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A Weak Solvability of the Navier—Stokes
Equation with Navier’'s Boundary Condition
around a Ball Striking the Wall

Jifi Neustupa and Patrick Penel

Abstract We assume tha' is a closed ball iR := {(xy,%,,X;) € R%; x3 > 0},
striking the wall (= thex;, x,—plane) at time. € (0, T). The speed of the ball at the
instant of the collision need not be zero. Although a weak solution to the Navier—
Stokes equation with Dirichlet's no—slip boundary conditio{®® ~. B') x (0,T)

does not exist if the speed of the stroke is non—zero, we prove that such a solution
may exist if Dirichlet's boundary condition is replaced by Navier’s slip boundary
condition.

1 Motivation, introduction and notation

The existence of a weak solution to the Navier—Stokes equation in a fixed domain
Q < R3on a given time interval0, T) belongs to fundamental results of the qual-
itative theory of the Navier—Stokes equation. (See e.g. J. Leray 1934 [17], E. Hopf
1952 [15], O. A. Ladyzhenskaya 1969 [16], J. L. Lions 1969 [18], R. Temam 1977
[26] or G. P. Galdi 2000 [10].)

Of all results on the existence of the weak solution in domains with given moving
boundaries, we cite the papers by H. Fujita and N. Sauer 1970 [7] (the boundary of a
variable domai! consists of a finite number of moving simple closed surfaces of
the clas<C3, the distance of any two of these surfaces is never lesshard) and
J. Neustupa 2007 [191X* has an arbitrary shape and smoothness, the assumptions
on Q' involve simulation of collisions of bodies moving in a fluid).
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There exists a series of other works dealing with flows in time varying domains
that concern the motion of one or more bodies in a fluid. The fluid and the bodies are
studied as an interconnected system so that the position of the bodies in the fluid is
not apriori known. The weak solvability of such a problem, provided the bodies do
not touch each other or they do not strike the boundary, was proved by B. Desjardins
and M. J. Esteban 1999 [3], 2000 [4], K. H. Hoffmann V. N. Starovoitov 1999 [13]
(the 2D case), C. Conca, J. San Marand M. Tucsnak 2000 [2] and M. D. Gun-
zburger, H. C. Lee, G. Seregin 2000 [12]. The analogous result, without the assump-
tion on the lack of collisions, was proved by J. San MarV. N. Starovoitov and
M. Tucsnak 2002 [20] (the 2D case), K. H. Hoffmann, V. N. Starovoitov 2000 [14]
(the motion of a “small” ball in a fluid filling a “large ball”) and E. Feireisl 2003
[6] (in a 3D bounded domain, the author uses the contact condition that once two
bodies touch one another, they remain stuck together forever).

All the mentioned authors consider the homogeneous Dirichlet boundary condi-
tion for velocity on the boundary @'. The motion of the so called “self—propelled
bodies” (which produce certain velocity profile on their surface), together with the
motion of the fluid around them, was studied except others by G. P. Galdi, see the
survey paper [11].

None of the mentioned papers provides the existence of a weak solution to the
Navier—Stokes equation at the geometrical configuration when the fluid fills a do-
main Q' around a solid ball striking a wall with a finite non—zero speed. Moreover,
it follows from results of V. N. Starovoitov 2003 [21] that the weak solution with
the no—slip Dirichlet boundary condition in such a situation cannot exist. Paper [19],
where the no—slip boundary condition is also considered, provides the weak solution
only if the ball strikes the wall with the speed that tends to zero as time approaches
the instant of the collision. (With a non—zero speed, the body must have another
shape than the ball, see [19].)

This state motivated us to study the Navier—Stokes equation in the described
domainQ! with boundary conditions that enable the fluid to slip on the boundary.
We assume that the motion of the ball is given. We use Navier’'s boundary condition
and we prove the global in time existence of a weak solution under the restriction
that the speed of the ball is “sufficiently small” at times close to the instant of the
collision — see Theorem 1. The considered case of a ball moving in a fluid and
striking perpendicularly the wall represents a sample example. We actually prepare
a generalization concerning flow around moving bodies of various shapes which
may collide one with another. Nevertheless, the basic techniques is developed in the
present paper. It is based on the construction of Rothe approximations.

A series of steps require a different approach than in the case of homogeneous
Dirichlet’s boundary condition. For instance, Sobolev’s imbedding inequalities can-
not be used in a standard fashion because the constants in these inequalities now de-
pend on time. Other difficulties appear in the part where we treat the limit transition
in the nonlinear term and we therefore need an information on a strong convergence
of a sequence of approximations in an appropriate norm. (The argument based on
the Lions—Aubin lemma cannot be used in a usual way — see Section 6.)
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The time—variable domainQ!. We suppose thdD, T) is a bounded time interval
andt; € (0,T). We denote byR3 the half-spacéx = (x;,X,, X3) € R3; x5 > 0}, by
R¥ the closure o3 and bydR3 the boundary oR3 (= thex,, x,—plane).

Further, we denote b' the closed ball ifR23 with radiusR and centelS =
(0,0, 8" +R). We suppose tha' (the distance of the baB' from dR3) is a con-
tinuous function of fort € [0,T] such thad' = 0 and

(i) &'is decreasing of0,t;] and increasing oftc, T],

(i) 3 (the derivative oB') is bounded on the interval, t.) and(tc, T},
(i) 8! (the second derivative &) is integrable or{0, T).

We putQ! :=R3 \ B'. The boundary o' is denoted by !. Q' represents the
space filled by the fluid anB' represents a solid ball which moves in the fluid and
strikes the fixed WaI:BR?; attimet = t.. We assume, for simplicity, that bt does

not rotate and all its particles have only the translational velocity. Thus, the velocity
of the “material points” on the boundaFy of Q! is

Vi) {(0,0,St) fort #tc andx € 9 B!,

0 fort #tc andx € 9R3.

Notation of norms and function spaces.

e (.,.)pqt is the scalar product arifl ||,.,« is the norm inL*(Q") or in L(Q")*
or in L#(Q")?, respectively. The meaning 6f, .),.-« and| . ||,.-« is analogous.

