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SUMMARY

We consider an initial boundary value problem for the equations of
spherically symmetric motion of a pressureless gas with temperature-
dependent viscosity µ(θ) and conductivity κ(θ). We prove that this
problem admits a unique weak solution, assuming the Belov’s func-
tional relation between µ(θ) and κ(θ) and we give the behaviour of
the solution for large times.
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1 Introduction

Pressureless gas have been the object of various mathematical studies in
recent years [5, 6, 4, 8, 6, 15, 7, 5]. Physically, these models (which may be
considered as generalization of the popular Burgers model (see [16, 27, 17,
18])) have been introduced in astrophysics [28, 26] to describe sticky particles
in interstellar madium, galaxy gases or rarefied cold plasmas. Also in some
recent high-energy works [25, 24] it has been shown that classical decay of
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unstable higher-dimensional objects in string theories produces pressureless
gas with non-zero energy density.

In the present work we are interested in the compressible case of a pres-
sureless gas with non-constant transport coefficients (viscosity and conductiv-
ity) in spherical symmetry. If the density dependent viscosity case has been
the object of a number of works in recent years (see for example [19, 23, 9]
and references therein for the 1D and spherical symmetries), the temperature
dependent-viscosity is much less known. After the pioneering article by C.
Dafermos and L. Hsiao [6] in the incompressible case, to our knowledge, only
the paper by S. Ya. Belov [2] deals with the compressible case. Our purpose
in the following is to test the robustness of the model in [2] on the spherically
symmetric geometry. We would like to mention that in 3d case the situation
is different and the existence and asymptotic behavior of full system of the
Navier-Stokes- Fourier system in 3D with nonideal gas ( including pressure)
were proved in the works of Feireisl and his coworkers [11, 13, 12]. With ideal
polytropic gas and density dependent viscosity the existence of solution was
proved by D. Bresch and B. Desjardins [3].

We consider the following model of compressible Navier-Stokes system for
a spherical symmetric flow of a pressureless gas















































ρt + (ρv)r +
2ρv

r
= 0,

ρ(vt + vvr) =

(

µ

(

vr +
2v

r

))

r

,

ρ(θt + vθr) = qr +
2q

r
+ µ

(

vr +
2v

r

)2

,

(1)

in the domain Ω×R+ with Ω := (R0, R1), for the density ρ(r, t), the velocity
v(r, t) and the temperature θ(r, t). The heat flux q is given by the Fourier
law q(θ) := κ(θ)θr.

Writing the system in the lagrangian (mass) coordinates (x, t), with

r(x, t) := r0(x) +

∫ t

0

v(x, s) ds, (2)

where

r0(x) :=

[

R3
0 + 3

∫ x

0

η0(y) dy

]1/3

, for x ∈ Ω,
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we get






















































ηt = (r2v)x,

vt = r2

(

µ

η
(r2v)x

)

x

,

θt = qx +

(

µ

η
(r2v)x

)

(r2v)x,

rt = v,

(3)

in the domain Q := Ω × R+ with Ω := (0,M), where the specific volume η
(with η := 1

ρ
), the velocity v, the temperature θ and the radius r depend on

the lagrangian mass coordinates.
For our pressureless model, the stress σ is only viscous

σ(η, θ) :=
µ(θ)

η
(r2v)x,

the energy is normalized e = θ, and the heat flux is q(θ) := κ(θ)r4

η
θx.

We consider the boundary conditions

{

v|x=0,M = 0,

π|x=0,M = 0,
(4)

for t > 0, and initial conditions

η|t=0 = η0(x), v|t=0 = v0(x), r|t=0 = r0(x), θ|t=0 = θ0(x) on Ω. (5)

The viscosity coefficient µ is such that µ ∈ C2(R+) and satisfy the conditions

d

dξ
µ(ξ) 6 0, µ(ξ) > µ > 0. (6)

The thermal conductivity satisfies the Belov’s condition [2]

κ(ξ) = −Λ
d

dξ
(logµ(ξ)) for ξ > 0, (7)

where Λ is a positive constant.

3



We study weak solutions for the above problem with properties























η ∈ L∞(QT ), ηt ∈ L∞([0, T ], L2(Ω)),
√
ρ (r2v)x ∈ L∞([0, T ], L2(Ω)),

v ∈ L∞([0, T ], L4(Ω)), vt ∈ L∞([0, T ], L2(Ω)), σx ∈ L∞([0, T ], L2(Ω)),

θ ∈ L∞([0, T ], L2(Ω)),
√
ρ θx ∈ L∞([0, T ], L2(Ω)).

(8)
and

r ∈ C(Q) and for all t ∈ [0, T ], x→ r(x, t) is strictly increasing on Ω, (9)

where QT := Ω × (0, T ).
We also assume the following conditions on the data:























η0 > 0 on Ω, η0 ∈ L1(Ω),

v0 ∈ L2(Ω),
√

ρ0 v0
x ∈ L2(Ω),

θ0 ∈ L2(Ω), infΩ θ
0 > 0.

(10)

We look for a weak solution (η, v, θ) such that

η(x, t) = η0(x) +

∫ t

0

(

r2vx +
2ηv

r

)

(x, s) ds, (11)

for a.e. x ∈ Ω and any t > 0, and such that for any test function φ ∈
L2([0, T ], H1(Ω)) with φt ∈ L1([0, T ], L2(Ω)) such that φ(·, T ) = 0

∫

Q

[

φtv +

(

r2φx +
2ηφ

r

)

p− µφxr
4

η
vx − 2µ

φηv

r2

]

dx dt

=

∫

Ω

φ(0, x) v0(x) dx, (12)

and
∫

Q

[

φte +
κr4θx

η
φx − r2vσφx − r2vσxφ

]

dx dt =

∫

Ω

φ(0, x) θ0(x) dx. (13)

The aim of the present paper is to prove the following result
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Theorem 1 Suppose that the initial data satisfy (10) and that T is an ar-
bitrary positive number.

Then the problem (3)(4)(5) possesses a global weak solution satisfying (8)
and (9) together with properties (11), (12) and (13).

For that purpose, we first prove a classical existence result in the Hölder
category. We denote by Cα(Ω) the Banach space of real-valued functions
on Ω which are uniformly Hölder continuous with exponent α ∈ Ω, and
Cα,α/2(QT ) the Banach space of real-valued functions on QT := Ω × (0, T )
which are uniformly Hölder continuous with exponent α in x and α/2 in
t. The norms of Cα(Ω) (resp. Cα,α/2(QT )) will be denoted by ‖ · ‖α (resp.
||| · |||α).

Theorem 2 Suppose that the initial data satisfy

(

η0, η0
x, v

0, v0
x, v

0
xx, θ

0, θ0
x, θ

0
xx

)

∈ (Cα(Ω))8 ,

for some α ∈ Ω. Suppose also that η0(x) > 0 and θ0(x) > 0 on Ω, and that
the compatibility conditions

θ0
x(0) = θ0

x(M) = 0, v0(0) = v0(M) = 0,

hold. Then, there exists a unique solution (η(x, t), v(x, t), θ(x, t)) with η(x, t) >
0 and θ(x, t) > 0 to the initial-boundary value problem (3)(4)(5) on Q =
Ω × R+ such that for any T > 0

(η, ηx, ηt, ηxt, v, vx, vt, vxx, θ, θx, θt, θxx) ∈ (Cα(QT ))12 ,

and
(ηtt, vxt, θxt) ∈

(

L2(QT )
)3
.

Then Theorem 1 will be obtained from Theorem 2 through a regularization
process.

The plan of the article is as follows: in section 2 we give a priori estimates
sufficient to prove in section 3 global existence of a solution, then we gives
in section 4 the asymptotic behaviour of the solution for large time. In the
last section we briefly study the case of constant transport coefficients.
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2 A priori estimates

In the spirit of [21], we first suppose that the solution is classical in the
following sense

{

η ∈ C1(QT ), ρ > 0,
v, θ ∈ C1([0, T ], C0(Ω)) ∩ C0([0, T ], C2(Ω)), θ > 0,

(14)

and
r > 0 for all t ∈ [0, T ]. (15)

Our first task is to prove the following regularity result

Theorem 3 Suppose that the initial-boundary value problem (3)(4)(5) has
a classical solution described by Theorem 2. Then the solution (η, v, vx, θ, θx)
is bounded in the Hölder space C1/3,1/6(QT )

|||η|||1/3 + |||v|||1/3 + |||vx|||1/3 + |||θ|||1/3 + |||θx|||1/3 6 C(T ),

where C depends on T , the physical data of the problem and the initial data.
Moreover

0 < η 6 η 6 η, 0 < θ 6 θ 6 θ.

