
OPERATOR MACHINES ON DIRECTED GRAPHS
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Abstract. We show that if an infinite-dimensional Banach space X has a sym-
metric basis then there exists a bounded, linear operator R : X −→ X such that
the set

A = {x ∈ X : ||Rnx|| → ∞}
is non-empty and nowhere dense in X. Moreover, if x ∈ X \ A then some subse-
quence of (Rnx)∞n=1 converges weakly to x. This answers in the negative a recent
conjecture of Prǎjiturǎ. The result can be extended to any Banach space con-
taining an infinite-dimensional complemented subspace with a symmetric basis;
in particular, all ‘classical’ Banach spaces admit such an operator.

1. Introduction

Given an infinite-dimensional Banach space X, a bounded linear operator T :
X −→ X and x ∈ X, we say that the orbit of x with respect to T is the set

orb(x, T ) = {T nx : n ∈ N}.
The study of orbits of points in infinite-dimensional linear spaces was initiated in [4].
In this paper, Rolewicz proved that in the infinite-dimensional case, it is possible to
find examples of X, T and x as above, with the property that orb(x, T ) is norm-dense
in X. Such hypercyclic operators are a strictly infinite-dimensional phenomenon and
have received considerable coverage in the recent literature, not least because their
study is connected with the still open problem of whether every operator on `2 has
a non-trivial closed, invariant subset. Indeed, an operator T on a Banach space
X has such a subset if and only if orb(x, T ) is not norm-dense for some non-zero
x ∈ X. Orbits of points under operators have been the subject of study in other
contexts. For example, in [3], it is shown that given an operator T : X −→ X, if
the sequence (||T n||−1)∞n=1 is summable then there exists a vector x ∈ X with the
property that ||T nx|| → ∞, and thus, T admits a non-trivial, closed invariant set.
The various ways in which the sequences (||T nx||)∞n=1 can behave, as x ranges over
X, is examined in [2]. Prǎjiturǎ makes the following conjecture.

Conjecture 1.1 ([2, Conjecture 2.9]). Given an operator T on a Banach space, if
x is a vector such that ||T nx|| → ∞, then the set of all vectors with this property is
norm-dense in X.

Of course, by the Uniform Boundedness Principle, if ||T nx|| → ∞ for some x
then the set of y with the property that supn ||T ny|| = ∞ is a norm-dense Gδ in X,
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but this fact only implies that ||T ny|| → ∞ if the limit exists. The object of this
note is to provide a negative answer to Conjecture 1.1. Here follows a more precise
statement of that given in the abstract.

Theorem 1.2. Let X have a symmetric basis (ei)
∞
i=1. Then there exists a bounded,

linear operator R : X −→ X such that given x =
∑∞

i=1 xiei ∈ X satisfying x1 6= 0
and x2 = 0, we have

||Rnx|| → ∞.

On the other hand, if x1 = 0 or x2 6= 0 then there exists a subsequence of (Rnx)∞n=1

which converges weakly to x.

We also obtain the following corollary, which shows that all ‘classical’ Banach
spaces admit such an operator.

Corollary 1.3. If Y has an infinite-dimensional complemented subspace X with a
symmetric basis then there exists a bounded linear operator W : Y −→ Y such that
the set

B = {y ∈ Y : ||W ny|| → ∞}
is non-empty and nowhere dense. Moreover, if y ∈ Y \B then there exists a subse-
quence of (W ny) which converges weakly to y.

2. Local estimates

Our map R in Theorem 1.2 is going to be a block diagonal operator on X. In
this section, we build the template for the operators acting on the blocks and gather
together some basic estimates. Let m, T ∈ N, ε > 0 and Y = `T

p , where 4m ≤ T
and 1 ≤ p ≤ ∞. Define the operators S : Y −→ Y and F : R −→ Y by

S(y) = (yT , y1, . . . , yT−1)

where y = (y1, . . . , yT ), and

F (a) = (εa, . . . , εa︸ ︷︷ ︸
m times

,−εa, . . . ,−εa︸ ︷︷ ︸
m times

, 0, . . . , 0).

