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Pavel Řehák∗

Institute of Mathematics
Academy of Sciences of the Czech Republic
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Abstract

We present criteria of Hille-Nehari type for the half-linear dynamic equation
(r(t)Φ(y∆))∆+p(t)Φ(yσ) = 0 on time scales. As a particular important case we
get that there is a a (sharp) critical constant which may be different from what
is known from the continuous case, and its value depends on the graininess
of a time scale and on the coefficient r. As applications we state criteria for
strong (non)oscillation, examine generalized Euler type equations, and establish
criteria of Kneser type. Examples from q-calculus and further possibilities for
study are presented as well. Our results unify and extend many existing results
from special cases, and are new even in the well-studied discrete case.

Keywords: dynamic equation, time scale, half-linear equation, (non)oscillation cri-
teria, Hille-Nehari criteria, Kneser criteria, critical constant, oscillation constant
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1 Introduction

Consider the half-linear dynamic equation

(r(t)Φ(y∆))∆ + p(t)Φ(yσ) = 0, (1)

where Φ(u) = |u|α−1 sgn u with α > 1, r(t) > 0 and p(t) are rd-continuous functions
defined on a time scale interval [a,∞), a ∈ T, and a time scale T is assumed to
be unbounded from above. This equation covers a large variety of well-studied and
important equations, for example: If T = R, then (1) reduces to the half-linear
differential equation

(r(t)Φ(y′))′ + p(t)Φ(y) = 0, (2)
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see e.g. the initiating papers [9, 17] and the monograph [8]. Recall that the in-
vestigation of equations of the form (2) is extremely useful for example in studying
spherically symmetric solutions of elliptic equations with p-laplacian and also finds
applications when examining more general, quasilinear equations. The choice T = Z
yields the discrete counterpart of (2), namely the equation

∆(rkΦ(∆yk)) + pkΦ(yk+1) = 0, (3)

where ∆yk = yk+1 − yk, see e.g. the paper [19] and the survey on discrete oscillation
theory [1]. If α = 2, then from (1) we get

(r(t)y∆)∆ + p(t)yσ = 0, (4)

see e.g. the initiating paper [10] and the monograph [3]. Moreover, the latter equation
covers the linear differential equation

(r(t)y′)′ + p(t)y = 0 (5)

provided T = R, see e.g. the survey [24], the linear difference equation

∆(rk∆yk) + pkyk+1 = 0 (6)

provided T = Z see e.g. the survey [1], and the linear q-difference equation

Dq(r(t)Dqy(t)) + p(t)y(qt) = 0, (7)

provided T = qN0 = {qk : k ∈ N0} with q > 1, where Dqy(t) = (y(qt)−y(t))/((q−1)t),
see e.g. [6].

In particular, equation (5) has been deeply studied and there is an extensive
literature devoted to it. The theory of (5) can serve to an extension to various
more general cases. A very large part of the qualitative theory of (1) is formed
by the oscillation theory, in which, very roughly speaking, one studies the sign and
zeros of solutions. There is known a huge amount of various conditions guaranteeing
oscillation or nonoscillation of (5). The so-called Hille-Nehari ones (see e.g. [18, 24,
25]) belong to the most famous ones: If

lim inf
t→∞

(∫ t

a

1

r(s)
ds

)∫ ∞

t

p(s) ds >
1

4
, (8)

then (5) is oscillatory (i.e., every its solution oscillates). If

lim sup
t→∞

(∫ t

a

1

r(s)
ds

)∫ ∞

t

p(s) ds <
1

4
, (9)

then (5) is nonoscillatory (i.e., every its solution is of eventually one sign). Clearly,
the constant 1/4 is sharp since it is the same in (8) and in (9). Here we assume
that

∫∞
a

1/r(s) ds = ∞ and
∫∞

t
p(s) ds ≥ 0 (6≡ 0) for large t. Note that there is a

close connection of these results to the oscillatory behavior of the Euler differential
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equation y′′ + λt−2y = 0. Indeed, the Hille-Nehari criteria provide the information
about the oscillation constant λ = λ0 (i.e., Euler’s equation is oscillatory for λ > λ0

and it is nonoscillatory for λ < λ0; here it holds λ0 = 1/4) without any need of
solving the equation explicitly. Conversely, if we have an information about the
oscillation constant (which can be simply obtained by solving the equation), then
using the transformation of independent variable and the so-called Hille-Wintner
(integral) comparison theorem, we get (8) and (9).