Let N and T be arbitrary positive numbers In all the following, we denote
by C = C(N) or K = K(N) various positive non-decreasing functions of N ,
which may possibly depend on the physical constants M etc., but not on T .
We also denote by Ψ the elementary positive function: Ψ(s) := s− log s− 1,
for any s > 0.

Lemma 1 Under the following condition on the data

∥

∥v0
∥

∥

L2(Ω)
+
∥

∥η0
∥

∥

L1(Ω)
+
∥

∥θ0
∥

∥

L1(Ω)
6 N, (16)

1. The following mass-energy equality holds

∫

Ω

[

1

2
v2 + η + e

]

dx =

∫

Ω

[

1

2
(v0)2 + η0 + e0

]

dx. (17)
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2. The following “entropy” inequality holds

∫

Ω

Ψ(θ) dx+

∫ T

0

∫

Ω

(

κ(θ)r4

ηθ2
θ2

x +
µ(θ)

ηθ
[(r2v)x]

2

)

dx dt 6 K(N).

(18)

3. The following estimates hold

‖η‖L∞(0,T ;L1(Ω)) + ‖v‖L∞(0,T ;L2(Ω)) + ‖θ‖L∞(0,T ;L1(Ω)) 6 K(N). (19)

Proof: 1. Multiplying the second equation (3) by v, adding the result to the
first and third equations (3), integrating on Ω and using (4), (5), one gets
the energy identity (17).

2. Computing the time-derivative (log θ)t we get

(log θ)t =

(

κ(θ)r4

ηθ
θx

)

x

+
κ(θ)r4

ηθ2
θ2

x +
µ(θ)

ηθ
[(r2v)x]

2.

Integrating on Ω and using (17) we get (18).
3. The estimate (19) follows from (17) �

Proposition 1 The following uniform bound holds on Q

|v(x, t)| 6 ‖v0‖C(Ω). (20)

Proof: Applying the strong maximum principle to the second equation (3)
gives (20) �

Proposition 2 The following uniform lower bound holds on Q

θ(x, t) > θ > 0, (21)

where θ =
(

∥

∥

1
θ0

∥

∥

C(Ω)

)−1

.

Proof: Multiplying, as in [1], the third equation (3) by θ−2, we get

ωt =

(

κ
r4

η
ωx

)

x

− 2κ
r4

ηθ3
θ2

x −
µ

ηθ2
[(r2v)x]

2 6

(

κ
r4

η
ωx

)

x

,
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where ω := θ−1. Multiplying by 2pω2p−1, we get

(

ω2p
)

t
6

(

κ
r4

η
(ω2p)x

)

x

− κ
r4

η
2pω2p−2ω2

x,

which implies
d

dt

(
∫

Ω

ω2p dx

)

6 0.

Integrating in t and letting p→ ∞ gives ‖ω(·, t)‖∞ 6 ‖ω0‖∞, which implies
(21) �

Lemma 2 One has the kinetic energy bound
∥

∥

∥

∥

√

µ

η
(r2v)x

∥

∥

∥

∥

L1(0,T,L2(Ω)

6 K, (22)

and the improved thermal bound

∥

∥

∥

∥

∥

√

κ2r4

η
θx

∥

∥

∥

∥

∥

L1(0,T,L2(Ω)

6 K. (23)

Proof: 1. Multiplying the second equation (3) by v and integrating by parts,
we get

d

dt

∫

Ω

1

2
v2 dx =

∫

Ω

r2σxv dx = −
∫

Ω

µ

η
[(r2v)x]

2 dx,

which gives (22) by integrating in t.

2. Multiplying the third equation (3) by K(θ) :=
∫ θ

θ0
κ(s) ds, for θ0 > 0

arbitrary, and integrating by parts, we get

∫

Ω

Kθt =

∫

Ω

K
(

κ
r4

η
θx

)

x

dx+

∫

Ω

Kµ
η

[(r2v)x]
2 dx

= −
∫

Ω

Kx κ
r4

η
θx dx+

∫

Ω

Kµ
η

[(r2v)x]
2 dx.

Then

d

dt

∫

Ω

(
∫ θ

1

K(s) ds

)

dx+

∫

Ω

κ2 r
4

η
θ2

x dx =

∫

Ω

K(θ)
µ

η
[(r2v)x]

2 dx. (24)
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After the growth property (7) of κ and the lower bound (21) of θ, we get

K(θ) = −Λ

∫ θ

θ0

d

ds
(log µ(s)) ds 6 K,

which gives (23) by plugging into (24) after integrating in t, and using (22) �

Lemma 3 One has the bounds
∥

∥

∥

∥

√

µ

η
(r2v)x

∥

∥

∥

∥

L∞(0,T,L2(Ω)

6 K,

∥

∥

∥

∥

√

κ

η
r4 θ2

x

∥

∥

∥

∥

L∞(0,T,L2(Ω)

6 K, (25)

and
∥

∥

∥

∥

(

µ

η

(

r2v
)

x

)

x

∥

∥

∥

∥

L1(0,T,L2(Ω)

6 K. (26)

Proof: All along the proof, we denote by C a generic positive constant,
possibly depending on the various physical constants of the problem, but
which do not depend on T .

1. Observing that the second equation (3) rewrites (r2v)t = r4σx + 2rv2,
multiplying by σx and integrating on Ω, we get

∫

Ω

σx(r
2v)t dx =

∫

Ω

r4σ2
xdx+ 2

∫

Ω

rv2σx dx.

Integrating by parts

d

dt

∫

Ω

µ

η
[(r2v)x]

2 dx+

∫

Ω

r4σ2
xdx = −

∫

Ω

r2v σxtdx− 2

∫

Ω

rv2σx dx := A1 + A2.

(27)
Rewriting A1, we have

A1 =

∫

Ω

(r2v)xσtdx =
d

dt

∫

Ω

1

2

η

µ
σ2 dx− 1

2

∫

Ω

(

η

µ

)

t

σ2 dx

=
1

2

d

dt

∫

Ω

µ

η
[(r2v)x]

2 dx− 1

2

∫

Ω

µ

η2
[(r2v)x]

3 dx +
1

2

∫

Ω

µ′

η
[(r2v)x]

2θt dx

=
1

2

d

dt

∫

Ω

µ

η
[(r2v)x]

2 dx−1

2

∫

Ω

µ

η2
[(r2v)x]

3 dx+
1

2

∫

Ω

µ′

η
[(r2v)x]

2

(

κ
r4

η
θx

)

x

dx
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+
1

2

∫

Ω

µµ′

η2
[(r2v)x]

4 dx.

In the same stroke

A2 = 2

∫

Ω

(rv2)xσ dx = 4

∫

Ω

µv

rη
[(r2v)x]

2 dx− 6

∫

Ω

µv2

r2
(r2v)x dx.

Plugging into (27), we obtain

1

2

d

dt

∫

Ω

µ

η
[(r2v)x]

2 dx +

∫

Ω

r4σ2
xdx

= −1

2

∫

Ω

µ

η2
[(r2v)x]

3 dx+
1

2

∫

Ω

µ′

η
[(r2v)x]

2

(

κ
r4

η
θx

)

x

dx

+
1

2

∫

Ω

µµ′

η2
[(r2v)x]

4 dx+ 4

∫

Ω

µv

rη
[(r2v)x]

2 dx− 6

∫

Ω

µv2

r2
(r2v)x dx =:

5
∑

j=1

Bj.

(28)
Let us estimate the contributions in the right-hand side.

One observes first that, after the boundary conditions (4)

∀t ∈ [0, T ], ∃ξ(t) : (r2v)x(ξ(t), t) = 0.

So splitting Ω accordingly, we have

B1 = −1

2

∫ ξ

0

µ

η2
[(r2v)x]

3 dx− 1

2

∫ M

ξ

µ

η2
[(r2v)x]

3 dx.