In this way, S can be described as a shift operator and F a ‘feed’ operator. Let
R : R⊕ Y −→ R⊕ Y be defined by R(a, y) = (a, S(y) + F (a)). We are interested
in the behaviour of Rt(a, 0) at time t ∈ N. We can imagine that S drives a circular
conveyor belt in a factory and F deposits the factory’s product (albeit some of it
negative) onto the belt at a fixed set of positions. The amount of product deposited
depends on the value of the first coordinate. Using this analogy, we can see that the
result of repeated applications of R to the vector (a, 0) can be viewed as the sum of
two bumps: one stationary bump of height εam and base width 2m, and a moving
bump of height −εam and base width again 2m. The moving bump’s motion is
periodic, with period T . Let us denote by P the map (a, y) 7→ y.

Lemma 2.1. Suppose that 1 ≤ p ≤ ∞. There exists a constant L, depending only
on p, such that
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(1) if m ≤ t ≤ T −m then

(1)
∣∣∣∣PRt(a, 0)

∣∣∣∣ ≥ { (
2

p+1

)p−1

ε|a|m(p+1)p−1
if p < ∞

ε|a|m if p = ∞;

(2) at all times t we have

(2)
∣∣∣∣PRt(a, 0)

∣∣∣∣ ≤ { Lε|a|m(p+1)p−1
if p < ∞

Lε|a|m if p = ∞;

(3) if t ≤ m then

(3)
∣∣∣∣PRt(a, 0)

∣∣∣∣ ≤ { Lε|a|mp−1
t if p < ∞

Lε|a|t if p = ∞.

Proof. We estimate the norm of the sum of the standing and moving bumps. If
p = ∞ we simply measure the absolute height of the sum of the bumps to obtain
the values listed above, with L = 1. From now on, we shall assume that p < ∞. Set

L =

(
2p+3

p + 1

) 1
p

>

(
2 +

2p+2 + 1

p + 1

) 1
p

.

In case (1), we have∣∣∣∣PRt(a, 0)
∣∣∣∣p ≥ 2εp|a|p

∫ m

0

sp ds =
2εp|a|p

p + 1
mp+1.

In case (2), we note that the maximum value of the norm is attained when the
supports of the standing and moving bumps are disjoint, which occurs if and only
if 2m ≤ t ≤ T − 2m. Thus we estimate∣∣∣∣PRt(a, 0)

∣∣∣∣p ≤ 4εp|a|p
∫ m+1

0

sp ds =
4εp|a|p

p + 1
(m + 1)p+1 ≤ 2p+3εp|a|p

p + 1
mp+1.

For (3), when t ≤ m, we have∣∣∣∣PRt(a, 0)
∣∣∣∣p ≤ 2εp|a|p

{
(m− t)tp +

∫ t+1

0

sp ds +

∫ t
2

0

(2s)p ds

}

= 2εp|a|p
{

(m− t)tp +
(t + 1)p+1

p + 1
+

tp+1

2(p + 1)

}
≤

(
2 +

2p+2 + 1

p + 1

)
εp|a|pmtp.

�

In order to build our operator R on a Banach space X with a symmetric basis,
we will need some reasonably precise estimates the norms of certain vectors in X.
In order to do this, we combine the estimates of Lemma 2.1 with a result closely
based on a theorem of Tzafriri [5]. We have altered the statement of the next result
to suit our purposes.
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Proposition 2.2 ([5, Proposition 5]). Let V be a 2n-dimensional vector space with
basis (vσ)σ∈G, where G is the set of all functions from {1, . . . , n} to {−1, 1}. Suppose
that there are constants K > 0 and r > 2 such that given scalars aσ, σ ∈ G, we have

K−1

(2n)
1
s

(∑
σ∈G

|aσ|s
) 1

s

≤

∣∣∣∣∣
∣∣∣∣∣∑
σ∈G

aσvσ

∣∣∣∣∣
∣∣∣∣∣
/ ∣∣∣∣∣
∣∣∣∣∣∑
σ∈G

vσ

∣∣∣∣∣
∣∣∣∣∣ ≤ K

(2n)
1
r

(∑
σ∈G

|aσ|r
) 1

r

where r−1 + s−1 = 1. Then there exists M , dependent on K and r, but independent
of V and n, with the property that if we define

wl =
∑
σ∈G

σ(l)vσ

for 1 ≤ l ≤ n, then d([wl]
n
l=1, `

n
2 ) < M .