* |-llgor is the norminL9(Q") orinLY(Q")* or in LY(Q")?, respectively.

e CZ(QY) is the space of infinitely differentiable divergence—free vector—functions
inQ" with a compact support i and zero normal component &n.

e W12(Q') is the closure o€3 (Q') in W12(Qt)3.

o C5,(Q') is a subspace @3 (Q'), containing functions with a compact support
in Q.

o L3(Q")is the closure o€F, (Q") in LYQ")3 (for 1 < q < +o).

If t € (0,T)~ {tc} thenW:2(Q!) — LIQ")3 for 2 < q < 6. Using the charac-

terization ofL3 (Q") (see [8, p. 111]), we can verify thaf2-2(Q") — LI (QY).

The initial-boundary value problem. PutQ ) = {(xt); 0<t<T, xeQ'}

andr o == {(xt); 0<t<T,xel'}.
Our aim is to prove the existence of a weak solution of the problem

Ov+Vv-Ov+0Op = VAV +T in Q(O’U, Q)
divv =0 in Q(O,T)’ (2)
v-n=V'n inTor, 3)
[Ty(v) Nl +K(v—=V') =0 inTor, (4)

V=V, in Q°x {0}. (5)
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The equations (1), (2) describe the motion of a viscous incompressible fluid in do-
main Qt. The symbolsy, p, v, f, n and T,4(v) successively denote the velocity of
the fluid, the pressure, the kinematic coefficient of viscosity, the specific external
body force, the outer normal vector on the boundar@bfand the dynamic stress
tensor associated with the flow The density of the fluid is supposed to be one.
The subscript denotes the tangential componentto Since the considered fluid

is Newtonian, the dynamic stress tensor has the fiijta) = 2v (Ov)s where(Ov)s

is the symmetrized gradient of Condition (3) expresses the impermeabilityrdf
Condition (4) is due to H. Navier, who proposed in 1824 that the tangential compo-
nent of the stress acting on the boundary should be proportional to the velocity of
the fluid (relative with respect to the material boundary). We suppose (in accordance
with physical arguments) th&t > 0.

Introduction of function a'. In order to transform the inhomogeneous boundary
condition (3) to the homogeneous one, we look for the solwiigmthe formv =
al +u wherea! is considered to be a known function satisfying the condition

a-n=Vvt.n ae inr o 1) (6)

andu is a new unknown function. The construction of an appropriate funetiés
presented in Section 2. We shall see that functlaran be defined a.e. &3 x [0, T]

so that it is divergence—free and, in addition to the condition (6), it also satisfies the
series of estimates

|08 3.0 < o @)2In(14 5). ™
(0@, 9)p0i] < (8Y2]100] 500 +¢518' 0]l 5.0 (8)
(@ 0d, 0),0] < 68920050 9)
I < S (10
[(0-0a, 9) 0] < G618 [|00]I3.0x, (11)
K|(@ =V, @)y < 4V 10¢]13.0t +¢; (12)

fort #t, all € WH2(Q"), with constantg,—c, which are independent gf andt.
Obviously, the right hand side of (7) is integrable @T) with any powera > 0
and the right hand side of (10) is integrable(@T ) with any power € [1,10).

Using the continuous imbedding(Q') — W2(Q'), we can also derive the
estimate

(0D 0) 0| < 108 e 012, 0132,

< cgalt) [l3.0t + 15V 0050 (13)
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wherea(t) := [|0a'| .o + [|08'[|3.:- Inequality (13) holds at times# t; when
domainQ! has the cone property aWd2(Q")? is therefore continuously imbedded
into L8(Q")3, Constantg depends ow and it also generally depends bthrough
the cone parameters appearing in the definition of the cone propefd/},dee
e.g. [1, p. 103]. However, if we use (13) only at tintesuch thaft —tc| > K, then
Cg, although dependent agy, can be considered to be independertt. dthe value
of Kk, will be fixed by condition (iv) in Theorem 1.
We shall also see in Section 2 that the initial-value problem

%X(t; tyXo) = A (X(titg, X)),  X(tyi tg:Xo) =X (14)
has a unique solutioX (t; t,,X,), defined for a.aty € (0,T), allt € [0,T] and all

X € R3. The mappingc, — X(t; ty,X,) is a 1-1 transformation d@' . ¢ onto

Qb ¢t (wherefo and/! are certain sets of measure zero), whose Jacobian equals
one due to the incompressibility of the fla\. This mapping can be used in order

to transform volume integrals dd' to volume integrals o®".

2 A formal study of the initial-boundary value problem (1)—(5)
and the main theorem

A formal derivation of the weak formulation. The weak formulation of the prob-
lem (1)—(5) can be formally derived from the classical formulation if we multiply
equation (1) by an appropriate test functipnintegrate |nQ 0T and use all the
conditions (2)—(5). Thus, assume th@ats an infinitely differentiable divergence—
free vector—function irR3 x [0, T] that has a compact supportRe x [0,T) and
satisfies the conditiop-n =0 on I'(O"U. Assume thav is a “sufficiently smooth”
solution of (1)—(5) of the fornv = a' + u wherea' has all the properties named
in the last paragraph of Section 1 and: L2 (Q!) for a.a.t € (0,T). The product
{8,v+ (vt-O)v} - @ equals the sum dfd,v+ (a - O)v} - @ andu - Ov - @. The integral

of the first term can be treated as follows:

/ / {opv(x,t) +a'(x) - Ov(x,t) )} @(x,t) dxdt+/ Vo(Xo) - @(Xg, 0) 0,
_/ /QO at VX (60.xg), t) - @(X(t; 0,%p),t) dXOdt_’_/()OVO(XO)'(p(XOvO) dx,
_/0 /Qt{at(P(X,t)—&-at(x).D(p(x7t)} -v(x,t) dxdt. (15)

The integral ou- Ov- @ in Q! can be transformed to the negative integrai dflg - v
by means of the integration by parts. Further, we have

/thv-(pdx: / vAal (pdx+/ (pdS /vDu O dx
JQ .
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= /v v [2n-(Ou)s—n-0Oul - (pdS+/ [vAa'-@—vOu: O] dx
.
= —2v(Oa)g- (pdS+/ [vAa'-@—2v (Ou)s: Og] dx