Integrating by part, we find first

−1

2

∫ ξ

0

µ

η
(r2v)x

1

η
[(r2v)x]

2 dx =
1

2

∫ ξ

0

(

µ

η
(r2v)x

)

x

∫ x

0

1

η
[(r2v)y]

2 dy dx.

So
∣

∣

∣

∣

1

2

∫ ξ

0

µ

η
(r2v)x

1

η
[(r2v)x]

2 dx

∣

∣

∣

∣

6
1

2

∫ ξ

0

r2

∣

∣

∣

∣

(

µ

η
(r2v)x

)

x

∣

∣

∣

∣

(

1

r2

∫ x

0

1

η
[(r2v)y]

2 dy

)

dx,

and by Cauchy-Schwarz

∣

∣

∣

∣

1

2

∫ ξ

0

µ

η
(r2v)x

1

η
[(r2v)x]

2 dx

∣

∣

∣

∣

6
ε1
6

∫

Ω

r4σ2
x dx+ C

(
∫

Ω

µ

η
[(r2v)x]

2 dx

)2

,
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for any ε1 > 0, and a C(ε1, µ, R0).

As the same bound clearly holds for 1
2

∫M

ξ
µ
η2 [(r2v)x]

3 dx, we have

|B1| 6
1

3
ε1

∫

Ω

r4σ2
x dx+ C

(
∫

Ω

µ

η
[(r2v)x]

2 dx

)2

. (29)

By Cauchy-Schwarz in B2, we have

|B2| 6 −1

4
ε2

∫

Ω

µµ′

η2
[(r2v)x]

4 dx+
1

4ε2

∫

Ω

1

µκ
κ

[(

κ
r4

η
θx

)

x

]2

dx. (30)

Using the same splitting: Ω = (0, ξ)∪(ξ,M) ( as in B1) for B4 and integrating
by parts, we get

B4 = 4

∫

Ω

µ(r2v)x

η

v(r2v)x

r
dx = −4

∫

Ω

r2

(

µ(r2v)x

η

)

x

(

1

r2

∫ x

0

v(r2v)y

r
dy

)

dx.

So by Cauchy-Schwarz

|B4| 6 4

∫

Ω

r2

∣

∣

∣

∣

(

µ(r2v)x

η

)

x

∣

∣

∣

∣

∣

∣

∣

∣

1

r2

∫ x

0

v(r2v)y

r
dy

∣

∣

∣

∣

dx

6
1

3
ε1

∫

Ω

r4σ2
x dx + C

∫

Ω

(
∫ x

0

v(r2v)x

r
dy

)2

dx.

6
1

3
ε1

∫

Ω

r4σ2
x dx+ C

(
∫

Ω

µ

η
[(r2v)x]

2 dx

)(
∫

Ω

ηv2

µ
dx

)

.

Using the energy estimate, Proposition 1 and (6) the last integral is bounded,
so

|B4| 6
1

3
ε1

∫

Ω

r4σ2
x dx+ C

∫

Ω

µ

η
[(r2v)x]

2 dx. (31)

Using Cauchy-Schwarz in B5 gives

B5 6 C

∫

Ω

µ

η
(r2v)2

x dx + C

∫

Ω

µηv4 dx.

But after energy estimate

v2 6 Cmax
Ω

(r2v)2 6 C

(
∫

Ω

µ

η
(r2v)2

x dx

)1/2

,
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so

|B5| 6 C

∫

Ω

µ

η
(r2v)2

x dx. (32)

Plugging (29), (30), (31) and (32) into (28), we get

1

2

d

dt

∫

Ω

µ

η
[(r2v)x]

2 dx+

∫

Ω

r4σ2
xdx−

1

2

∫

Ω

µµ′

η2
[(r2v)x]

4 dx 6 ε1

∫

Ω

r4σ2
x dx

+C

(
∫

Ω

µ

η
[(r2v)x]

2 dx

)2

−1

4
ε2

∫

Ω

µµ′

η2
[(r2v)x]

4 dx− 1

4ε2

∫

Ω

µ′

µκ
κ

[(

κ
r4

η
θx

)

x

]2

dx. (33)

2. Multiplying now the third equation (3) by ακ
(

κ r4

η
θx

)

x
, where α > 0

will be defined later, we find

ακ

(

κ
r4

η
θx

)

x

θt = ακ

[(

κ
r4

η
θx

)

x

]2

+ α
µ

η
[(r2v)x]

2 κ

(

κ
r4

η
θx

)

x

.

As the left-hand side rewrites αKt

(

r4

η
Kx

)

x
, we easily compute

αKt

(

r4

η
Kx

)

x

= α

(

Kt
r4

η
Kx

)

x

− αKtx
r4

η
Kx

= α

(

Kt
r4

η
Kx

)

x

− 1

2
α

(

K2
x

r4

η

)

t

+
1

2
αK2

x

(

r4

η

)

t

.

= α

(

Kt
r4

η
Kx

)

x

− 1

2
α

(

K2
x

r4

η

)

t

+ 2αK2
x

r3v

η
− 1

2
αK2

x

r4(r2v)x

η2
.

So integrating on Ω and using (4)

1

2

d

dt

∫

Ω

α
r4K2

x

η
dx+ α

∫

Ω

κ

[(

κ
r4

η
θx

)

x

]2

dx

= 2α

∫

Ω

K2
x

r3v

η
dx− α

2

∫

Ω

K2
x

r4(r2v)x

η2
dx− α

∫

Ω

µ

η
[(r2v)x]

2 κ

(

κ
r4

η
θx

)

x

dx =:
3
∑

j=1

Cj.

(34)
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In order to estimate the contributions on the right-hand side, we first inte-
grate by parts in C1

C1 = 2α

∫

Ω

r4K2
x

η

r2v

r3
dx = −2α

∫

Ω

(

r2v

r3

)

x

∫ x

0

r4K2
y

η
dy dx

= −2α

∫

Ω

(r2v)x

r3

(
∫ x

0

r4K2
y

η
dy

)

dx+ 6α

∫

Ω

ηv

r4

(
∫ x

0

r4K2
y

η
dy

)

dx.

The first integral gives by Cauchy-Schwarz
∣

∣

∣

∣

2α

∫

Ω

(r2v)x

r3

(
∫ x

0

r4K2
y

η
dy

)

dx

∣

∣

∣

∣

6 2α

∫

Ω

√

µ

η

|(r2v)x|
r3

√

η

µ

(
∫ x

0

r4K2
y

η
dy

)

dx

6
α

2

∫

Ω

µ

η
[(r2v)x]

2| dx+ 2α

∫

Ω

η

µ

(
∫ x

0

r4K2
y

η
dy

)2

dx,

so, using energy estimate

∣

∣

∣

∣

2α

∫

Ω

(r2v)x

r3

(
∫ x

0

r4K2
y

η
dy

)

dx

∣

∣

∣

∣

6
1

2

∫

Ω

µ

η
[(r2v)x]

2| dx +
1

2
C

(
∫

Ω

r4K2
x

η
dx

)2

,

for a positive constant C.
As the second integral gives clearly the same estimate, one gets

|C1| 6

∫

Ω

µ

η
[(r2v)x]

2 dx+ C

(
∫

Ω

r4K2
x

η
dx

)2

. (35)

In the same way, we get

C2 = −1

2
α

∫

Ω

κr4

η
θx
κ

η
θx(r

2v)x dx =
1

2

∫

Ω

√
κ

(

κr4

η
θx

)

x

1√
κ

∫ x

0

κ

η
θy(r

2v)y dy dx.

Using once more Cauchy-Schwarz, we get

|C2| 6
1

2
ε3

∫

Ω

κ

[(

κr4

η
θx

)

x

]2

dx+ C

∫

Ω

1

κ

(
∫ x

0

κ

η
θy(r

2v)y dy

)2

dx.

So

|C2| 6
1

2
ε3

∫

Ω

κ

[(

κr4

η
θx

)

x

]2

dx + C

(
∫

Ω

κ2r4

η
θ2

x dx

)(
∫

Ω

µ

η
[(r2v)x]

2 dx

)

.