The proof of the next result closely follows that of [5, Theorem 1], although
we note that the assumed symmetry of the norm allows us to bypass the Ramsey
arguments that feature in [5]. Tzafriri’s notation has also been modified slightly to
suit our requirements.

Lemma 2.3. Let X have a normalised symmetric basis (ei)
∞
i=1 with conjugate system

(e∗i )
∞
i=1 and symmetric norm || · ||. Then there exists M > 0 and p ∈ {1, 2,∞}, a

pairwise disjoint family of finite subsets Fn ⊆ N, n ∈ N, vectors wl,n, 1 ≤ l ≤ n,
supported on Fn and permutations πn of Fn with three properties:

(1) given n, if a linear operator S on X satisfies Sei = eπn(i) for all i ∈ Fn, then
Swl,n = wτ(l),n, where τ is the cycle (1, . . . , n);

(2) d([wl,n]nl=1, `
n
p ) < M for all n;

(3) πn has order n.

Proof. Define

λ(n) = ||e1 + . . . + en|| and µ(n) = ||e∗1 + . . . + e∗n|| .
We follow the proof of [5, Theorem 1] in distinguishing three cases.

Case I: for every n ∈ N there exists mn ∈ N such that λ(nmn)/λ(mn) < 2. Put
p = ∞. Set k1 = 0 and, given kn, define kn+1 = kn + nmn. Let

Fn = {kn + 1, . . . , kn + nmn}
and define

wl,n = (ekn+(l−1)mn+1 + . . . ekn+lmn)/λ(mn)

for 1 ≤ l ≤ n, n ∈ N. Finally, define

πn(kn + (l − 1)mn + r) =

{
kn + lmn + r if 1 ≤ l < n and 1 ≤ r ≤ mn

kn + r if l = n and 1 ≤ r ≤ mn.

It is clear that the Fn are pairwise disjoint and properties (1) and (3) hold. Now we
prove (2). By the symmetry of the norm, we have ||wl,n|| = 1. Since

maxn
l=1 |al| ≤

∣∣∣∣∣
∣∣∣∣∣

n∑
l=1

alwl,n

∣∣∣∣∣
∣∣∣∣∣ ≤ maxn

l=1 |al|

∣∣∣∣∣
∣∣∣∣∣

n∑
l=1

wl,n

∣∣∣∣∣
∣∣∣∣∣
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≤ maxn
l=1 |al|

λ(nmn)

λ(mn)
≤ 2 maxn

l=1 |al|

for any scalars a1, . . . , an, we can see that (2) holds for any M > 2.
Case II: for every n ∈ N there exists mn ∈ N such that µ(nmn)/µ(mn) < 2. Now

put p = 1 and set kn, Fn and πn exactly as in case I. If we set

w∗
l,n = (e∗kn+(l−1)mn+1 + . . . e∗kn+lmn

)/µ(mn).

then we have

maxn
l=1 |al| ≤

∣∣∣∣∣
∣∣∣∣∣

n∑
l=1

alw
∗
l,n

∣∣∣∣∣
∣∣∣∣∣ ≤ 2 maxn

l=1 |al|

just as above. Let w1,n satisfy ||w1,n|| = 1 and w∗
1,n(w1,n) > 1

2
, and have support

contained in {kn+1, kn+mn}, i.e., the support of w∗
1,n. If we let S be a linear operator

satisfying Sei = eπn(i) for i ∈ Fn, and define wl,n = Sl−1w1,n for 1 < l ≤ n, then it
follows by the symmetry of the norm that ||wl,n|| = 1 and w∗