- —/ K( v—v‘).cpdS—/ 2y (Ov)s : O dx. (16)

rt ot
We have used the identities

/ n~2v(Dv)s-(pdS:/ N-Ty(v)]:-@dS = —/ K(v—VY)-@dS

rt rt rt
/n-Du-(pdS:/ (Ou)" : O dx,
rt ot
/vAa‘-(pdx:/ 2vn-(Dat)S-(pdS—/ 2v (0a")s : Do dx,
Qt rt foll

the first of whose follows from (4). The integral G- @ on Q' equals zero because
the subspace of gradients of scalar functions is orthogonig t@!) in L?(Q")3.
Thus, using (15) and (16), we obtain the integral identity

T T
/ /t{fv‘at(pfv~D(p~v+2v(Dv)s:D(p}dxdt+/ /lK(vat)mpdet
o Ja o Jr

;
:/ / f-(pdxdt+/ Vo 9(.,0) dx
0 ot Qo

Replacingv by the suma! + u, we arrive at the definition:

Definition (the weak solution of (1)—(5)).Suppose thati, € L3(Q°) andf €
L2(0,T; L2(Q")3). The functionv = a +u is called aweak solutiorof the prob-
lem (1)=(5) ifu € L2(0, T; W2(QY)) NL®(0, T; L2 (Q")) satisfies

/OT/QI{—(a“rU)~0t<P—(a‘+u)-D<p-(at+u)+2v[ (@ +u)]s: Op} dxdt

T T
+/ K (a' +u—V')- @ dSdt :/ / f-q)dxdt+/ [&%+ug) - (., 0)dx
0 Jrt 0 Jat Qo a7

for all divergence—free vector—functiogse Ci (R3 x [0, T)), that satisfy the con-
dition@-n=00n F(O’T).

The readers can verify that this definition enables us the “backward calculation”,
i.e. to show that if the weak solutionis “sufficiently smooth” and all other input
data are also “sufficiently smooth” then there exists a pregss@ethat the paiv,
pis a classical solution of (1)—(5).

We shall refer to the problem defined above as to the weak problem (17).

A formal derivation of the energy inequality. The energy inequality is a funda-
mental apriori estimate of a solution of the problem (1)—(5). An analogous estimate
can be rigorously derived for appropriate approximations of the solution. However,
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in order to abstract from technical details connected with the approximations and

to explain how we use the boundary conditions and apply estimates (7)—(13), we
include the formal derivation of the energy inequality already in this section.

Lemma 1. Suppose that
(iv) there existx, > 0 so thatcg 134 < 3V for te—Kg <t <tc+Kq.

(Recall that g is the constant from inequality (1.11).) Then there exist non-negative
integrable functionso and G on(0, T) such that if(v, p) = (a' +u, p) is a smooth
solution of the initial-boundary value problem (1)—(5) and (0, T) then

t t
UGB+ [ 100, 9[B gsts+2K [ ul..9)3rsds
t
< gl + [ @(9)u(.,9)[3 gsds+ G (1)

Proof. Assume that # t., multiply equation (1) (wherg = a + u) by u and inte-
grate inQ!. We obtain

/Qt{[at(atJru)Jrat-D(a‘+u)]-u+u-Da‘-u—vAv-u} dx = /Qtf-udx. (19)

Now we estimate or rewrite the terms in (19):
e Following (16), we have

—v/ Av-udx = K/ \u|2dS+K/ (at—Vt)-udSJrv/ n-Ou-udS
Qt rt rt rt
+ v/ |Du|2dx+2v/ (Dah)s : Ou dx.

Qt Qt

e Using the identityd(u-n)-u = 0 (valid a.e. on!) and the negative semi—
definiteness of the tensain a.e. onlt (following from the special geometry
of QY), we observe thaf-.n-Ou-u dS> 0. Therefore, using (12), we get

: , ,
'/rtn-Du~udS+K./rt(at—Vt)-udS > —&v||Ouf5.qt ¢,
—v/QtAv-udx > K||uH§;rt+}—gv/Qt\Du|2dx—16v/Qt|Dat|2dx—c7. (20)

e Due to (8) and (9), we obtain (witty = [8(c3+c2)/v] - esssupd')?)

‘/Q‘[atatjtat-ﬂat]-udx < c5 |0 [Jull.q + 35 [8Y] + &V [|DulZ. ot + Co.

e Using the transformatior — y = X(t + h; t,x) of Q' ~ /! onto QN /4N, we
can rewrite the next integral as follows:
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/Qt [iu+a'-Oul-udx = { Qtd(:);\U(X(S;t,x),swdx]s:t
— rlLo 2_1h {/Ql <|u(X(t+h;t,x),t+h)|2— |u(X(t;t,x),t)|2) dx}

T 24, 2 _d1 2
= Jim & {/Qt+h|u(y7t+h)| dy /Qt\u(xﬂ)\ dx} - 4 2/Qt\u| ox.

e Now, due to the inequalities (11) and (13) and denotingpshe characteristic
function of the intervaltc — K, tc +K,), we can estimate

/ u-0a - udx
ot

e Finally, by means of condition (iv) of the smallness \Sﬂ on the interval
(tc — Ko, tc + Kq), the termcgx,y(t) [0 ||DuH§;Qt can also be absorbed by
eV [|0ull3.o1 (see (20)).

¢ Substituting now all previous estimates or identities to (19), using inequality (7)
and denotingn(t) = 2c,|8'| + 2cga(t) + 1, we obtain

: 2 2 2
< CgXo(t) 18] [ Oul[3.qt + 1_16\’ [Bul|2.qt +cgalt) [|ull.qt -

d 2 2 2 2 2
gt [ull2.qt +V [[Oul|2.qt + 2K [[u][3.rt < [[fl|2:qt + (1) [[ul|2:qt
R

+ 38!+ 16¢, (82 In(1+ g) +e,tcy

To complete the proof, we integrate this inequality on the time intef;4). O
Our main theorem, whose proof is given in Sections 4-6, reads:

Theorem 1. Suppose that functiodt satisfies conditions (i)—(iii) and also the con-
dition of smallness (iv). Then the weak problem (17) has a solution.