(36)
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Finally by Cauchy-Schwarz in C3, we have

|C3| 6 −1

4
ε3

∫

Ω

µµ′

η2
[(r2v)x]

4 dx+
α2

4ε3

∫

Ω

µκ

µ′
κ

[(

κ
r4

η
θx

)

x

]2

dx. (37)

Plugging (35), (36) and (37) into (34), we get

1

2

d

dt

∫

Ω

α
r4K2

x

η
dx + α

∫

Ω

κ

[(

κ
r4

η
θx

)

x

]2

dx 6

∫

Ω

µ

η
[(r2v)x]

2 dx

+C

(
∫

Ω

r4K2
x

η
dx

)2

+
1

2
ε3

∫

Ω

κ

[(

κr4

η
θx

)

x

]2

dx

+C

(
∫

Ω

κ2r4

η
θ2

x dx

)(
∫

Ω

µ

η
[(r2v)x]

2 dx

)

−1

4
ε3

∫

Ω

µµ′

η2
[(r2v)x]

4 dx+
α2

4ε3

∫

Ω

µκ

µ′
κ

[(

κ
r4

η
θx

)

x

]2

dx. (38)

Now adding the inequalities (38) and (33), we obtain

1

2

d

dt

∫

Ω

[

α
r4K2

x

η
+
µ

η
[(r2v)x]

2

]

dx+ α

∫

Ω

κ

[(

κ
r4

η
θx

)

x

]2

dx

+

∫

Ω

r4σ2
xdx−

1

2

∫

Ω

µµ′

η2
[(r2v)x]

4 dx

6

∫

Ω

µ

η
[(r2v)x]

2 dx+ C

(
∫

Ω

r4K2
x

η
dx

)2

+
1

2
ε3

∫

Ω

κ

[(

κr4

η
θx

)

x

]2

dx

+C

(
∫

Ω

κ2r4

η
θ2

x dx

)(
∫

Ω

µ

η
[(r2v)x]

2 dx

)

+C

(
∫

Ω

µ

η
[(r2v)x]

2 dx

)2

+ ε1

∫

Ω

r4σ2
x dx

−1

4
(ε2 + ε3)

∫

Ω

µµ′

η2
[(r2v)x]

4 dx− 1

4

∫

Ω

(

µ′

ε2µκ
+ α2 µκ

ε3µ′

)

κ

[(

κ
r4

η
θx

)

x

]2

dx.

(39)
Under the conditions







ε2 + ε3 6 2,
µ′

ε2µκ
+ α2 µκ

ε3µ′
6 2α,

(40)
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the two last contributions are absorbed by the left-hand side. One checks
that for this system to have a solution it is necessary that ε2 = ε3 = 1. The
second inequality then rewrites x + α2

x
6 2α, with x = −µ′/(µκ), and has

the unique solution x = α. Choosing then α = Λ after (7), inequality (39)
implies the following

1

2

d

dt

∫

Ω

[

r4K2
x

η
+
µ

η
[(r2v)x]

2

]

dx 6

∫

Ω

µ

η
[(r2v)x]

2 dx+ C

(
∫

Ω

r4K2
x

η
dx

)2

+C

(
∫

Ω

κ2r4

η
θ2

x dx

)(
∫

Ω

µ

η
[(r2v)x]

2 dx

)

+C

(
∫

Ω

µ

η
[(r2v)x]

2 dx

)2

.

If we define X(t) :=
∫

Ω
r4K2

x

η
dx and Y (t) :=

∫

Ω
µ
η

[(r2v)x]
2 dx, we observe

that, as the functions X, Y and
∫

Ω
ηv2 dx are L1(0, T ) for any T > 0, the

previous inequality is easily rewriten as

d

dt
(X + Y ) 6 f(t)(X + Y ) + g(t),

where f, g ∈ L1(0, T ). Applying Gronwall’s lemma ends the proof �

Lemma 4 Under the previous condition on the data, there exists two positive
constants η and η independent of T such that

0 < η 6 η(x, t) 6 η for (t, x) ∈ QT . (41)

Proof: The second equation (3) rewrites

(log η)tx =
µ′

µ
θx(log η)t +

(

v

r2µ

)

t

+
2

r3µ
v2 +

µ′

r2µ2
vθt. (42)

Using the first equation (3) and (4), there exists for any t ∈ [0, T ] a ξ(t) ∈ Ω
such that

ηt(ξ(t), t) = 0.

Integrating (42) on [x, ξ(t)] × [0, t], we find

∫ t

0

∫ ξ

x

[(log η)s]y dy ds =

∫ t

0

∫ ξ

x

µ′

µ
θy(log η)s dy ds

15



+

∫ t

0

∫ ξ

x

(

v

r2µ

)

s

dy ds+

∫ t

0

∫ ξ

x

2v2

r3µ
dy ds+

∫ t

0

∫ ξ

x

µ′

r2µ2
vθs dy ds.

Then using (7) we get

| log η(x, t)| 6 C + Λ

∫

QT

κ|θx|
|(r2v)x|

η
dx dt.

Applying Cauchy-Schwarz inequality and Lemma 3, we obtain
∣

∣

∣

∣

log
η(x, t)

η0(x)

∣

∣

∣

∣

6 C + C

∫

QT

[

κr4K2
x

η
+
µ

η
[(r2v)x]

2

]

dx dt 6 C �

Lemma 5 Under the previous condition on the data, there exists a positive
constant θ independent of T such that

θ(x, t) 6 θ for (t, x) ∈ QT . (43)

Proof: Multiplying, as in [1], the third equation (3) by nθn−1 for n > 1, we
get

(θn)t =

(

nθn−1κ
r4

η
θx

)

x

− n(n− 1)κ
r4

η
θn−2θ2

x + nθn−1µ

η
[(r2v)x]

2.

Integrating on Ω

d

dt

∫

Ω

θn dx + n(n− 1)

∫

Ω

κ
r4

η
θn−2θ2

x = n

∫

Ω

θn−1µ

η
[(r2v)x]

2.

Then
d

dt

∫

Ω

θn dx 6
n

θ

∫

Ω

θn

∥

∥

∥

∥

µ

η
[(r2v)x]

2

∥

∥

∥

∥

L∞(Ω)

.

Using the inequality
∥

∥

∥

∥

µ

η
[(r2v)x]

2

∥

∥

∥

∥

L∞(Ω)

6 C

∫

Ω

r4σ2
xdx,

after Lemma 3 and Gronwall’s lemma, we get

‖θ‖n
Ln(Ω) 6 ‖θ0‖n

Ln(Ω) exp

(

n

θ

∥

∥

∥

∥

µ

η
[(r2v)x]

2

∥

∥

∥

∥

L∞(0,T ;L2(Ω))

)

.

Finally taking the 1/n-power and passing to the limit n → ∞ ends the
proof �
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Corollary 1 For any T > 0

max
[0,T ]

∫

Ω

[

(r2v)x

]2
dx 6 K, max

[0,T ]

∫

Ω

θ2
x dx 6 K, (44)

and
max

Ω

[

(r2v)x

]2 ∈ L1(0, T ), max
Ω

θ2
x ∈ L1(0, T ). (45)

Proof:

1. Inequalities (44) follow directly from Lemma 3.
2. As (r2v)x = η

µ
σ, after Lemma 4 and 5, one gets

[

(r2v)x

]2
6 Cσ2 6 C

∫

Ω

r4σ2
xdx,

implying the first inequality (45), after Lemma 3.
After Lemma 3

1

2

∫

Ω

r4K2
x

η
dx+

∫

QT

κ

[(

κ
r4

η
θx

)

x

]2

dx dt 6 K,

which implies directly the second inequality(45), by using Lemma 4 and 5 �

Proposition 3 For any T > 0, the following uniform bounds hold

max
[0,T ]

‖vx‖L2(Ω) 6 K, max
[0,T ]

‖θx‖L2(Ω) 6 K, (46)

and the T -dependent bound holds

max
[0,T ]

‖ηx‖L2(Ω) 6 C(T ). (47)

Proof: Bounds (46) follows from Lemma 3.
To prove (47), we observe that the first equation (3) rewrites

(log η)t =
σ

µ
.
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Derivating with respect to x, multiplying by (log η)x and integrating on
Ω, we get

d

dt

(

1

2

∫

Ω

[(log η)x]
2 dx

)

=

∫

Ω

(log η)x

(

σ

µ

)

x

dx = −
∫

Ω

(log η)x
µ′

µ2
θxσ dx+

∫

Ω

(log η)x
σx

µ
dx.