In recent years, there have been established quite many results that are related to
an extension of Hille-Nehari theorems (or to an examination of Euler type equations)
to other or more general settings, in particular, discrete, half-linear or time scales
ones, see [5, 6, 7, 8, 11, 13, 14, 15, 16, 21, 22, 26]. However, the results presented
there usually contain certain restrictions that disable examination of many important
cases. Those restrictions are of the following two types: First, the constants on the
right-hand sides are not the best possible. Second, there is a strict requirement on
the choice of time scales.

Recall that for (2) Hille-Nehari criteria read as: If

lim inf
t→∞

(∫ t

a

r1−β(s) ds

)α−1 ∫ ∞

t

p(s) ds >
1

α

(
α− 1

α

)α−1

,

then (2) is oscillatory. If

lim sup
t→∞

(∫ t

a

r1−β(s) ds

)α−1 ∫ ∞

t

p(s) ds <
1

α

(
α− 1

α

)α−1

,

then (2) is nonoscillatory. Denote the constant on the right-hand sides as

γα =
1

α

(
α− 1

α

)α−1

and notice that γα is again sharp and γα = 1/4 provided α = 2.
What we want in our paper is to show how the above mentioned restrictions can

substantially be removed. We derive criteria which are generalizations of (8) and (9)
to equation (1). Our results unify and extend (to new time scales) many of known
criteria and observations from e.g. [1, 6, 8, 7, 14, 15, 16, 22, 23, 26]. In addition, we
show how the constants on the right-hand sides depend on time scales. As a special
case, when the limit

M = lim
t→∞

µ(t)r1/(1−α)(t)∫ t

a
r1/(1−α)(s) ∆s

exists, we get that the above mentioned sharp constant γα is replaced by other con-
stant, which is again sharp but its value belongs to the interval [0, γα] and depends
on the value of M . The word “sharp” means that such a constant forms a sharp
borderline between oscillation and nonoscillation of (1). We will call it the critical
constant or the critical oscillation constant.

Our new results lead to interesting conclusions. For example, the critical constant
is equal to γα in all situations where M = 0; if M > 0, then the critical constant
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is strictly less than γα (this may happen even in the discrete case (T = Z) when
r(t) 6≡ 1); the critical constant can actually be equal to zero (this happens when
M = ∞). It should be emphasized that the results are new even in the well-studied
dicrete case.

The proof of the main results is based on the so-called function sequence technique
which exploits a generalized Riccati technique. A crucial point which leads to a
“variable critical constant”, is that we do not force the “problematic term” occuring
in a generalized Riccati dynamic equation (see (13)) to behave like almost in the
continuous case which was a usual procedure in previous approaches.

The paper is organized as follows. In the next section we recall some important
concepts and state preliminaries that are key to prove the main results. Generalized
Hille-Nehari theorems are presented in Section 3. In Section 4 we discuss the con-
cepts of critical and oscillation constant. As applications we derive criteria for strong
(non)oscilation of (1) (Section 5), further we examine generalized Euler equations
and establish Kneser type criteria (Section 6) and present examples from q-calculus
(Section 7). In the last section we indicate some directions for a future research.

Throughout the paper we assume∫ ∞

a

r1−β(s) ∆s = ∞, (10)

where β is the conjugate number of α, i.e., 1/α + 1/β = 1, and∫ ∞

t

p(s) ∆s exists, is nonnegative and eventually nontrivial (11)

for large t, say t ∈ [a,∞), without loss of generality.

2 Preliminaries

We assume that the reader is familiar with the notion of time scales. Thus note just
that T, σ, fσ, µ, f∆ and

∫ b

a
f∆(s) ∆s stand for time scale, forward jump operator,

f ◦σ, graininess, delta derivative of f , and delta integral of f from a to b, respectively.
Further, Dqf denotes f∆ when T = qN0 = {qk : k ∈ N0} with q > 1 (this is the so-
called Jackson derivative of f). See [12], which is the initiating paper of the time
scale theory written by Hilger, and the monographs [3, 4] by Bohner and Peterson
containing a lot of information on time scale calculus.