3 Construction of the auxiliary function a' and its properties

The purpose of this section is to define a divergence—free funa‘tiin‘rﬂRi x [0,T]
which has the properties named and used in Section 1: identity (6), essentially
al-n=(0,0,8")-nin aB! fort #t, and inequalities (7)—(13).

Except for the Cartesian coordinates x,, X5, we shall also use the cylindrical
coordinates, ¢ andx,. Thus,r? = x¢ 4+ x3. The lower half of the surface d
coincides with the graph of the function

x; = d(r) == 3'+R—y/RE—12%  0<r<R

Domains Q'(ry), Qe and Q.. Let us fixry := 3R The crucial sub—domain of
Qt, where the collision occurs, is (see Fig. 1)
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Ql(ry) = {x=(rd,x) €Qr<ry, x3<d(r)}. (21)

We also denote b, the set of pointx = (r,¢, %) € R? such that either > %R
orx; > max{8% &7 }. The complementary s, is defined aR3 \ Q.

X3
Qext
Flg 1: Qt R_\/m
X = (1)
X17X2
An auxiliary function b t. Suppose thate (0,T) \ {t.}. We define
t _ nt pt pty . X3 <t
B - (BF7B¢7BS) T (07 zgt(r)v 0)6,
R SR SR S t_ (T _X3r6,gt(r) X3\ xt
bt = (bt,bl,b) = curl B _( O T gt(r))es (22)

in the cylinderr < ry, 0 < X3 < 8'+R. The derivative ofg'(r) with respect tor

is arg'(r) = r/vR2—r2. The functionb' is divergence—free and it satisfies the
conditions of impermeabilityp! - n = —b}, = 0 for x; = 0, and forx; = ¢'(r),

B r royg(r) o (—0rg'(r),0,1) -
bf-n = (729t(r)’ T2gi(r) 1)6I.W = (0.0,89n

Thus,b'-n = V!-n on the lower and upper parts of the boundar{dfr).
Two auxiliary cut—off functions. We shall use two cut—off functionsn, is an
infinitely differentiable cut—off function of one variable such that
for s<R,
Ny(s) =40 for ZR<s,
€[0,1] for R<s<3R
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andn} is an infinitely differentiable cut—off function iR 3 whose supportis a subset

of {x=(r,¢,%3); r <ry, X3 <3'+R} andni(x) = 1f0rr < iRand 0< X3 < g'(r).
Let e, denote the unit vector in the direction ¢f. Then curl [zréteq,]

(0,0,8"). Furthermoregurl [n; (|x—S) 3rd'ey ] coincides with(0,0,5!) in B' and

it equals zero ifx — S| > 2IR.

Definition of function a'. We put

a(x) == curl [nb(x)B'()+ [1-n3]ny(x— S| 3rd'ey | (23)

Then, in the important regions,

b(x) for x e QY(ry) with ry == 1R= 2r,
d(x) = { (0,0,8") for xe Bl :={xeR3; x-S <R x> R+3'},
0 for x € Qey-

Obviously,a' is divergence—free and satisfies the identity (6). It can be proved
all the estimates (7)—(13) named in Section 1: Saide smooth outside the critical
regionQ'(r,), where the collision of the baB' with the x,, x,—plane occurs, and
a' = 0in Qg,, We can focus only on the behaviorafin Q'(r,), wherea' = b'.

Using the explicit form ob!, given by (22), one can show thatindeed satisfies
the same estimates as (7)—(13). We only have to consider the norms or scalar prod-
ucts inQ'(r,) instead of' on the left hand sides of (7)—(11). Similarby, satisfies
an estimate analogous to (12) withnaQ'(r,) instead of"*.

We verify only two of the estimates in the rest of this section.

An estimate of | (¢ - Ob", ®),. atr | with @ € W22(Qt). We consider this estimate

to be crucial, because although domali(r r,) is time—dependent, it provides an
estimate with constai@ independent of.

Let us begin with the integral ofd;bl) @?, where we can easily check that
0B | = }ar(rét/Zg ))| < CI8Y/dH(r). We put@i(r.x;) == & @ (1.0, X3) do.
Since the flowp is incompressible and it also satisfies the condition of imperme-
ability -n = 0onlt, we have

g . g(r ran
/ (p(dxgz/ (p(d¢dx3:/ (p-ndS:/ divodx = 0 (24)
0 0 0 aQt(r) Q'(r)

(where O< r <r;). This implies that to eache (0,r;) there existx,(r) between

0 andg(r) such thaip (r, X3(r)) = 0. Using also the inequality? < 2Rd(r) and
applying Poinca’s inequality (see e.g. [5, R. Dautray and J. L. Lions, p. 127]) to
the integral/Z™ @2d¢, we obtain

t

< C|5t|/1 rar / " dxg(/ozn(prqu))

‘/ (3:bt) g2 dx




A Weak Solvability of the Navier—Stokes Equation around a Ball Striking the Wall

d (r 21 1 2n 2
Cm/” r/ dx3<4T[/0 (6¢(pf)2d¢+—{o <prd¢} )
1 rdr tr 1 rdr t ~
C| t\/ / x3/0 (05 @ )2d0 +C|6t|/ / ||y
r r3dr 2m ]
<o [ 1o / o [ 5 (000 (1, %)]dd
d I ?
+Cl3 t|/lr r/ [/3 0y<pr(r,y)dy] s
X3(r)
. 1 gt(r) 2n 1
gc\ét\/ rdr/ dx3/0 2 [a¢(p((r,¢,xs)}2d¢

r) . .
+C|5t|/ rdr/ 10, (1, x5) [P < C|6t|/t( )mmzdx.
Ql(ry

t

The generic constar@ is always independent of The integrals ofd;b%) ¢2 and
(0rb%) @ @, can be treated similarly. (Here we can use the identity,¢,0) = )
Thus, we finally estimate the modulus(af - Ob', @) ,. ot byC|6t| 10]13. ot(r

An estimate of the surface integral of(b' — V') - @. We estimate the product
(b' — V') - @ on the “lower part'T§(ry) := {x = (,d,%3) €4 r <ry, x3=0}
and on the “upper partf" (r;) :={x=(r,¢,x;) T4 r <ry, x3=g(r)} of [N
0Q'(r;). Using the explicit forms ob' — V' on[{(r;) andl}(r;) and the identity
@, = 0,g'(r) ¢ onl}}(r;) (following from the conditionp - n = 0), we get

/m BV, cpdS+/ Vt)~(pdS‘

-2 /rl/Z" gt (r,,0)+ gr(z) (1+ [0rg'(1)] ) (r’¢’gt(r))} dod

%t/o l[i (r,0)+£ (1+ [argt(r)}2> (ﬁ(ngt(r))} ar

95 (r,0) do) dr

/orl E0) (1+ [argt(r)]Z) ((/Xg:(;)
)

rnoodr . )
[ [ s reie)) ol

The generic constant agah does not depend oh Choosing sufficiently small
€ > 0, we obtain an inequality that further enables us to arrive at (12).