Then using Cauchy-Schwarz inequality together with Lemma 5, we find

d

dt

(

1

2

∫

Ω

[(log η)x]
2 dx

)

6 sup
Ω
σ2

∫

Ω

[(log η)x]
2 dx+ C

∫

Ω

θ2
xdx

+
1

2

∫

Ω

r2σ2
x dx+

1

2

∫

Ω

[(log η)x]
2 dx.

As, after Corollary 1, supΩ σ
2(·, t) ∈ L1(0, T ) for any T > 0, this implies (47)

by applying Gronwall’s lemma �

Proposition 4 For any T > 0, the following uniform bounds hold

max
[0,T ]

‖vt‖L2(Ω) 6 C, max
[0,T ]

‖θt‖L2(Ω) 6 C, (48)

‖(r2v)xt‖L1(0,T ;L2(Ω)) 6 C, ‖θxt‖L1(0,T ;L2(Ω)) 6 C, (49)

and the (non uniform) ones

max
[0,T ]

‖(r2v)xx‖L2(Ω) 6 C(T ), max
[0,T ]

‖θxx‖L2(Ω) 6 C(T ). (50)

Proof:

1. The first equation (3) rewrites

wt = r4

(

µ

η
wx

)

x

+
2w2

r3
,

with w := r2v.
We derivate formally this equation with respect to t (this can be made

rigorous by taking finite difference and passing to the limit (see [1])), multiply
by wt and integrate by parts in x

d

dt

(
∫

Ω

1

2
w2

t dx

)

+

∫

Ω

r4µ

η
w2

xt dx =

∫

Ω

4rwwt

(

µ

η
wx

)

x

dx+

∫

Ω

4rµwtwxt dx
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+

∫

Ω

r4µ
′

η
θtwxt wx dx+

∫

Ω

r4 µ

η2
w2

xwxt dx−
∫

Ω

4rµ′θt wt wx dx+

∫

Ω

4r
µ

η
wtw

2
x dx

+

∫

Ω

4

r3
ww2

t dx−
∫

Ω

6

r6
w3wt dx =:

8
∑

j=1

Dj.

Let us estimate all of these terms.

|D1| 6 C

∫

Ω

|wwtσx| dx 6 C

∫

Ω

w2w2
t dx+

∫

Ω

r4σ2
x dx

6 C max
Ω

v2

∫

Ω

w2
t dx+

∫

Ω

r4σ2
x dx.

|D2| 6 C

∫

Ω

|wtwxt dx 6
ε

3

∫

Ω

r4µ

η
w2

xt dx+ C

∫

Ω

w2
t dx.

|D3| 6 C

∫

Ω

|θtwxtwx| dx 6
ε

3

∫

Ω

r4µ

η
w2

xt dx+ C

∫

Ω

θ2
t dx,

where we used Proposition 3.

|D4| 6 C

∫

Ω

w2
x|wxt| dx 6 Cmax

Ω
w2

x

∫

Ω

|wxt| dx 6 Cmax
Ω

w2
x

(

1 +

∫

Ω

w2
xt dx

)

.

|D5| 6 C

∫

Ω

|wtθtwx| dx 6
C

2

(
∫

Ω

w2
t dx+

∫

Ω

θ2
t dx

)

,

where we used Proposition 3.

|D6| 6 C

∫

Ω

|wt|w2
x dx 6 C max

Ω
w2

x

∫

Ω

|wt| dx 6 C max
Ω

w2
x

(

1 +

∫

Ω

w2
t dx

)

.

|D7| 6 C

∫

Ω

w2
t |w| dx 6 Cmax

Ω
|v0|

∫

Ω

w2
t dx.

|D8| 6 C

∫

Ω

|wtw
3| dx 6 C(max

Ω
|v0|)3

∫

Ω

w2
t dx.

So finally

d

dt

(
∫

Ω

1

2
w2

t dx

)

+

∫

Ω

r4µ

η
w2

xt dx 6 f(t) + g(t)

∫

Ω

(

w2
t + θ2

t

)

dx, (51)

where f, g ∈ L1(0, T ), for any T > 0.
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2. We derivate formally the third equation (3) with respect to t (this can
be made rigorous as previously), and multiply by θt

(

1

2
θ2

t

)

t

= θtqxt + θt

(

µ

η
w2

)

t

.

Integrating by parts in x, we get

d

dt

∫

Ω

1

2
θ2

t dx +

∫

Ω

κ
r4

η
θ2

xt dx−
∫

Ω

µ′

η
θ2

tw
2 dx = −

∫

Ω

r4κ′

η
θxθtθxt dx

−
∫

Ω

4rκ

η
wθxθxt dx+

∫

Ω

r4κ

η2
wxθxθxt dx−

∫

Ω

µ

η2
w2wxθt dx+

∫

Ω

2µ

η
wwtθt dx =:

5
∑

j=1

Ej.

Let us estimate all of these terms.

|E1| 6 C

∫

Ω

|θxθtθxt| dx 6
ε

3

∫

Ω

r4κ

η
θ2

xt dx+ C

∫

Ω

θ2
xθ

2
t dx

6
ε

3

∫

Ω

r4κ

η
θ2

xt dx+ C max
Ω

θ2
x

∫

Ω

θ2
t dx.

|E2| 6 C

∫

Ω

|wθxθxt| dx 6
ε

3

∫

Ω

r4κ

η
θ2

xt dx+ C

∫

Ω

v2θ2
x dx

6
ε

3

∫

Ω

r4κ

η
θ2

xt dx+ C max
Ω

θ2
x.

|E3| 6 C

∫

Ω

|wxθxθxt| dx 6
ε

3

∫

Ω

r4κ

η
θ2

xt dx+ C

∫

Ω

w2
xθ

2
x dx

6
ε

3

∫

Ω

r4κ

η
θ2

xt dx+ C max
Ω

θ2
x max

[0,T ]

∫

Ω

w2
x dx.

|E4| 6 C

∫

Ω

|w2θtwx| dx 6 −ε
∫

Ω

µ′

η
w2θ2

t dx + C

∫

Ω

w2w2
x dx

6 −ε
∫

Ω

µ′

η
w2θ2

t dx + C

∫

Ω

w2 dx,

after Proposition 3.

|E5| 6 C

∫

Ω

|wθtwt| dx 6 C

∫

Ω

(

w2
t + θ2

t

)

dx.
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Finally, collecting all of the previous estimates, we get

d

dt

∫

Ω

1

2
θ2

t dx+

∫

Ω

κ
r4

η
θ2

xt dx+

∫

Ω

µ′

η
θ2

tw
2 dx 6 g(t)

(

1 +

∫

Ω

(

w2
t + θ2

t

)

dx

)

,

(52)
where g ∈ L1(0, T ), for any T > 0.

Summing (51) and (52), we have

d

dt

∫

Ω

1

2

(

w2
t + θ2

t

)

dx +

∫

Ω

(

w2
xt + θ2

xt

)

dx 6 g(t)

(

1 +

∫

Ω

(

w2
t + θ2

t

)

dx

)

,

(53)
which implies estimates (48) by Gronwall’s Lemma. Bounds (49) then fol-
lows.

3. The second equation (3) rewrites

(r2v)xx =
η

r2µ
vt +

µ′

µ
θx(r

2v)x −
1

η
ηx(r

2v)x.

Taking the square and integrating on Ω, we get
∫

Ω

(r2v)2
xx dx 6 C

∫

Ω

(

v2
t + θ2

x[(r
2v)x]

2 + η2
x[(r

2v)x]
2
)

dx.

6 C

∫

Ω

v2
t dx + Cmax

Ω
[(r2v)x]

2

∫

Ω

(

θ2
x + η2

x

)

dx.

So
∫

Ω

(r2v)2
xx dx 6 C

∫

Ω

v2
t dx+ C(T ) max

Ω
[(r2v)x]

2, (54)

after Corollary 1 and Proposition 3. But

|(r2v)x| 6

∫

Ω

|(r2v)xx| dx,

then

[(r2v)x]
2 6 C +

ε

2

∫

Ω

[(r2v)xx]
2 dx.