We will proceed with some essentials of oscillation theory of (1). First note that
we are interested only in nontrivial solutions of (1). We say that a solution y of
(1) has a generalized zero at t in case y(t) = 0. If µ(t) > 0, then we say that
y has a generalized zero in (t, σ(t)) in case y(t)yσ(t) < 0. A nontrivial solution y
of (1) is called oscillatory if it has infinitely many generalized zeros; note that the
uniqueness of IVP excludes the existence of a cluster point which is less than ∞.
Otherwise it is said to be nonoscillatory. In view of the fact that the Sturm type
separation theorem extends to (1) (see e.g. [20]), we have the following equivalence:
One solution of (1) is oscillatory if and only if every solution of (1) is oscillatory.
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Hence we may speak about oscillation or nonoscillation of equation (1). Recall that
the principal statements, like the Sturmian theory (Reid type roundabout theorem,
Sturm type separation and comparison theorems) for (1), can be established under the
mere assumption r(t) 6= 0 and the basic concepts, especially generalized zero, have
to be adjusted, see the initiating paper [20] or [2]. However, our method requires
the positivity of r(t); equation (1) is viewed as a perturbation of the nonoscillatory
equation (r(t)Φ(y∆))∆ = 0. Note that we do not require the positivity of p(t) though
many approaches even in special cases need this assumption.

The proofs of our main results is based on the below described function sequence
technique. This technique utilizes very useful Riccati type transformation involving
the generalized Riccati dynamic equation

w∆ + p(t) + S(w, r) = 0, (12)

where

S(w, r) = lim
λ→µ

w

λ

(
1− r

Φ(Φ−1(r) + λΦ−1(w))

)
(13)

Note that (1) and (12) are connected by the substitution w = rΦ(y∆/y). Observe
that for T = R, using L’Hospital’s rule, S takes the form (α− 1)r1−β(t)|w|β, which is
the expression known from the continuous case, see [8].

Lemma 1 ([22]). Define the function sequence {ϕk(t)} by

ϕ0(t) =

∫ ∞

t

p(s) ∆s, ϕk(t) = ϕ0(t) +

∫ ∞

t

S(ϕk−1, r)(s) ∆s, k = 1, 2, . . . .

The equation (1) is nonoscillatory if and only if there exists t0 ∈ [a,∞) such that
limk→∞ ϕk(t) = ϕ(t), t ≥ t0, i.e., the sequence {ϕk(t)} is well defined and pointwise
convergent.

3 Main results — Hille–Nehari type criteria

In this section we prove an extension of Hille-Nehari criteria to equation (1). Recall
that we assume (10) and (11). Note that (10) and

∫∞
a

p(s) ∆s = ∞ implies (1) to be
oscillatory (see [20, Theorem 5]), and thus it is reasonable to assume that

∫∞
a

p(s)∆s
is convergent.

Theorem 1. Denote

M∗ = lim inf
t→∞

µ(t)r1−β(t)∫ t

a
r1−β(s) ∆s

, M∗ = lim sup
t→∞

µ(t)r1−β(t)∫ t

a
r1−β(s) ∆s

, (14)

γ(x) = lim
t→x

(
(t + 1)

α−1
α − 1

t

)α−1(
1− 1− (t + 1)−

(α−1)2

α

1− (t + 1)1−α

)
, (15)

and

A(t) =

(∫ t

a

r1−β(s) ∆s

)α−1 ∫ ∞

t

p(s) ∆s.
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If
lim inf

t→∞
A(t) > γ(M∗), (16)

then (1) is oscillatory. If
lim sup

t→∞
A(t) < γ(M∗), (17)

then (1) is nonoscillatory.

Proof. Oscillatory part. We will use the notation of Lemma 1. In addition, denote
R(t) =

∫ t

a
r1−β(s) ∆s. Condition (16) can be rewritten as ϕ0(t) ≥ γ0R

1−α(t) for large
t, say t ≥ t0 > a, where γ0 > γ(M∗). Then, using the monotone nature of S, see [20],
and the equalities σ(t) = µ(t) + t, Rσ(t) = R(t) + µ(t)R∆(t) = R(t) + µ(t)r1−β(t), we
have

ϕ1(t) = ϕ0(t) +

∫ ∞

t

S(ϕ0, r)(s) ∆s

≥ γ0R
1−α(t) +

∫ ∞

t

S(γ0R
1−α, r)(s) ∆s

≥ γ0R
1−α(t) + +Γ∗(t0, γ0)

∫ ∞

t

(−R1−α)∆(s) ∆s

= γ1R
1−α(t),

where γ1 = γ0 + Γ∗(t0, γ0) with

Γ∗(t0, u) = inf
t≥t0

lim
λ→µ(t)

{
uR1−α(t)

λ

(
1− r(t)

(rβ−1(t) + λuβ−1/R(t))α−1

)
× λ

R1−α(t)−R1−α(t + λ)

}
= inf

t≥t0
lim

λ→µ(t)

{
u

1− (1 + λr1−β(t)/R(t))1−α

×
(

1− 1

(1 + λuβ−1r1−β(t)/R(t))α−1

)}
.