The initial-value problem (14). Suppose that, € [0, T] andx, € Q' \ %o (where
I'o is the open line segment D% with the end point$0,0,0) and(0,0,3%)). Then

<
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the initial-value problem (14) has a unique soluti(t; t,, x,) defined fort € [0, T]
by the CaratBodory theorem. The trajectory of the solution stayn. ¢t (where
¢t is defined by analogy witlflo) due to the conditiora! - n = V! - n satisfied by
functiona' onl"'. The mapping, — X(t; ty,X,) is a 1-1 regular mapping €' \
o ontoQ' \ ¢, whose Jacobian equals one. Note thag i€ Q. thenX (t; ty,X,) =
X, independently of andt, becausel (x,,t) =0forall 0<t<T.

4 The time discretized boundary value problems

The time—discretization. Letnc Nandk € {0; 1;...;n}. We puth:=T/n, t =
kh, Q, :=Q% and I_:=T . We can assume without loss of generality that the
critical timet. of the collision differs from all the time instants

The stationary boundary value problems. We putU, := u,. We successively
solve, fork = 1,...,n, a sequence of these stationary boundary value problems:
givenU, , € L2(Q, ,) andf, € L%(Q,)3, we look forU,, R, such that

U, (X) = U, 4 (X(t_15t, X)) +hU,(x) - { [0al, (X) + OU, (X) } +hOP(x)

= vh{Div [0a],(x) + AU, (X) } + A (X) + hf,(X) inQ,, (25)
divU,(x) =0 inQ,, (26)
Uo-n=20 inT,, 27)
[(Tg)y-n], +K(a+U—V,) =0 in T, (28)

The meaning of the functions,, [Oal,, f,, a,, V|, and(Ty), is explained below:

A(X) 1= —alk(x) + a1 (X(t,_1;t.X)) = —/ttk %at(x(t;tk,x)) dt,
1 /% 1 k_tk
[0a], () := b Oa(x)dt,  f(x) := 5 f(x,t) dt

b1 b1
for x € Q, and (Ty), := 2v{[0a], 4+ OU, }, onT,. Denoting bye, the unit vector
(0,0,1), we define foix € I Sandt, se [0, T] (such thas < t)

{x+(6t—63)% if x€0B?,

Y(t; s,x) = .
X if x € thex;,x,—plane

(29)

The mappingx — Y (t; s,x) represents the shift of the “material point’on the
boundary of the flow field in the time intervig t]. Now we denote fok € I',

1 /% Ty
a (x) = b V(Y (t; 1, X)) dt.

e 1

a(Y(tit,x)dt,  V(x) = %

e 1
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Note that the terna! - Ou, which appears in equation (1) if we writén the form
v = a' 4 u, is now related to the difference at the beginning of (25):

t

U, (X) = U1 (X(t_13tX)) = /tk OU, (X (t; £, x)) -a (X(t; t,x)) dt.
k-1

The weak formulation of the BV problem (25)—(28). We can get rid of pressure

P, in the classical formulation (25)—(28) if we formally multiply equation (25) by a

test functiond, from Wc}vz(Qk). Furthermore, we integrate by parts in the “viscous

term” and we use the boundary conditions (27) and (28) in the same way as the

conditions (3) and (4) were used in (16). Thus, we arrive at the weak formulation:

we look forU, € W12(Q,) such that

/Q LU (%) = Uy 5 (X (b1t X)) + U (%) - {[0al () + OU(x)} } - D (x)

+ 2vh{Da X) + OU (%) }¢ - OB (x) dx

T / KN [a (%) + Uy(X) — V, ()] - By(x) dS

= [, Pl @y x - /Q A0 (30)

for all ®, € W}2(Q,). The solvability of this nonlinear elliptic problem can be
proved by standard methods, particularly of theory of the steady Navier—Stokes
equation. We refer e.g. to the book [9] by G. P. Galdi for the corresponding tech-
nigques. The coerciveness of an associated quadratic form follows from the next es-
timates.

Apriori estimates of solutions of the BV problem (30). Using ®, = U, in (30),
we obtain:

1 1 2
é||uk||§;Qk+§/ U (%) = Up_y (X (33 t))] dx+vh/ (OU)s : OU, dx
Qk Qk

1
+/Khu2dsgfu Z +‘h/f~de+
s Uyl 2” w1ll2io, o, K Tk

A, -U, dx
/Qkkk

vh [ ([0a]),: 0V, dx

+h/U-Da U, x| +
n, v loa,-, A

+‘/FKK(aka)'deS‘-

The integral of(OU,)s : OU, can be estimated from below t}}/HDUkH%;Qk by

means of the integration by parts, the idenfityn- U, ) - U, = 0 (valid on[,) and

the negative semi—definitenessiaf onT, . The integrals on the right hand side can

be treated by analogy with the procedure explained in Section 1, which now leads
us to a discrete variant of the energy inequality (18):
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2 j 2 j 2
1V o, + 3 /Q V) = U (Xt o) ek vh 5 10U, B,
—1v %k =1

i i i
+2Kh Y [UylZr, < 1Yolza,+ Y axllUdlZa, + Y o (31)
k=1 k=1 k=1

for j =1,...,n, wherew,, g, are certain positive numbers, depending on the same
quantities as function® andG in (18), and satisfying the estimatég;_; w, < ¢;;
and 33,9, <c;, (with appropriate constants, andc,, independent ofi).