Plugging into (54) and taking ε > 0 small enough gives the first estimate
(50).

The third equation (3) rewrites

θxx = −ηκ
′

κ
θ2

x +
4η

r3
θx −

µ

κr4
[(r2v)x]

2 +
µ

κr4
θt +

1

η
ηxθx.
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Taking the square and integrating on Ω, we get
∫

Ω

θ2
xx dx 6 C

∫

Ω

(

θ4
x + θ2

x + [(r2v)x]
4 + θ2

t + η2
xθ

2
x

)

dx.

Using the inequality [(r2v)x]
4 6 4

∫

Ω
[(r2v)x]

2 dx ·
∫

Ω
[(r2v)xx]

2 dx, and Corol-
lary 1, together with Proposition 3 and the first bound (50), we can bound
the right-hand side, which provide us with the last estimate (50) �

Proof of Theorem 3
1. From the proof of Lemmal3 we have

|η(x, t) − η(x, t′)| 6 |t− t′|1/2

(
∫ T

0

[(r2v)x]
2 dt

)1/2

6 C|t− t′|1/2

(
∫ T

0

∫

Ω

r4σ2
x dx dt

)1/2

6 C|t− t′|1/2.

After Proposition 3

|η(x, t) − η(x′, t)| 6 C|x− x′|1/2

(

1 +

∫

Ω

η2
x dx

)

6 C|x− x′|1/2,

so we find that η ∈ C1/2,1/4(QT ).
2. From the proof of Lemmal3 we have

|θ(x, t) − θ(x, t′)| 6 |t− t′|1/2

(
∫ T

0

θ2
t dt

)1/2

6 C|t− t′|1/2

(
∫ T

0

∫

Ω

2|θtθxt dx dt

)1/2

6 C|t− t′|1/2.

After Propositions 3 and 4

|η(x, t) − η(x′, t)| 6 C|x−x′|1/2

(

T · max
[0,T ]

∫

Ω

θ2
t dx+

∫ T

0

∫

Ω

θ2
xt dx

)

6 C|x−x′|1/2,

so we find that θ ∈ C1/2,1/4(QT ). As we have also after Propositions 4

|θx(x, t) − θx(x
′, t)| 6 |x− x′|1/2

(
∫

Ω

θ2
xx dt

)1/2

6 |x− x′|1/2,

we deduce as in [21], using an interpolation argument of [22], that θx ∈
C1/3,1/6(QT ).

The same arguments holding verbatim for r2v and (r2v)x, we have that
v, vx ∈ C1/3,1/6(QT ), which ends the proof �
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3 Existence and uniqueness of solutions

To complete the proof of strong solution locally in time we apply the idea of
Dafermos and Hisao [6] together with using the crucial Theorem 3. To get
the existence of weak solution we apply method of [14].

3.1 Proof of existence

Theorem 4 Let the conditions on the data

v0, θ0 ∈ C2+ν(Ω), η0 ∈ C1+ν(Ω) with ν = 1/3,

inf
Ω
η0(x) > 0, inf

Ω
θ0(x) > 0,

and the following extra condition of compatibility

v0|x=0,M = 0,

be satisfied.
The system of equations (1) together with conditions (3)-(7), where r is

defined in (2) then for t̄ ∈ (0,∞), has a solution v, η, θ such that

v, θ ∈ C2+ν,1+ ν
2 (Ω × (0, T ∗)), ρ ∈ C1+ν,1+ ν

2 (Ω × (0, T ∗)).

Proof:

We can rewrite our system (3) by the following way

wt = a1(x, t)wxx + b1wx + c1(x, t)
θt = a2(x, t)θxx + b2(x, t)θx + C2(x, t)
ηt = wx,

(55)

where

w = r2v
a1(x, t) = r4 µ

η

b1(x, t) = r4
(

µ′θx

η
− µηx

η2

)

c1(x, t) = − 2
r3w

2

a2(x, t) = r4 κ
η

b2(x, t) = κ′θx

r

4
η + 4rκ+ r4 κηx

η2

c2(x, t) = µ
η
(wx)

2.

(56)
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From Theorem 3, it follows that

‖ai‖C1/3,1/6 6 N1, ‖ci‖C1/3,1/6 6 N2,
‖bi‖C1/3,1/6 6 N3 +N4‖ηx‖C1/3,1/6 , for i = 1, 2.

(57)

Applying the Schauder estimates to the solutions (55)1,2 gives

‖u‖C2+1/3,1+1/6 6 N5 +N6‖ηx‖C1/3,1/6 ,
‖η‖C2+1/3,1+1/6 6 N7 +N8‖ηx‖C1/3,1/6 .

(58)

Derivating (55)3 with respect to x and integrating over (0, T ∗), T ∗ < 1
with respect to t, we get

‖ηx‖C1/3,1/6 6 N9T
1−1/6
∗

‖wxx‖C1/3,1/6 +N10. (59)

All of the previous estimates give us the following

‖w‖C2+1/3,1+1/6(QT∗) 6 N11,
‖θ‖C2+1/3,1+1/6(QT∗ ) 6 N12,

(60)

where Ni, i = 1, ...12 are constants.
From the previous arguments and a priori estimates, we know that there

exist subsequences (vk, ηk, θk, rk) such that

• vk → v in Lp(0, T ∗, C0(Ω)) strongly and in Lp(0, T ∗, H1(Ω)), weakly
for any 1 < p <∞,

• vk → v a.e. in Ω × (0, T ∗) and in L∞(0, T ∗, L4(Ω)) ∗ weakly,

• (vk)t → vt in L2(0, T ∗, L2(Ω)) weakly,

• θk → θ in L2(0, T ∗, C0(Ω)) strongly and in L2(0, T ∗, H1Ω) weakly,

• θk → θ a.e. in Ω × (0, T ∗) and in L∞(0, T ∗;L2(Ω)) weakly,

• rk → r in C0(Ω × (0, T ∗)),

• r2( µ
ηk

(r2vk)x) converge to A1 in L2(0, T ∗, H1(Ω)) weakly,

• κ(η,θ)r4

η
(θk)x → A2 in L2(0, T ∗, L2(Ω)) weakly,

• µ

η̄
∂x(r

2uk) → A3 in L∞(0, t̄, L2(Ω)) weakly ∗,
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• κ(θ)r4

η
θx converge to A4 in L2(0, T ∗;L2(Ω)) weakly.

After the definition of r(x, t), one has

r(x, t) = r0(x) +

∫ t

0

v(x, t′)dt′ a. e. Ω × (0, T ∗),

then

rk(x, t) − rk(y, t) = (

∫ x

y

ηk(s, t)ds)
1/3

> ε(x− y)
∨

(x, y, t) ∈ Ω × (0, x) × (0, T ∗).

Then from the previous computations we get

r(x, t) − r(y, t) > ε(x− y)
∨

(x, y, t) ∈ Ω × (0, x) × (0, T ∗),

and finally
fkrk → f r in C0(Ω × (0, T ∗)).

Moreover, it implies that

• ηk → η a.e. in Ω×(0, T ∗) and Ls(Ω×(0, T ∗)) strongly for all s ∈ (1,∞),

• A1 = (µ
η
(r2v)x) in L2(0, T ∗;H1(Ω)),

• A2 = κ(η,θ)r4

η
θx in L2(0, T ∗, L2(Ω)),

• A3 =
µ

η̄
(r2v)x in L∞(0, T ∗, L2(Ω)),

• A4 = κr4

η̄
(r2v)x in L∞(0, T ∗, L2(Ω)).

So we can pass to the limit in the weak formulation of (1)2 and (1)3, and we
get a weak solution of (3).

3.2 Proof of uniqueness

Let ηi, vi, θi, i = 1, 2 be two solutions of (3), and let us consider the differ-
ences: η = η1 − η2, θ = θ1 − θ2 and v = v1 − v2.

The following auxiliary result holds
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Proposition 1

|rm
2 − rm

1 | 6 c

∫

Ω

(η2 − η1)dx.