Note that using the L’Hospital rule, we have

lim
λ→0

{
u

1− (1 + λr1−β(t)/R(t))1−α

(
1− 1

(1 + λuβ−1r1−β(t)/R(t))α−1

)}
= uβ,

which is what is known from the continuous case. Similarly arguments as above, by
induction, yieldϕk(t) ≥ γkR

1−α(t), where

γk = γ0 + Γ∗(t0, γk−1), k = 1, 2, . . . . (18)

Since Γ∗(t0, γk) > 0 for any t0 and k ∈ N, we have γk < γk+1, k = 0, 1, 2, . . . . We
claim that limk→∞ γk = ∞. If not, let limk→∞ γk = L < ∞. Then from (18) we have
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L = γ0 + Γ∗(t0, L). First assume that M := M∗ = M∗. Letting t0 to ∞ in Γ∗(t0, L)
we obtain

Γ∗(∞, L) =


Lβ for M = 0,

L
1−(1+M)1−α

(
1− 1

(1+Lβ−1M)α−1

)
for 0 < M < ∞,

L for M = ∞.

Next we show that the equation (18) after this limit process, i.e., the equation

L = γ0 + Γ∗(∞, L) (19)

has no real solution. Indeed, if M = ∞, then (19) yields L = γ0 + L, but we assume
γ0 > γ(∞) = 0, contradiction. If M = 0, then L = γ0 + Lβ, but in this case there
is again contradiction. Indeed, an application of the L’Hospital rule in (15) gives

γ(0) = 1
α

(
α−1

α

)α−1
. Moreover, we assume γ0 > γ(0), and then it is not difficult to see

that the graph of L 7→ γ0 + Lβ does not cross the graph of L 7→ L. If 0 < M < ∞,
then we proceed similarly as for M = 0. We will show that the parabola-like curve
γ(M)+Γ∗(∞, L) touches the line L at L = (((M +1)(α−1)/α−1)/M)α−1, and since we
have (19) with γ0 > γ(M), we obtain a contradiction. Recall that we are interested
just in the first quadrant. After some computations we have

∂

∂L
Γ∗(∞, L) =

1− (1 + MLβ−1)−α

1− (M + 1)1−α
.

Now it is easy to see that

∂

∂L
Γ∗(∞, L) = 1 at L =

(
(M + 1)

α−1
α − 1

M

)α−1

.

Moreover, we have ∂
∂L

Γ∗(∞, L) > 0 and also ∂2

∂L2 Γ∗(∞, L) > 0 for L > 0 and M > 0,
from which the statement follows. It is interesting to observe how the computations
for the case M > 0 resemble the case M = 0 when taking the limits as M → 0+. In
view of the above facts we must have γk →∞ as k →∞, which implies ϕk(t) →∞
as k →∞ for t ≥ t0, where t0 is sufficiently large. Consequently, (1) is oscillatory by
Lemma 1. Now we examine the case when M∗ < M∗. We will show that (19) with
γ0 > γ(M∗) has no real positive solution. Observe that

Γ∗(∞, L) = lim
x→M̄

L

1− (1 + x)1−α

(
1− 1

(1 + Lβ−1x)α−1

)
,

where M̄ ∈ [M∗, M
∗]. This follows from the fact that

x 7→ lim
t→x

L

1− (1 + t)1−α

(
1− 1

(1 + Lβ−1t)α−1

)
(20)

is decreasing or increasing (depending on the value of L). In any case, extrema occur
at boundary points, i.e., at M∗, M

∗. Using the arguments as in the previous part
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yields that the equation L = γ̄0 + Γ∗(∞, L) has no real positive solution provided
γ̄0 > γ(M̄). It is not difficult to see that x 7→ γ(x) is decreasing on [0,∞). Hence,
γ(M̄) ≤ γ(M∗) < γ0, and so neither the equation (19) has a real positive solution.
The rest of the proof is the same as in the case M∗ = M∗. Note that M∗ in condition
(16) is the best value which can be attained when using the procedure of this proof.
This follows from the fact that the function (20) is nondecreasing when L ∈ [0, 1],
and a closer examination of the proof shows that we are interested just in such L’s.