l,n(wl,n) = w∗
1,n(w1,n)

whenever 1 ≤ l ≤ n. By design, we have ensured that (1) holds. To check (2), we
observe that∣∣∣∣∣
∣∣∣∣∣

n∑
l=1

alwl,n

∣∣∣∣∣
∣∣∣∣∣ ≤

n∑
l=1

|al| ≤ 2

(
n∑

l=1

(sgn al)w
∗
l,n

)(
n∑

k=1

akwk,n

)
≤ 4

∣∣∣∣∣
∣∣∣∣∣

n∑
l=1

alwl,n

∣∣∣∣∣
∣∣∣∣∣ .

Therefore (2) holds whenever M > 4.
Case III: if neither case I nor case II hold then, following the proof of [5, Theorem

1] in case III, we obtain constants K > 0 and r > 2 such that for all n ∈ N and
scalars a1, . . . , an, we have

K−1

n
1
s

(
n∑

l=1

|al|s
) 1

s

≤ 1

λ(n)

∣∣∣∣∣
∣∣∣∣∣

n∑
l=1

alen+l

∣∣∣∣∣
∣∣∣∣∣ ≤ K

n
1
r

(
n∑

l=1

|al|r
) 1

r

where r−1 + s−1 = 1. We set p = 2 and

Fn = {2n + 1, . . . , 2n+1}.
Fix n and let f be a bijection from F = Fn to G, where G is as in Proposition 2.2.
Put vσ = ef−1(σ) for σ ∈ G, and let wl, 1 ≤ l ≤ n, be as in Proposition 2.2. Let τ be
the cycle (1, . . . , n), define a permutation π̂ on G by π̂(σ) = σ ◦ τ−1, and then set
π = f−1 ◦ π̂ ◦ f . We have (3). If S is an operator on X satisfying Sei = eπ(i) then
we calculate

Swl = S

(∑
σ∈G

σ(l)vσ

)
= S

(∑
σ∈G

σ(l)ef−1(σ)

)
=

∑
σ∈G

σ(l)ef−1(π̂(σ))

=
∑
σ∈G

σ(l)vπ̂(σ) =
∑
σ∈G

(σ ◦ τ)(l)vσ = wτ(l).

Moreover, by construction, we have ensured that d([wl]
n
l=1, `

n
p ) < M . �
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We remark that we can follow the proof of [5, Theorem 1] a little more to show
that the subspaces [wl,n]nl=1, n ∈ N, are uniformly complemented in X, that is, they
are the images of a sequence of projections which are uniformly bounded in norm.
However, we do not require this particular property of the [wl,n]nl=1.

3. Proofs of the main results

We shall prove Theorem 1.2 using a sequence of lemmas. We take constants
mk, Tk ∈ N, εk > 0 and λk ∈ R. The values of these constants will be chosen in due
course. Let X have a normalised symmetric basis (ei)

∞
i=1 with symmetric norm || · ||,

and let M , p, Fn, wl,n and πn be as in Lemma 2.3, with the additional constraint
that Fn ⊆ N \ {1, 2} for all n. Define

Sei =

{
eπTk

(i) if i ∈ FTk
for some Tk

ei otherwise

and extend S linearly to X. As || · || is symmetric, S is an isometry. Define operators
Sk : [wl,Tk

]Tk
l=1 −→ [wl,Tk

]Tk
l=1 and Fk : R −→ [wl,Tk

]Tk
l=1 by

Sk

(
Tk∑
l=1

ylwl,Tk

)
=

Tk∑
l=1

ylwτ(l),Tk

where τ is the cycle (1, . . . , Tk), and

Fk(a) = aεk

mk∑
l=1

wl,Tk
− aεk

2mk∑
l=mk+1

wl,Tk
.