5 The non-stationary approximations, their estimates and weak
convergence

We define fot, _, <t <t, (wherek=1,...,n)

Pt) i {Uk(x) if xeQ,,

du,(x) if xeQ,,
P oy = | X
0 if xeRY\Q,,

0 if xeR3\Q,,
ul(x,t) == u"(Y(t;t,x),t) = U (Y(t:t.x)) if xer®t.
Estimates of the sequence$u"}, {U"} and {u?}. Inequality (31) implies that

there existc;5(h) > 0 andc,,(h) > 0 such that botlc,5(h) andc,,(h) tend to zero
ash — 0+ and

t t
(=] IO +v [ 1079 B ds+2K [l 9)3rsds
t
< gl go+ [ An(9) 1691z ds Crp+Cra(h) (32)

whereAy(s) := w, fort,_; <s<t,. Applying Gronwall's lemma, we deduce that
there exists,5 > 0 (depending ory;, ¢;, and||ug||,.0) such that for aln € N so

large thatc,5(h) < % and for allt € (0, T), we have
Hun('vt)Hz;Ri < C15' (33)

Using this estimate in (32), we observe that there exjsandc,, independent of
and such that

T T
LR ds < o [ SBrsds < 6 (34)

Inequalities (33) and (34) conversely yield:
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Ullz,q, €5 (k=1,...,n) and h > 10U 120, < Ci- (35)
k=1

Weak convergence of selected subsequencdsstimates (33) and (34) imply that
there exist subsequences{af}, {U"} and{u} (we shall denote them again by
{u"}, {U"} and {ul} in order not to complicate the notation) and functians
L®(0,T; L2(R2)3), U € L%(0,T; L%(R2)®) andu, € L2(r(0_T))3 such that

u"—u weakly— in L*(0,T; L%(R3)3) forn— +w,  (36)
"—U weakly inL?(0,T; L%(R3)?) forn— 4o,  (37)
ul — u, weakly inL?(" o r))° for n — 4o (38)

with the following relations betweem, U andu,:

Lemma 2. a) U = {u in the sense of distributions in<QT),
b) u € L?(0, T-WlZ(Qt))

C) U, =uon I' (hereu denotes the trace of functmujQ on I'(OT)).
o1 .,

The proof can be made by standard techniques.

6 The limit function u: a solution of the weak problem (17)

Suppose thap is a fixed infinitely differentiable divergence—free vector—function in
R3 x [0, T] with a compact support iR x [0,T), such thatp-n = 0 on Moy

Using the relation betwean! and the solutions of the steady weak problem (30),
one can verify that" (with U" standing fordJu™ andu, standing for the trace on
r OT)) satisfies the non—steady weak problem (17), up to a correction which tends

to zero a1 — +o. (The intermediate step is to use (30) with = @(.,t,).)

Applying (36)—(38), we can pass to the limit as— + in all the linear terms.
Thus, the limit of the nonlinear term (the integral@f- U" - @) also exists. So we
obtain:

.
/0/Qt{—[at(erat-D(p]~(a‘+u)—u-D(p-at+2v[D(at+u)]s:D(p}dxdt
T T
+nIiTw/ / u“-IU”-(pdde—/ / K [af +u— V- ¢ dSdt
7/ / f (pdxdt+/ +u0 (.,0) dx. (39)

Comparing (39) with (17), we observe that in order to verify thé a solution of
the weak problem (17)t is sufficient to show that there exists a subsequence of
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{u"} (we shall denote it again by{u"}) such that

T T ,
lim //u”-U”~(pdxdt:/ / u-Ou- @ dxadt. (40)
n—-+o /o ot 0 Qt

This limit procedure is not standard because of the variability of dof&iand the
choice of the test functiog, which generally has only the normal component equal
to zero ori'(O )" We explain it in greater detail in the next six paragraphs.

Cutting—off function ¢. Lete; > 0 be given. Then, due to (33) and (34), there
existsk, > 0 so small that

te+Kq n n n te+Ky n
/ u- UM @dxdt| < cg {esssup|u (.,t)HZ.Qt}/ U, 0[], gt AX
te—Kq Qt O<t<T ' te—Kq '
< C1gCi5 /2K Crg < & (41)

for all n € N sufficiently large. (Here, g is the maximum of | onR3 x [0, T].)
Let n; be an infinitely differentiable cut—off function of variadledefined on the
interval [0, T], with values in[0, 1], such that

@ 1for te[0tc—K,|U[tc+Ky, T,
128 = 1 0 for te [to— 3Ky, te+ 3Ky,

The functiong*(x,t) := ns(t) @(x,t) equals zero fot; — %Kl <t<te+ %Kl and

totK,

/ u"- " (@— @) dxdt| < g

te—K, JQt

due to (41). Since, can be chosen arbitrarily small, it is sufficient to prove (40)
with function@* instead ofp.

Approximation of function @*. Since each of the domainf®, (for k=1,...,n)
has the cone property (because all the time instgrdgfer from tc), inequalities
(35) and the Sobolev imbedding theorem imply thate L5(Q, )3. This means that
u(.,t) € L%R3)3 for all t € (0,T). Moreover, if we restrict ourselves to times
t € 1(k,), where

1(Ky) = [Otc— 3K;) U (te+ 3K,,T],

then the cone parameters in the definition of the cone property of dof4in
can be chosen to be independenttofHence the constants in the imbedding
inequalities also become independenttaind we obtain the uniform estimate
”“”("t)He;Ri < C(Hu”(,,'[)HZ;R1 + \|U”(.,t)H2;Ri) for all t € I(k,). From this
information and from (34), we can deduce that the produdctU" belongs to
L2(1(ky); LY®R2)3) nLY(1(k,); L¥?(R3)3). By interpolation, we obtain the inclu-
sionu"- UM € L' (I(k,); LS(R3)3) for r > 1,s> 1 such that 2r + 3/s= 4. Particu-
larly, u"- U™ € LY4(1(k,); LY4(R2)3).
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Function@* can be approximated by infinitely differentiable divergence—free
vector—functions that have a compact supporQing) with an arbitrary accuracy

in the norm of the spade®(1(k,); L>(Q")3). Hence, giver, > 0, there exists such
a vector—functiorp** which satisfies

T T
u”-U”~(p*dx—/ / u- UM @ dx| < g,
o] o Ja

for all n € N sufficiently large. Since, can be chosen to be arbitrarily small, we
can prove (40) only with the functiop™ instead ofp (respectively instead af*).

