indiana Univ. Math. J. 2004; 53: 1707-1740
[12] E. Feireisl, A. Novotný: Large time behavior of flows of compressible, viscous, heat conducting fluids Math. Meth. Appl. Sci. 2006; 29, 11, 1237-1260
[13] E. Feireisl, H. Petzeltová: On the Long-time behaviour of solutions to the Navier-Stokes- fourier system with a time-dependent driving force J. of Dynamics and Differential Equations 2007; 19: 685-707
[14] H. Fujita-Yashima, R. Benabidallah: Equation à symétris sphérique d'un gaz visqueux et calorifère avec la surface libre, Annali di Matematica pura ed applicata 1995; 168:75-117
[15] I. Gallagher, L. Saint-Raymond: Asymptotic results for pressureless magneto-hydrodynamics, arXiv.math.AP/0312021 v1 1 Dec 2003
[16] N. Itaya: On the temporally global problem of the generalized Burger's equation, J. Math. Kyoto Univ. 1974; 14:129-177
[17] N. Itaya: A survey on the generalized Burger's equation with a pressure model term, J. Math. Kyoto Univ 1976; 16:223-240
[18] N. Itaya: A survey on two models equations for compressible viscous fluid, J. Math. Kyoto Univ 1979; 19:293-300
[19] S. Jiang: Global smooth solutions to the equations of a viscous heatconducting one-dimensional gas with density-dependent viscosity. Math. Nachr. 1998; 190:163-183
[20] S. Jiang, Z. Xin, P. Zhang: Global weak solution to 1D compressible isentropic Navier-Stokes equations with density-dependent viscosity. Methods and Applications of Analysis 2005; 12:239-252
[21] B. Kawohl: Global existence of large solutions to initial boundary value problems for a viscous heat-conducting, one-dimensional real gas, Journal of Differential Equations 1985; 58:76-103.
[22] O.A. Ladyženskaja, V.A. Solonnikov, N.N. Ural'ceva: Linear and quasilinear equations of parabolic type, AMS Providence, Rhode Island, 1968.
[23] M. Okada, Š. Matušů-Nečasová, T. Makino: Free boundary problem for the equation of one-dimensional motion of compressible gas with density-dependent viscosity. Ann. Univ. Ferrara - Sez. VII - Sc. Mat. 2002; 48:1-20.
[24] S. Mukohyama: Brane cosmology driven by the rolling tachyon, Physical Review 2002; 66:024009 1-7.
[25] A. Sen: Tachyon matter, arXiv:hep-th/0203265 v1 28 Mar 2002
[26] S. F. Shandarin, Ya. B. Zeldovich: The large-scale structure of the universe: Turbulence, intermittency, structures in a self-gravitating medium, Rev. of Mod. Physics 1989; 61:185-222
[27] A. Tani: On the first Initial-Boundary Value Problem of the generalized Burger's equation, Publ. RIMS, Kyoto Univ. 1974; 10:209-233
[28] Ya. B. Zeldovich: An approximate theory for large density perturbations, Astron. \& Astrophys. 1970; 5:84-89