Proof. from the definition of r(x, t), we see that

rm
2 − rm

1 = (r4
2)

m/2 − (r3
1)

m/3

= m
3
rm−3
∗ (r3

2 − r3
1) = m

3
rm−3
∗ 3

∫ x

0
(η2 − η1)ds 6 c

∫ 1

0
(η2 − η1)dx,

where
1 6 rk 6 c, r∗ = r1 + ε(r2 − r1) �

Now, we subtract (3)2 for η2, w2, θ2 from (3)2 for η1, w1, θ1 (w1 = r2
1v1, w2 =

r2
2v2) in order to get

∫

Ω
(w2 − w1)tφ dx = −

{

∫

Ω
{(r4

2 − r4
1)

µ1

η1
w1x + r4

2
η1µ2−µ1η2

η2η1
w1x}φxdx

}

+

−
{

∫

Ω
{r4

2(
µ2

η2
(w2 − w1)x) + 2

r3
2
(w2

2 − w2
1) + 2(

(r3
1−r3

2)

r3
2r3

1
w2

1}φxdx
}

.

(61)
Setting φ = w2 − w1 we obtain

1

2

d

dt

∫

Ω

w2dx +

∫

Ω

r4
2

µ2

η2
(wx)

2 = −
4
∑

i=1

Ii, (62)

where

• I1 =
∫

Ω
{(r4

2 − r4
1)

µ1

η1
w1xwxdx,

• I2 =
∫

Ω
r4
2

η1µ2−µ1η2

η2η1
w1xwxdx,

• I3 =
∫

Ω
2
r3
2
(w2

2 − w2
1)wxdx,

• I4 =
∫

Ω
2(

(r3
1−r3

2)

r3
2r3

1
w2

1wxdx.

Then it follows that

1
2

d
dt

∫

Ω
|w2|dx+

∫

Ω
|r4

2
µ2

η2
(wx)

2|dx 6

6 c
(

‖η‖2(‖(w1)x‖2 + ‖(w1)x‖2 + ‖(w1)xx‖2)‖wx‖2 + (‖(w1)x‖2 + ‖(w2)x‖2)‖w‖2‖wx‖2

)

,

(63)
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where c is a constant.
Now substracting (3)3 for η2, w2, θ2 from (3)3 for η1, w1, θ1 (w1 = r2

1v1, w2 =
r2
2v2) in order to get

∫

Ω
cv(θ2 − θ1)tψdx = −

{

∫

Ω
{κ(θ2)r2

η2
(θ2 − θ1)x + κ(θ2)r2

η1η2
(η1 − η2)(θ1)x}ψxdx+

∫

Ω
{κ(θ2)

η1
(r2 − r1)(θ1)x + (κ(θ2)−κ(θ1))r1

η1
(θ1)x}ψxdx}+

+
∫

Ω
{µ2

η2
((w2 − w1)x(w1 + w2)x + µ2(η1−η2)

η2η1
(w1)

2
x + µ2−µ1

η1
(w1)

2
x}ψdx.

(64)
Setting ψ = θ2 − θ1 we get the following estimate

d
dt

1
2

∫

Ω
|θ|2 + dx

∫

Ω
κ(θ2)r2

η−2
(θ − x)2dx 6

∑6
i=1 |Ji|, (65)

where

• J1 =
∫

Ω
κ(θ2)r2

η1η2
(η1 − η2)(θ1)x}θxdx

• J2 =
∫

Ω
κ(θ2)

η1
(r2 − r1)(θ1)xθxdx

• J3 =
∫

Ω
(κ(θ2)−κ(θ1))r1

η1
(θ1)xθxdx

• J4 =
∫

Ω
µ2

η2
((w2 − w1)x(w1 + w2)xθdx

• J5 =
∫

Ω
µ2(η1−η2)

η2η1
(w1)

2
xθdx

• J6 =
∫

Ω
µ2−µ1

η1
(w1)

2
xθdx

Assuming that µ ∈ C2(R+) then

d
dt

1
2

∫

Ω
|θ|2dx+

∫

Ω
κ(θ2)r2

η−2
(θx)

2dx 6 {d1‖η‖2‖‖(θ1)xx‖2 + d2‖η‖2‖(θ1)x‖2 + d3‖θ‖2‖(θ1)xx‖2}‖θx‖2+

{d4‖wx‖2(‖(w2)x‖2 + ‖(w1)x‖2) + d5‖η‖2‖(w1)xx‖2 + d6‖η‖2‖(w1)xx‖2}‖θ‖2,
(66)

where di, i = 1, ..6 are constants. From continuity equation it follows that

d
dt
‖η‖2

2 6 ‖wx‖2‖η‖2. (67)
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Finally, w2 − w1 = r2(v2 − v1) + (r2
2 − r2

1)v1 and using (55)2 it implies

1
2

d
dt

∫

Ω
|v2|dx+

∫

Ω
|r2

2
µ2

η2
(r2

2vx)
2|dx 6 D‖v2‖2 (68)

Putting together previous estimates it implies the uniqueness of the prob-
lem.

4 Asymptotic behaviour

We partially use the technique developped in [10].

Lemma 6 There exists a positive function Φ ∈ L1(R+) such that

d

dt

∫

Ω

(

1

2
v2 + θ

)2

dx 6 Φ(t). (69)

Proof: Multiplying the second equation (3) by v, adding to the third equa-
tion (3), multiplying the result by the energy 1

2
v2 + θ and integrating on Ω,

we get

1

2

d

dt

∫

Ω

(

1

2
v2 + θ

)2

dx =

∫

Ω

(q + r2vσ)x

(

1

2
v2 + θ

)

dx.

Integrating by parts

1

2

d

dt

∫

Ω

(

1

2
v2 + θ

)2

dx+

∫

Ω

κr4

η
θ2

x dx +

∫

Ω

µ

η
v2[(r2v)x]

2dx

= −
∫

Ω

qvvx dx+ 2

∫

Ω

µ
v3

r
(r2v)x dx−

∫

Ω

σθxr
2v dx =:

3
∑

j=1

Fj.

Let us majorize the right-hand side.
By using Cauchy-Schwarz

|F1| 6 C

∫

Ω

κr4

η
θ2

x dx + C

∫

Ω

v2
x dx

6 C

∫

Ω

κr4

η
θ2

x dx+ C

∫

Ω

µ

η
[(r2v)x]

2dx+ C max
Ω

v2
x,
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and finally

|F1| 6 C

∫

Ω

κr4

η
θ2

x dx+ C

∫

Ω

µ

η
[(r2v)x]

2dx.

|F2| 6 C

∫

Ω

µ

η
[(r2v)x]

2dx+C

∫

Ω

µηv6 dx 6 C

∫

Ω

µ

η
[(r2v)x]

2dx+Cmax
Ω

(r2v)2.

Then

|F2| 6 C

∫

Ω

µ

η
[(r2v)x]

2dx.

Finally

|F3| 6 C

∫

Ω

|vσθx| dx 6 C

∫

Ω

κr4

η
θ2

x dx+ C

∫

Ω

µ

η
[(r2v)x]

2dx.

Applying Lemma 2 to these bounds ends the proof �

Theorem 5 The solution of the problem (3)(4)(5) has the following proper-
ties

1. There exist a constant Kv depending only of the physical data of the
problem and the initial data such that for any t > 0

‖v(·, t)‖L2(Ω) 6 Kve
−λvt, (70)

where λv =
2R4

0µ(θ)

M2η
.

Moreover when t→ ∞

‖v(·, t)‖C(Ω) → 0, (71)

2. When t→ ∞
‖θ(·, t) − θ∞‖C(Ω) → 0, (72)

where θ∞ = 1
M

∫

Ω

(

1
2

(v0)2 + θ0
)

dx.

3. When t→ ∞
‖ηt(·, t)‖L2(Ω) → 0, (73)
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Proof:

1. From Lemma 1, 4 and 5

d

dt

∫

Ω

v2 dx+
2µ(θ)

η

∫

Ω

[(r2v)x]
2dx 6 0.

As |r2v| 6
∫

Ω
|(r2v)x|dx, we get

∫

Ω

[(r2v)x]
2dx >

R4
0

M2

∫

Ω

v2 dx,

so
d

dt

∫

Ω

v2 dx+Kv

∫

Ω

v2 dx 6 0,

which gives (70).
After Lemma 3, we know that

t→ d

dt

∫

Ω

µ

η
[(r2v)x]

2 dx ∈ L1(R+),

which implies that ‖v(·, t)‖H1(Ω) → 0 and then (71).
2. Revisiting the proof of Lemma 6, we get

1

2

d

dt

∫

Ω

(

1

2
v2 + θ − θ∞

)2

dx+

∫

Ω

κr4

η
θ2

x dx +

∫

Ω

µ

η
v2[(r2v)x]

2dx

= −
∫

Ω

qvvx dx+ 2

∫

Ω

µ
v3

r
(r2v)x dx−

∫

Ω

σθxr
2v dx =:

3
∑

j=1

Fj.