Nonoscillatory part. First note that the examination of the case M∗ = ∞ (i.e.,
γ(M∗) = 0) may obviously be excluded, in view of the assumptions of the theorem.
Condition (17) can be rewritten as ϕ0(t) ≤ δ0R

1−α(t) for large t, say t ≥ t0 > a,
where 0 < δ0 < γ(M∗). Similarly as in the previous part, we get

ϕk(t) ≤ δkR
1−α(t), (21)

where
δk = δ0 + Γ∗(t0, δk−1), (22)

k = 1, 2, . . . , with

Γ∗(t0, u) = sup
t≥t0

lim
λ→µ(t)

{
u

1− (1 + λr1−β(t)/R(t))1−α

×
(

1− 1

(1 + λuβ−1r1−β(t)/R(t))α−1

)}
.

Clearly, {δk} is increasing. We claim that it converges. First assume M = M∗ = M∗.
To show the convergence, consider the fixed point problem x = g(x), where

g(x) = ω + lim
s→M

x

1− (1 + s)1−α

(
1− 1

(1 + xβ−1s)α−1

)
with a positive parameter ω, and the “perturbed” problem x = g̃(x), where g̃(x) =
ω + Γ∗(t0, x). Note that we are particularly interested in the first quadrant. First we
examine the problem x = g(x). Recall that g(x) = ω + xβ if M = 0. The fixed point
will be found by means of th iteration scheme xk = g(xk−1), k = 1, 2, . . . . The graph
of g with ω > 0 is a parabola-like curve where g is positive and increasing on [0,∞).
If ω = γ(M), then the graph of g touches the line x at x = lims→M(((M +1)(α−1)/α−
1)/M)α−1 (note that this value is equal to ((α− 1)/α)α−1 when M = 0). Therefore if
we choose x0 = ω = γ(M) (noting that γ(M) < lims→M(((M +1)(α−1)/α−1)/M)α−1),
then we see that the approximating sequence {xk} for the problem x = g(x) is
strictly increasing and converges to lims→M(((M + 1)(α−1)/α − 1)/M)α−1. Clearly, if
0 < y0 = ω < γ(M), then the approximating sequence {yk} for the same problem,
i.e., satisfying yk = g(yk−1), k = 1, 2, . . . , is increasing as well and permits yk <
xk < lims→M(((M + 1)(α−1)/α − 1)/M)α−1, k ∈ N. Therefore {yk} converges. Now
we take into account that limt0→∞ Γ∗(t0, x) = g(x)− ω. Hence the function g̃ in the
perturbed problem can be made as close to g as we need (locally, on the interval
under consideration) provided t0 is sufficiently large. This closeness of g to g̃ along
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with the inequality δ0 < γ(M) lead to the fact that the sequence {δk} for the original
problem (22) converges for t0 large. Thus {ϕk(t)} converges by (21), and so (1)
is nonoscillatory by Lemma 1. The case when M∗ < M∗ can be treated similarly,
combining the ideas of the last part of “oscillatory proof” with the previous part of
this “nonoscillatory proof”.

If there exists the limit of the expression in (14), then we may establish Hille-
Nehari type criteria with the critical constant which is sharp. The L’Hospital rule is
utilized in (15) when evaluating γ(0) and γ(∞).

Corollary 1. Let M = M∗ = M∗ in Theorem 1. Then γ(M) is the critical constant,
i.e., the constants on the right-hand sides of (16) and (17) are the same. In particular,

γ(M) =


1
α

(
α−1

α

)α−1
if M = 0,(

(M+1)
α−1

α −1
M

)α−1(
1− 1−(M+1)−

(α−1)2

α

1−(M+1)1−α

)
if 0 < M < ∞,

0 if M = ∞.

Remark 1. Note that x 7→ γ(x) is decreasing on [0,∞), and hence(
(M + 1)

α−1
α − 1

M

)α−1(
1− 1− (M + 1)−

(α−1)2

α

1− (M + 1)1−α

)
<

1

α

(
α− 1

α

)α−1

(23)

if M > 0. Therefore we see that the critical constant is not invariant with respect to
time scales, and it may be strictly less than the constant known from the continuous
theory.

As a special case of the previous corollary we get the criteria that match what is
known from the linear theory, see [23].

Corollary 2. Let M = M∗ = M∗ and α = 2 in Theorem 1. Then γ(M) is the critical
constant satisfying

γ(M) =


1
4

if M = 0,
1

(
√

M+1+1)
2 if 0 < M < ∞,

0 if M = ∞.