Then define Rk on R⊕ [wl,Tk
]Tk
l=1 by

Rk(a, y) = (a, Sk(y) + Fk(a))

and let Pk(a, y) = y for y ∈ [wl,Tk
]Tk
l=1. Let P be the projection

P

(
∞∑
i=1

xiei

)
= x1e1 + x2e2

and define an operator R on X by

Rx = Sx +
∞∑

k=1

Fk(x1 − λkx2).

where x =
∑∞

i=1 xiei. Of course, it is necessary to choose the various constants so
that R is bounded and maps into X.

First of all, we define the constants λk. Let λ1 = 0. Define f(t) = t/(1 − t) for
0 ≤ t < 1. Given n ≥ 1, we set

λk =

{
f(k−2n

2n−1 ) if 2n ≤ k < 2n + 2n−1

−f(k−2n−2n−1

2n−1 ) if 2n + 2n−1 ≤ k < 2n+1.

Before defining mk, Tk and εk, we observe two important inequalities concerning the
λk. The first identifies an overall bound for the quantity |x1 − λkx2|, for k in the
range 2n ≤ k < 2n+1. The second shows that |x1 − λkx2| is small for some k in
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this range, provided x1 = 0 or x2 6= 0, and n is large enough. The idea behind the
second inequality is that if x2 6= 0, we have an infinite supply of the λk which can
approximate the solution to the equation x1 − λx2 = 0 with arbitrary precision.

Lemma 3.1. Let x ∈ X. First

(4) |x1 − λkx2| ≤ 2n−1 ||x|| whenever 2n ≤ k < 2n+1.

Second, if x2 6= 0 then, for every n large enough, there exists k so that 2n ≤ k < 2n+1

and

(5) |x1 − λkx2| ≤
24−n ||x||2

|x2|
.

Proof. For (4), we simply observe that

|x1 − λkx2| ≤ (1 + λ2n+2n−1−1) ||x||
= (1 + (2n−1 − 1)) ||x||
= 2n−1 ||x||

whenever 2n ≤ k < 2n+1.
To show (5), we first let λ satisfy x1− λx2 = 0. We shall assume first that λ ≥ 0.

We take n large enough so that λ < f(1 − 2n−1) = λ2n+2n−1−1. This allows us to
find k in the range 2n ≤ k < 2n + 2n−1 − 1 such that λk ≤ λ < λk+1. Hence

0 ≤ λ− λk < λk+1 − λk

< 21−nf ′(f−1(λk+1)) by the Mean Value Theorem

≤ 21−nf ′(f−1(λ) + 21−n) since f−1(λk+1) = f−1(λk) + 21−n

= 21−n

(
1

1− 21−n − f−1(λ)

)2

.

Therefore

2n−1(λ− λk) <

(
1

1− 21−n − f−1(λ)

)2

→
(

1

1− f−1(λ)

)2

= (λ + 1)2

as n →∞, bearing in mind that f−1(t) = t/(t + 1) for t ≥ 0. We conclude that for
large enough n, we can select k in the range 2n ≤ k < 2n + 2n−1 − 1 so that

0 ≤ λ− λk < 22−n(λ + 1)2.

Finally

|x1 − λkx2| = (λ− λk)|x2|

≤ 22−n

(
x1 + x2

x2

)2

|x2|

≤ 24−n ||x||2

|x2|
for such k, as required. If λ < 0 then we can appeal to symmetry and repeat the
process, using k in the range 2n + 2n−1 ≤ k < 2n+1 − 1. �

7



Now we define the constants mk, Tk and εk. First let m1 = 1, T1 = 4 and ε1 = 0.
Then set Tk = (5n + 1)Tk−1, mk = Tk−1 −mk−1 and

εk =

{
n

m
(p+1)p−1

k

if p = 1 or p = 2

n
mk

if p = ∞

whenever n ≥ 1 and 2n ≤ k < 2n+1. Our first task is to show that, with respect to
these constants, R is a bounded operator mapping into X.

Lemma 3.2. The operator R is bounded and maps into X.