Partition of function @**. Letme N. We denoter; = jT /m (for j =0,...,m).
There exisim+ 1 infinitely differentiable function®,, ..., 8y on [0,T] with their
values in the interval0,1] such that supfl, C Iy := [15,T;), supp; C I,

(Tj_1,Tj4q) (for j=1,...,m—1), supfBm C Im = (T, 1, Tm] and 3L 06 () 1
for0<t <T. Now we put(p = 9 @* (for j =0,1,...,m). The functronsrpj**

are divergence—free, they have compact support@ljin(where QIj = {(x,t) €
R3x[0,T]; tel;, xeQ'})and

m
@ =97 in Qo
J; i [0T]

Denote byKJ- be the orthogonal projection of supp" into R3. If mis large
enough then the distance betweéénandr ! is greater than one half of the distance
between supp** andr[o_T] for allt € I;. Thus, there exists a bounded open@¢t

in R3 with the boundary of the clags"! such thak; c Q; C QycQforalltel;.
So, we conclude that in order to prove (40), it is sufficient to treat (40) separately
with ¢ = @ (for j =0,1,...,m) and to show that

nN— o0

lim // u"-Ou”- @ dxdt = // u-Ou- @) dxdt. 42)
lj JQf

The local Helmholtz decomposrtron of function !. We denote b)l"-’J the Helm-
holtz projection |r1_2(Q )3. Putw}, := Plu". The function(l — PJ)u" has the form

Dd),i for an appropriate scalar functruw,. (42) can now be written as
lim / / wJ Ow})- @ +wh - 0%} - @7 + 004 - Ow) - ¢

+D¢A-DZ¢A-¢T* [ et = // (u-D)u- @ dxct. 43)
I

Sincellp - 0?04 = 0(3]0¢[%) andg;*(.,t) € L3 (Q}), the integral of 1o, - 020 -
(pj** onQj equals zero.
The convergence (36) and (37), the coincidenc®'dfvith Du" on Q; x 1; and

the boundedness of opera®rin L2(Q ) and inW*2(Q ) imply that
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w, —~w/ =Plu, and 0O¢) = 00! =(1-Pu for n— +w (44)

weakly inL2(1;; Wh%(Q1)?) and weakly in L™(1;; L5 (Q])).
Strong convergence of a subsequence {va,g}. We are going to show that there

exists a subsequence i)} that tends tav! strongly in L2(Ij; LCZ,(Q}‘)) asn —
+00. We shall therefore use the next lemma, see J. L. Lions [18, Theorem 5.2].

Lemma 3.Let0<y < 3 and letH,, H and H, be Hilbert spaces such thatH-—
H < H,. LetHY(R; Hy, H;) denote the Banach spa¢er € L%(R; Hy); |9 [YW(9 ) €
L2(R; H;) } with the norm

1/2
IWlly:ze = (W2 + 119 VRO )2, ) 2

(HereW(9) is the Fourier transform of vt).) Let Y (a,b; Hy, H,) further denote
the Banach space of restrictions of functions frsff(RR; Hy, H, ) onto the interval
(a,b), with the norm

Wl ay = I0F 12z

where the infimum is taken over alez/Y(R; H,, H,) such that z=w a.e. in(a, b).
ThenHY(0,T; Hy, Hy) —< L%(a,b; H).

Considerj € {1;...; m} fixed. We shall use Lemma 3 witfe,b) = I;, Hy =
W32(Q1), H =L3(Qj) and H17W—1,2( 0. (HereW‘lz( #) denotes the dual
towolz( )whererZ(Q ) is the closure o€3, (Qf) in WH2(QF ) The space
W&f(Q ) can be characterized as the space of func'uons WIM(Q7) that have
the trace onaQ* equal to zero.) We claim tha{th} is bounded |n the space
HV(Ij; Ho, Hy)- The boundedness diw)} in L2(l js Ho) follows from (33), (34),
from the coincidence df" with Cu" on Qf x1; and from the boundedness of oper-
atorP} in L%(Q7)3 and |nW12( 03, Thus we only need to verify thgtd |Y W) }
is bounded in the spadé(1;; H,), |e inL2(1;; W 22(Q1)). Letz), be an extension

00
by zero ofw}, from the time interval; ontoRR. Then

. 400
221(3) _ / e72mt19 ; / 72T[It19 Pj U dt (45)
—® KEAD YY1
whereA[is the set of such indicdse {1;...;n} that[R® x (t,_,,t,)] Nsuppgp;™ # 0.
AJ'has the form\['= {I;1 +1;...;q} where 1< < g < n. Calculating the integrals
in (45) we obtaln

. q 1 ) . )
21(8) = T [g2mit yd  ge2mitd ) piy
n(®) ZZTHS[ ]R3V,

. . L 1 a . . .
[e2Mh1PlU, —e P PlUg) + == § e ZM%1? [Plu, —PIU, ]

- 2mid 2mid | 4,
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SinceQ; C Qs forall se l;, we also haved{ c Q, for all k € /\jn (if nis large

enough). Ifi¢ | < 1 then, using (45) and (35), we can estimate the norf iz} (9)

inW-12(Q¥) as follows:
0,0 J

. q
|9 IVZ‘\(S)H,LZ;QT <c@pl Z hUllz0: < CQIBI.  (46)
k=

If |9 ] > 1 then we must proceed more subtly:

N g1, -
e |er'1(3)||,172;9}6 < | 2|T[ (HPéU|H71,2;QJ.*+||PchUq||71,2;Qj*)

OIS ypiu, —PlU, |
+ k~FoY-1ll-12:0¢
2n kz%l ’ ’ T

<C(Qj) 9 Y1, ||2:Qj* + ||UQHZ:QJ?‘)

A sup 1
2n k=Z+1 W, Hqu“LZ;Qj*

where the supremum is taken overjlc Wolg(Qj*) such that|y, ||, 5.o- > 0. The
) 2,0;
sum in (47) can be estimated By + S, where