4 Critical and oscillation constant

As we already said, if the constants on the right-hand sides of (16) and (17) are the
same, then it is called a critical constant (or a critical oscillation constant). This
happens when M = M∗ = M∗ in (14). Sometimes, in similar situations in the
literature, this constant is said to be an oscillation constant. However, we prefer
to use the former terminology since the latter one has sometimes another meaning,
which concerns conditionally oscillatory equations discussed in the next section. As
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we will see, there is a connection between critical and oscillation constants: Hille–
Nehari criteria involving the critical constant can be used to derive the oscillation
constant. The term “critical” constant reflects the fact that this constant cannot
be improved and forms a sharp border between oscillation and nonoscillation. Note
that the strict inequalitities in Hille–Nehari criteria cannot be replaced by nonstrict
ones since no conclusion can be drawn if either lim inft→∞A(t) or lim supt→∞A(t)
equals the critical constant; both oscillation and nonoscillation may happen, as it has
already been shown in the linear continuous case, see e.g. [24]. Our results show that

if lim inft→∞A(t) > 1
α

(
α−1

α

)α−1
, then (1) is oscillatory (no matter what time scale is,

since (23) holds). However, in addition, our Theorem 1 says that 1
α

(
α−1

α

)α−1
is not the

best possible constant which is universal for all time scales (in particular, it may not be
critical at all). In fact, the constant depends on a time scale and also on the coefficient

r; the cases happen where it is strictly less than 1
α

(
α−1

α

)α−1
. If M = M∗ = M∗ is

satisfied, then for the critical constant it holds γ(M) ∈
[
0, 1

α

(
α−1

α

)α−1
]
. Later we will

present examples where γ(M) < 1
α

(
α−1

α

)α−1
. We conclude this item with noting that

oscillation of (1) is still possible even when lim inft→∞A(t) < γ(M). This follows
from the following theorem, and we emphasize that there is needed no additional
condition on a time scale.

Theorem 2 ([22, Theorem 4]). If lim supt→∞A(t) > 1, then (1) is oscillatory.

5 Strong and conditional oscillation

Consider the equation

(r(t)Φ(y∆))∆ + λp(t)Φ(yσ) = 0, (24)

where r(t) > 0, p(t) > 0, and λ is a real parameter. In the linear continuous case,
the concept of strong and conditional oscillation was introduced by Nehari [18]. We
say that (24) is conditionally oscillatory if there exists a constant 0 < λ0 < ∞
such that (24) is oscillatory for λ > λ0 and nonoscillatory for λ < λ0. The value
λ0 is called the oscillation constant of (24). If equation (24) is oscillatory (resp.
nonoscillatory) for every λ > 0, then this equation is said to be strongly oscillatory
(resp. strongly nonoscillatory). Next we apply the results from the previous section
to derive necessary and sufficient conditions for strong (non)oscillation.

Theorem 3. Assume that M∗ < ∞. Then (24) is strongly oscillatory if and only if
lim supt→∞A(t) = ∞, and it is strongly nonoscillatory if and only if limt→∞A(t) = 0.

Proof. Denote R(t) :=
∫ t

a
r1−β(s) ∆s. If lim supt→∞A(t) = ∞ holds, then we have

lim supt→∞Rα−1(t)
∫∞

t
λp(s) ∆s > 1 for every λ > 0, and so (24) is oscillatory for

every λ > 0 by Theorem 2. Conversely, if (24) is strongly oscillatory, then

lim sup
t→∞

Rα−1(t)

∫ ∞

t

λp(s) ∆s ≥ γ(M∗) > 0 (25)
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for every λ > 0 by Theorem 1. This implies lim supt→∞A(t) = ∞, otherwise (25)
would be violated for sufficiently small λ. The proof of the part concerning strong
nonoscillation is based on similar arguments. The details are left to the reader.

One could ask whether the condition M∗ < ∞ in the last theorem may be
dropped. In general, the answer is no. Realize that strong oscillation [strong nonoscil-
lation] of (24) is nothing but λ0 = 0 [λ0 = ∞], where λ0 is the oscillation constant.
Now assume that M∗ = ∞ = M∗ and limt→∞A(t) = L ∈ (0,∞) exists. Then
limt→∞Rα−1(t)

∫∞
t

λp(s) ∆s = λL > 0 for every λ > 0. This implies strong oscil-
lation of (24), however the condition lim supt→∞Rα−1(t)

∫∞
t

λp(s) ∆s = ∞ does not
hold. A particular example of such strongly oscillatory equation will be given later.