Proof. We show that
∑∞

k=1 Fk(x1 − λkx2) is absolutely summable. By Lemma 2.3,
part 2, we have

(6)
√

M−1 ||y|| ≤

∣∣∣∣∣
∣∣∣∣∣

Tk∑
l=1

ylwl,Tk

∣∣∣∣∣
∣∣∣∣∣ ≤ √

M ||y||

where y = (y1, . . . , yTk
) ∈ `Tk

p and p ∈ {1, 2,∞} is as in Lemma 2.3. Let L be as
in Lemma 2.1. Note that Fk(a) = Sk(0) + Fk(a) = PkRk(a, 0). Therefore, from (3)
with t = 1, (4) and the definition of εk, we have

||Fk(x1 − λkx2)|| ≤
{ √

MLεk|x1 − λkx2|mp−1

k if p = 1 or p = 2√
MLεk|x1 − λkx2| if p = ∞.

≤
√

MLn2n−1 ||x||m−1
k

whenever 2n ≤ k < 2n+1.
From the definitions of mk and Tk, we obtain

(7) mk+1 = Tk −mk = Tk − Tk−1 + mk−1 ≥ 5nTk−1 ≥ 5nmk

whenever n ≥ 1 and 2n ≤ k < 2n+1. In particular, mk+1 ≥ 5mk. Therefore

∞∑
k=2

||Fk(x1 − λkx2)|| ≤
∞∑

n=1

2n+1−1∑
k=2n

√
MLn2n−1 ||x||m−1

k

≤
√

MLm−1
2 ||x||

∞∑
n=1

2n+1−1∑
k=2n

n2n−1

5k−2

≤
√

MLm−1
2 ||x||

∞∑
n=1

2n+1−1∑
k=2n

n(2
5
)n−1

= 5
2

√
MLm−1

2 ||x||
∞∑

n=1

n(4
5
)n

bearing in mind that n− 1 ≤ k − 2. Hence Rx ∈ X and R is bounded. �

In order to analyse the behaviour of Rmx, it will help to consider separately RmPx
and Rm(I − P )x.
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Lemma 3.3. We have

(8) Rm(I − P )x = Sm(I − P )x

and

(9) RmPx = Px +
∞∑

k=1

PkR
m
k (x1 − λkx2, 0)

for all m.

Proof. Clearly R(I −P )x = S(I −P )x. Since (I −P )S = S(I −P ), if (8) holds for
m ≥ 1 then

Rm+1(I − P )x = RSm(I − P )x = R(I − P )Smx = S(I − P )Smx = Sm+1(I − P )x.

Now
PkRk(a, 0) = Sk(0) + Fk(a) = Fk(a)

and SPx = Px, so (9) holds for m = 1. Assume that (9) holds for some m ≥ 1.
Suppose that

PkR
m
k (a, 0) = y =

Tk∑
l=1

ylwl,Tk
.

By Lemma 2.3, we have ensured that S(y) = Sk(y). Furthermore, we observe

PkR
m+1
k (a, 0) = PkRk(R

m
k (a, 0)) = PkRk(a, y)

= Sk(y) + Fk(a)

= S(y) + Fk(a) = SPkR
m
k (a, 0) + Fk(a).

Therefore

Rm+1Px = R

(
Px +

∞∑
k=1

PkR
m
k (x1 − λkx2, 0)

)

= S

(
Px +

∞∑
k=1

PkR
m
k (x1 − λkx2, 0)

)
+

∞∑
k=1

Fk(x1 − λkx2)

= Px +
∞∑

k=1

SPkR
m
k (x1 − λkx2, 0) + Fk(x1 − λkx2)

= Px +
∞∑

k=1

PkR
m+1
k (x1 − λkx2, 0)

as required. �

The consequence of Lemma 3.3 is that we can split the analysis of Rmx into two
parts: the ‘shift’ and the ‘perturbation’. First, we examine the behaviour of the
shift.

Lemma 3.4. Given x ∈ X, we have ||Rm(I − P )x|| = ||(I − P )x|| for all m.