First we observe, after (70) and (71), we see that

F (t) :=

∫

Ω

µ

r4η
[(r2v)x]

2dx 6 C

∫

Ω

[v2 + v2
x] dx→ 0,

as t→ ∞.
By using Cauchy-Schwarz

|F1| 6
1

3
ε

∫

Ω

κr4

η
θ2

x dx+ Cε

∫

Ω

v2
x dx.

|F2| 6 F (t) + C

∫

Ω

v6 dx 6 F (t) + Cmax
Ω

v4.
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But as v2 6
∫

Ω
2|vvx| dx 6 C

(∫

Ω
v2

x dx
)1/2

, we have

|F2| 6 F (t) + C

∫

Ω

v2
x dx.

Finally

|F3| 6
1

3
ε

∫

Ω

κr4

η
θ2

x dx+ CεF (t).

Collecting all of these bounds we find

1

2

d

dt

∫

Ω

(

1

2
v2 + θ − θ∞

)2

dx+

∫

Ω

κr4

η
θ2

x dx+

∫

Ω

µ

r4η
[(r2v)x]

2dx 6 G(t),

(74)
where G(t) → 0, as t→ ∞.

Now integrating with respect to y the equality θ(x, t)−θ(y, t) =
∫ x

y
θx dx,

we get

θ(x, t) − θ∞ 6 M

(
∫

Ω

κr4

η
θx dx

)1/2

,

which implies
∫

Ω

(θ − θ∞)2 dx 6
M2η

R4
0κ(θ)

∫

Ω

κr4

η
θx dx.

The left-hand side of (74) rewrites

1

8

d

dt

∫

Ω

v4 dx+
1

2

d

dt

∫

Ω

v2 (θ − θ∞) dx+
1

2

d

dt

∫

Ω

(θ − θ∞)2 dx.

Multiplying the second equation (3) by v3 and integrating by parts, we have

d

dt

∫

Ω

v4 dx = −4

∫

Ω

(r2v3)xσ dx,

which gives
∣

∣

∣

∣

d

dt

∫

Ω

v4 dx

∣

∣

∣

∣

6 4

∫

Ω

r2|v3σx| dx dx 6 C

∫

Ω

(

v2 + |vx| + v2
x

)

dx,

then using (70) and (71), we have
∣

∣

∣

∣

d

dt

∫

Ω

v4 dx

∣

∣

∣

∣

→ 0,
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as t→ ∞.
In the same stroke, multiplying the second equation (3) by vθ and inte-

grating by parts, we have

d

dt

∫

Ω

v2θ dx =

∫

Ω

(

−2vvxq + σv2(r2v)x − 2(r2vθ)xσ
)

dx.

Then
∣

∣

∣

∣

d

dt

∫

Ω

v2θ dx

∣

∣

∣

∣

6
1

3
ε

∫

Ω

κr4

η
θx dx +H(t).

Collecting all of the previous estimates, we get finally

1

2

d

dt

∫

Ω

(θ − θ∞)2 dx+
R4

0κ(θ)

M2η

∫

Ω

(θ − θ∞)2 dx 6 Ψ(t), (75)

where Ψ ∈ L1(R+) and Ψ(t) → 0 as t → ∞. Integrating this differential
inequality, we get

∫

Ω

(θ − θ∞)2 dx 6 e
−

R4
0κ(θ)

M2η
t
∫

Ω

(

θ0 − θ∞
)2
dx+

∫ t

0

e
−

R4
0κ(θ)

M2η
(t−s)

Ψ(s) ds.

As the last integral converges to zero when t → ∞ due to the dominated
convergence theorem, we get that ‖θ(·, t) − θ∞‖L2(Ω) → 0.

After Lemma 3, we know that

t→ d

dt

∫

Ω

r4K2
x

η
dx ∈ L1(R+),

which implies that ‖θ(·, t) − θ∞‖H1(Ω) → 0 and then (72).
3. Clearly (73) follows directly from (71) �

Remark 1 An asymptotic result for the specific volume η would easily follow
from a uniform-in-time bound for the gradient ‖ηx‖L2(Ω). Unfortunately the
result of Proposition 3 is not sufficient for this purpose. This fact seems to
be a consequence of the pressureless model with variable viscosity.

5 The constant coefficient case

In order to check Remark 1, we briefly study the case where µ and κ are
constant (after (7), notice that this case is not strictly included in the previous
study).
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1. One checks first that the energy estimates of Lemma 1 and the point-
wise bounds of Propositions 1 and 2 for v and θ are valid. Lemma 2 also
holds provided that the multiplicator K is replaced by θ.

2. The proof of Lemma 3 is modified as follows.
One checks fist the analogous of (33)

d

dt

∫

Ω

µ

η
[(r2v)x]

2 dx+

∫

Ω

r4σ2
xdx 6

(
∫

Ω

µ

η
[(r2v)x]

2 dx

)2

, (76)

which gives the first bound (25) and (26).
Inequality (38) is replaced by

1

2

d

dt

∫

Ω

r4K2
x

η
dx+

∫

Ω

κ

[(

κ
r4

η
θx

)

x

]2

dx 6

∫

Ω

µ

η
[(r2v)x]

2 dx

+C

(
∫

Ω

r4K2
x

η
dx

)2

+
1

2
ε3

∫

Ω

κ

[(

κr4

η
θx

)

x

]2

dx

+C

(
∫

Ω

κ2r4

η
θ2

x dx

)(
∫

Ω

µ

η
[(r2v)x]

2 dx

)

− 1

2ε3

∫

Ω

µ2

κη2
[(r2v)x]

4 dx+
1

2
ε3

∫

Ω

µκ

µ′
κ

[(

κ
r4

η
θx

)

x

]2

dx. (77)

As [(r2v)x]
4 6 C

∫

Ω
σ2 dx

∫

Ω
r4σ2

x dx, using (76), we get the second bound
(25) for ε3 small enough.

3. Uniform bounds for η and θ (Lemma 4 5) and for (r2v)x and θx (
Corollary 1) are proved as previously and the bound for ηx may be improved
as follows.

As the second equation (3) rewrites µ(log η)xt =
(

v
r2

)

t
+ 2v2

r3 , we have

1

2

d

dt

∫

ω

[

µ(log η)x −
v

r2

]2

dx =

∫

ω

2v2

r3

[

µ(log η)x −
v

r2

]

dx.

So if X(t) :=
∫

ω

[

µ(log η)x − v
r2

]2
dx, we find the differential inequality

d

dt
Y (t) 6 F (t)(1 + Y (t)), (78)

where F ∈ L1(R+), which implies that Y (t) 6 C, and using energy estimate
we have finally the uniform bound

‖ηx‖L2(Ω) 6 C. (79)

This allows us to improve Theorem 5.
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Theorem 6 The solution (v, θ, η) of the problem (3)(4)(5), for µ = Cte and
κ = Cte satisfies (70) (71) (72) and (73). Moreover, when t→ ∞

‖η(·, t) − η∞‖C(Ω) → 0, (80)

where η∞ = 1
M

∫

Ω
η0 dx.

Proof: Only the last item has to be checked. After (78) and (79) we have

∫

∞

0

∣

∣

∣

∣

d

dt

∫

Ω

[(log η)x]
2 dx

∣

∣

∣

∣

dt 6 C,

implying
∫

Ω

η2
xdx→ 0 when t→ ∞. (81)

Now one observes that there exits a ξ(t) ∈ Ω such that η(ξ(t), t) =
1
M

∫

Ω
η0(x) dx ≡ η∞. Then one gets

η(x, t) − η(ξ(t), t) =

∫ x

ξ

ηy dy,

and so

|η(x, t) − η∞| 6 C

(
∫

Ω

η2
x dx

)1/2

,

which gives (80) after (81) �
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