6 Euler type equations and Kneser type criteria

Consider the equation

(Φ(y∆))∆ + λ(−t1−α)∆Φ(yσ) = 0, (26)

where λ is a positive parameter. Note that we are interested only in positive λ’s
since for λ = 0, equation (26) is readily explicitly solvable, it is nonoscillatory, and
thus for λ < 0 is nonoscillatory as well by the Sturm type comparison theorem.
Equation (26) will be called a generalized Euler dynamic equation since for T = R
and α = 2 it reduces to the well known Euler differential equation y′′ + λt−2y = 0.
Also note that (26) yields the generalized (half-linear) Euler differential equation
(Φ(y′))′+λ(α−1)t−αΦ(y) = 0 when T = R and it yields the linear dynamic equation
y∆∆ + (λ/(tσ(t)))yσ = 0 when α = 2. Applying Theorem 1, we get that (26) is
oscillatory provided λ > γ(M∗) and nonoscillatory provided λ > γ(M∗). Assume
that M = M∗ = M∗. Then M = limt→∞ µ(t)/t, γ(M) is the critical constant and
λ0 = γ(M) is the oscillation constant. Now if, for example T = R or T = Z, then
M = 0 and γ(M) = ((α − 1)/α)α−1/α. Note that γ(M) = ((α − 1)/α)α−1/α for all
time scales whose graininess µ(t) is asymptotically less than t; for example, T = {n2 :
n ∈ N0} (then µ(t) = 1 + 2

√
t). If we assume that T = qN0 := {qk : k ∈ N0} with

q > 1, then (26) reduces to the generalized Euler q-difference equation, µ(t) = (q−1)t,
and M = q − 1 > 0. Hence the critical constant is

γ(M) =

(
q

α−1
α − 1

q + 1

)α−1(
1− 1− q−

(α−1)2

α

1− q1−α

)
<

1

α

(
α− 1

α

)α−1

.

Finally assume that T = 2ωN0 := {2ωk
: k ∈ N0} with ω > 1. Then µ(t) = tω − t

and so M = ∞. Hence, the critical constant is γ(M) = 0. This implies that (26) on
T = 2ωN0 is oscillatory for all λ > 0. Therefore, equation (26) is strongly oscillatory
when T = 2ωN0 while it is conditionally oscillatory in all other previous cases. One
may wish to consider a different type of generalized Euler equation, namely

(Φ(y∆))∆ +
λ̄

σα(t)
yσ = 0 (27)
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or (Φ(y∆))∆ + λ̃t−αyσ = 0. Note that (27) may arise as a quite natural form of the
equation where the process of discretization of

(Φ(y′))′ +
λ̄

tα
Φ(y) = 0 (28)

is reflected. Indeed, a discrete counterpart of the last equation may be of the form

∆(Φ(∆yk)) +
λ̄

(k + 1)α
Φ(yk+1) = 0. (29)

Next we compare oscillatory behavior of equations (26) and (27) in some special cases.
Assume that λ0 is the oscillation constant of (26). If T = R, then

λ̄0 = (α− 1)λ0 =

(
α− 1

α

)α

is the oscillation constant of (28). Since ∆(−t1−α) = (α−1)ξ−α(t) ∼ (α−1)(t+1)−α

with t ≤ ξ(t) ≤ t+1, the oscillation constant of (29) is the same as in the continuous
case. If T = qN0 with q > 1, then (27) reduces to the q-difference equation

Dq(Φ(Dqy(t))) +
λ̄

(qt)α
Φ(y(qt)) = 0.

Since Dq(−t1−α) = (1− q1−α)/(tα(q−1)), for the oscillation constant of this equation
we have

λ̄0 =
qα − q

q − 1
λ0 =

qα − q

q − 1

(
q

α−1
α − 1

q + 1

)α−1(
1− 1− q−

(α−1)2

α

1− q1−α

)
.

Note how this result resembles the continuous counterpart when taking the limit as
q → 1. In particular (qα− q)/(q− 1) → α− 1 as q → 1. One can see how a seemingly
insignificant change from (26) to (27) may have an influence to the oscillatory behavior
in a general case.