Moreover, RTk(I − P )x
w→ (I − P )x.
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Proof. Given (8) and the fact that S is an isometry, the first assertion is trivial.
Now consider the weak convergence. Let f ∈ X∗ with ||f || = 1 and ε > 0. We take
k ∈ N such that ∣∣∣∣∣∣

∣∣∣∣∣∣
∞∑

l=k+1

∑
i∈FTl

xiei

∣∣∣∣∣∣
∣∣∣∣∣∣ < ε.

Since Tl divides Tj whenever l ≤ j, we can see that π
Tj

Tl
is the identity for such l.

Therefore, if j ≥ k, we estimate

|f(STj(I − P )x− (I − P )x)| =

∣∣∣∣∣∣f
 ∞∑

l=j+1

∑
i∈FTl

xieπ
Tj
Tl

(i)
−

∞∑
l=j+1

∑
i∈FTl

xiei

∣∣∣∣∣∣
≤ 2

∣∣∣∣∣∣
∣∣∣∣∣∣

∞∑
l=j+1

∑
i∈FTl

xiei

∣∣∣∣∣∣
∣∣∣∣∣∣

≤ 2

∣∣∣∣∣∣
∣∣∣∣∣∣

∞∑
l=k+1

∑
i∈FTl

xiei

∣∣∣∣∣∣
∣∣∣∣∣∣ < 2ε

by symmetry of the norm. �

Now we analyse the behaviour of the perturbation. Ultimately, it is the pertur-
bation that drives the behaviour of the system as a whole.

Lemma 3.5. If x1 6= 0 and x2 = 0 then

||RmPx|| → ∞.

On the other hand, if x1 = 0 or x2 6= 0 then there exists kn in the range 2n ≤ kn <
2n+1 with the property that ∣∣∣∣RTkn−1Px− Px

∣∣∣∣→ 0.

Proof. If x1 6= 0 and x2 = 0 then by (9), (1), (6) and the definition of εk, we have

||RmPx||
≥ ||PkR

m
k (x1, 0)||

≥


√

M−1
(

2
p+1

)p−1

εk|x1|m(p+1)p−1

k =
√

M−1
(

2
p+1

)p−1

|x1|n if p = 1, 2
√

M−1εk|x1|mk =
√

M−1|x1|n if p = ∞

whenever mk ≤ m < Tk −mk = mk+1 and 2n ≤ k < 2n+1.
Instead, if x2 6= 0 then by (5), for large enough n there exists kn in the range

2n ≤ kn < 2n+1, such that

|x1 − λknx2| ≤
24−n ||x||2

|x2|
.
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By (2), (6) and the definition of εk, we have∣∣∣∣∣∣PknR
Tkn−1

kn
(x1 − λknx2, 0)

∣∣∣∣∣∣ ≤

{ √
MLεkn|x1 − λknx2|m(p+1)p−1

kn
if p = 1, 2√

MLεkn|x1 − λknx2|mkn if p = ∞

≤ 24−n
√

MLn ||x||2

|x2|
.(10)

Then we notice that if j ≤ kn − 1, we have∣∣∣∣∣∣PjR
Tkn−1

j (x1 − λjx2, 0)
∣∣∣∣∣∣ = 0(11)

because R
Tj

j is the identity and Tj divides Tkn−1 whenever j ≤ kn− 1. Now we have

to estimate
∣∣∣∣∣∣PjR

Tkn−1

j (x1 − λjx2, 0)
∣∣∣∣∣∣ for j ≥ kn + 1. If j ≥ kn + 1 then from (7),

we have

mj ≥ 5j−(kn+1)mkn+1 ≥ 5j−(kn+1)5nTkn−1.