+ (47)

/QT (Ug—Uy_g) -y ax

q 1
S, = Z Sup ———
W Wy ||l|—'k|\1,2;9j*

q 1
S, = Z sSup ———
1 W, ”quHl,Z;QJ?‘

The functiony,, extended by zero t&3 \ Q, belongs toW}-(Q,). Hence the

integral of [U, (x) — U, _ (X(t,_1; t,X))] - W, (x) on Q} equals the integral of the
same function iQ, and it can be therefore expressed by means of (30). Thus,
can be estimated:

[Ui(3) = Uy (X (b33 %)) ] - W () e,

.
Q]

/m (U1 () = Uy (X (15 8 X)) ] - Wy (x) x|

q 1
S5 < Z sup ——
k=T+1 Wk H‘“k“l,z;(zj*

[ U0 DU () = /Q v {[T8), () + 0U, ()} : O (%) dx

—h A U, (x) - [Da], (x) - P, (x) dx

— [ K8+ U0~ vy - (x) s

+ /Qk hf (X) - W (X) dx+/QkAk(x)-qu(x) dx

The surface integral ofy equals zero because the functippis zero onl,. The
right hand side can be estimated(b&)i*) by means of (7), (35), standard inequal-
ities based on the Sobolev imbedding theorem (appliedipand the Holder in-
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equality. Let us show the procedure in greater detail, for example, in the case of the
terms containing the produt, - OU, -, :

d 1
sup————
k:;l W Hqu”l,Z;Qj*

q 1/2 , q
gcmp( h/ |DUk2dx> ( h/Q |Uk3dx)
k

/3
Z U2, 1022 )

h/ U.-0U, -y, dx
Qk

1/3

1/3
3/2 3/2 3/2
[hk 3 10033, (132, +10ug3,)|
n 3/471/3
<c@)) |1+ (hS OUiBa,) | < c@p.
k=1

Here the constar€(Q]) also depends on the right hand sides of (7) and (35). In
order to estimate,, we use the identities

% d
U1 () = U g (Xt 13 tX)) = ‘ 3 U1 (X(&: %)) d€
¢
- tk a (X(E;tk,x))~DUk_1(X(E;tk,x)) .
k-1

Then the suns, can be estimated by means of (10) and (35) as follows:

Hqu“G'Q* q e
S, <C(Qj )supi [
: s

Wyl 2: 0 k=T

. Uttk (/ at (X(E;tk7x))|3dx>2/3dir/2

k-1

a3, oueaooroa] [ [ worraa]

; 1/2
OU, 1 (X(E: %) | dxdi}

5

< C(Qj).
Substituting the estimates 8§ andS, to (47), we finally obtain

B 233) 120, < Q)OI (48)
The constanC(Qj*) is independent oh. Recall that inequality (48) holds for

|9] > 1. Since the exponert satisfies 0< y < % the right hand side of (48) is
integrable on(—c, —1) U (1,4) with power 2. This, together with (46), implies
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that the sequencgd |¥2},(8 )} is bounded in.2(R; W, +2(Q7)). Consequently, the
sequencgw)} is bounded in¥ (1;; W;-%(Q}), W, 22(Qy)). This space is reflex-

ive, hence there exists a subsequence (we denote it ag@m#}ywhich converges
weakly inHY (1;; WH2(Q7), W, 22(Q7)). Due to (44), the limit must ber). Apply-

ing now Lemma 3, we havew), — w! = PJu strongly inL?(I;; L(Q})3). This

strong convergence, together with the weak convergence (44), enables us to pass
to the limit in the first three terms on the left hand side of (43). The procedure is

standard (see e.g. J. L. Lions [18] or R. Temam [26]), therefore we omit the details.
Using also the equation

|06 - D06 -g ax = 0

J

following from the inclusiong;™ € L%(Qf) and from the identityO¢ - 0)0¢p =
D(% |O¢ |2), we can verify the validity of (43), and consequently also the validity of

(40). This confirms that is a weak solution of the weak problem (17). The proof
of Theorem 1 is thus completed.

7 Concluding remarks

Energy inequality for the weak solution. The limit processes (36)—(38) and
Lemma 2 imply that the limit functiom, which is a solution of (17), satisfies the
same estimates (33) and (34) as the approximations. Inequality (33) thus provides
an estimate of the kinetic energy associated with the flat a.a. times$ € (0, T)

and the first inequality in (34) estimates the dissipation of this energy in the time
interval (0, T). The question whetheralso satisfies the energy inequality (18), for-
mally derived in Section 2 (see Lemma 1), is open. To obtain (18), it would be
necessary to make the limit transition in inequality (32) (which is a discrete equiv-
alent of (18)). Here we need a piece of information on the strong convergence of
a subsequencgu"} in L2(0,T; L2(Q")) in order to control the second term on the
right hand side of (32). This is, however, a problem because we have only obtained
the strong convergence of appropriate local interior Helmholtz projection$ iof
Section 6. It was sufficient for the limit transition (40), but it does not enable us to
treat the integral on the right hand side of (32) in a similar way.

The condition of smallness (iv).Condition (iv) (see Lemma 1) requires a sufficient
smallness of the speed of the bBll at times close to the critical instaftof the
collision of the ball with the wall. We need this condition because estimate (13),
based on the continuous imbeddg-2(Q!)) — L8(Q"), cannot be used in order

to estimate the approximations at times closg t¢The constant in the imbedding
inequality increases “too rapidly” to infinity ds— t;.) Thus, we use estimate (11)
instead of (13) at times close tg and since we need the right hand side to be
absorbed by the “viscous term”, it must be “sufficiently small”.
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Flow around a body of a general shape striking the wall. We have mainly used

the information on the shape & (i.e. that it is a ball) in the region close to the
point of the collision oB! with the wall. (Particularly, the shape Bf influences the
form of functiong! in Section 2. With another functiogf, we would obtain other
inequalities than (7)—(13) for functicat.) Thus, Theorem 1 could be generalized
in such a way that instead of the b&l we would speak on a compact body of
another (however sufficiently smooth) shape, which coincides with a ball in the
neighborhood of the point of the collision.
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