Take l ≥ n such that 2l ≤ j < 2l+1. We apply (3), (4) and (6) to obtain∣∣∣∣∣∣PjR
Tkn−1

j (x1 − λjx2, 0)
∣∣∣∣∣∣(12)

≤

{ √
MLεj|x1 − λjx2|mp−1

j Tkn−1 if p = 1 or p = 2√
MLεj|x1 − λjx2|Tkn−1 if p = ∞

≤
√

ML ||x||Tkn−1
2l−1l

mj

≤
√

ML ||x|| 2l−1l

5n5j−(kn+1)

≤
√

ML ||x|| 2l−1l

5n5l−(n+1)
since l − (n + 1) ≤ j − (kn + 1)

=
√

ML ||x|| l(2
5
)l−1

where L is defined as in the proof of Proposition 3.2. Combining (9) with (10), (11)
and (12) gives∣∣∣∣RTkn−1Px− Px

∣∣∣∣ ≤
∞∑

j=1

∣∣∣∣∣∣PjR
Tkn−1

j (x1 − λjx2, 0)
∣∣∣∣∣∣

=
∞∑

j=kn

∣∣∣∣∣∣PjR
Tkn−1

j (x1 − λjx2, 0)
∣∣∣∣∣∣

=
24−n

√
MLn ||x||2

|x2|
+

∞∑
j=kn+1

∣∣∣∣∣∣PjR
Tkn−1

j (x1 − λjx2, 0)
∣∣∣∣∣∣

≤ 24−n
√

MLn ||x||2

|x2|
+
√

ML ||x||
∞∑

l=n

2ll(2
5
)l−1
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=
24−n

√
MLn ||x||2

|x2|
+ 5

2

√
ML ||x||

∞∑
l=n

l(4
5
)l

→ 0

as n → ∞. This concludes the proof in the case x2 6= 0. Finally, if x1 = 0 then we
repeat the above with kn = 2n to reach the same conclusion. �

Proof of Theorem 1.2. Let x1 6= 0 and x2 = 0. Then by Lemmas 3.4 and 3.5 we
have

||Rmx|| ≥ ||RmPx|| − ||Rm(I − P )x|| = ||Rmx|| − ||(I − P )x|| → ∞
as m →∞.

Now let x1 = 0 or x2 6= 0. Again by Lemmas 3.4 and 3.5, we can pick suitable kn

such that

RTkn−1x = RTkn−1Px + RTkn−1(I − P )x
w→ Px + (I − P )x = x.

�

Proof of Corollary 1.3. Let Q be a projection onto X and let X have symmetric
basis (ei)

∞
i=1. Using Theorem 1.2, we can find an operator R : X −→ X such that if

A = {x =
∞∑
i=1

xiei ∈ X : x1 6= 0 and x2 = 0}

then ||Rnx|| → ∞ whenever x ∈ A, and (Rnx) has a subsequence converging weakly
to x if x ∈ X \A. Define W = RQ + (I −Q) and let B = Q−1A. It is easy to check
that B satisfies the required properties. �

If X = c0 or X = `p, 1 ≤ p < ∞, then we can simplify the proof of Theorem
1.2 by replacing the wl,n with unit vectors and replacing the corresponding πn with
cycles. Since there is a Banach space with a symmetric basis, but containing no
isomorphic copy of c0 or `p, p ≥ 1, [1], it is not possible to obtain Theorem 1.2 by
proving it in the cases X = c0 and X = `p, and then applying Corollary 1.3.

4. Problems

Since the operators constructed in this note rely fundamentally on permutations
of basis vectors, it makes sense to pose the following question.

Problem 4.1. If X is a Banach space with an unconditional basis, does there exist
an operator R : X −→ X with the property that ||Rnx|| → ∞ for some x ∈ X, and
||Rny|| 6→ ∞ for all y in some open subset of X?

Also, given the fact that the operators which feature above are not compact, the
next question seems natural to us.

Problem 4.2. If T is compact, can T or I + T , where I is the identity, satisfy the
properties given in the abstract? In particular, does the Argyros-Haydon space admit
such an operator?
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If no sum I +T , where T is compact, satisfies the properties given in the abstract,
then this suggests to us that some kind of unconditional structure is necessary in
order to construct such operators.

Finally, we make a remark about the title of this note. The operator R constructed
above can be viewed as a machine which acts on a countable family of disjoint
cycles. This family of disjoint cycles can be viewed as a countable directed graph.
We speculate that it may be possible to construct other operators with interesting
properties by basing them on more complicated directed graphs.
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