Next we will consider a generalized form of (26), namely

(r(t)Φ(y∆))∆ + λ(−R1−α(t))∆Φ(yσ) = 0, (30)

where λ is a positive parameter and R(t) =
∫ t

a
r1−β(s) ∆s with R(∞) = ∞. If

r(t) ≡ 1, then (30) reduces to (26). In the continuous oscillation theory, i.e., T = R,
there is no substantial difference between (26) and (30) owing to the transformation
of independent variable t 7→ R(t), and so without loss of generality it is sufficient to
examine just (26). However, in a general time scale case (even when e.g. T = Z)
such a transformation is not available, and so considering the case (30) with r(t) 6≡ 1
brings new observations. According to Corollary 1, the critical constant is equal to
γ(M), where M = limt→∞ µ(t)r1−β(t)/R(t), and a simple calculation shows that for
the associated oscillation constant of (30) one has λ0 = γ(M). Similarly as for (26), a
discussion can be made for (30) distinguishing the cases where µ(t) is asymptotically
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less than or equal to or greater than rβ−1(t)R(t). The details are left to the reader. It
is not difficult to find an example of r showing that M > 0 may occur even in the well-
studied discrete case that is the result which has not been known before. Equations of
the form (30) may be very useful for comparison purposes. In particular, applying the
generalized Sturm type theorem ([20, Theorem 3]), where (1) and (30) are compared,
leads to the following theorem (where we do not need to assume (11)).

Theorem 4. Let the (finite or infinite) limit

M = lim
t→∞

µ(t)r1−β(t)

R(t)

exist. If

lim inf
t→∞

p(t)

(−R1−α)∆(t)
> γ(M),

then (1) is oscillatory. If

lim sup
t→∞

p(t)

(−R1−α)∆(t)
< γ(M),

then (1) is nonoscillatory.

Naturally, γ(M) is again a sharp constant. For historical reasons, this theorem
can be called a generalized Kneser theorem. Indeed, if T = R, α = 2, and r(t) ≡ 1,
then we obtain that lim inft→∞ t2p(t) > 1/4 implies oscillation of y′′ + p(t)y = 0,
while lim supt→∞ t2p(t) < 1/4 implies nonoscillation of y′′ + p(t)y = 0 (cf. [24]). A
slight modification of the above approach yields Kneser type criteria in the case when
M∗ < M∗. As before, the results are new even in the discrete case.

Similarly as the Sturm type theorem was applied to obtain Kneser type criteria,
the Hille–Wintner type comparison theorem (see [22, Theorem 11]) can be used to
obtain (back) Hille–Nehari type criteria. Recall that in contrast to the Sturm type
theorem, where the comparison of the coefficients is pointwise, the comparison of the
coefficients in the second terms of equations in a Hille-Wintner sense is “integral”,
i.e., “on average”. Thus we have an alternative approach how to prove Corollary 1 (or
Theorem 1). However, there is a disadvantage of this approach since in general we do
not know how to describe solutions of the generalized Euler type equation (even when
r(t) ≡ 1 and α = 2) in such a way which would provide an exact information about
the oscillation constant (and consequently critical constant). The approach from
Section 3 does not require a knowledge of such constant, what’s more that statement
factually provides it. Finally note that there are situations where the Kneser type
criteria do not apply while the Hille-Nehari ones do, see e.g. [23].

7 Examples from q-calculus

We have already presented some examples in the previous section. Here we add some
more ones. We prefer to show a “non-classical” case (i.e., T 6= R and T 6= Z), thus
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let us for example assume that T = qN0 with q > 1. We will compute the value
of the critical constant for two different coefficients r(t) to obtain nice examples of
conditionally oscillatory Euler type q-difference equations of the form

Dq(r(t)Φ(Dqy(t))) + λDq(−R1−α(t))Φ(y(qt)) = 0 (31)

with the known oscillation constant that can be further used for comparison purposes.
First assume that r(t) = tδ with δ ∈ R, δ ≤ α − 1. Recall that for f : T → R, it

holds
∫ σ(t)

t
f(s) ∆s = µ(t)f(t). Then, with t = qn, n ∈ N0, and δ < α− 1 we have

M = lim
t→∞

µ(t)r1−β(t)∫ t

1
r1−β(s) ∆s

= lim
n→∞

(q − 1)qn((qn)δ)1−β∑n−1
j=0 µ(qj)((qj)δ)1−β

= lim
n→∞

(q1+δ−δβ)n∑n−1
j=0 (q1+δ−δβ)j

= lim
n→∞

q(1+δ−δβ)n(q1+δ−δβ − 1)

q(1+δ−δβ)n

= q1+δ−δβ − 1,

where L’Hospital’s rule is used. The same result is obtained when δ = α − 1 since
Dq(ln t) = ln q/((q − 1)t). Thus the associated critical constant to equation (31) is
equal to γ(q1+δ−δβ − 1).

Now assume that r(t) = ζ logq(1/t) with ζ ≥ q1−α. Then, with t = qn, n ∈ N0, we
have r(t) = ζ−n. Applying similar arguments as above, we get M = qζβ−1 − 1, and
so the associated critical constant to equation (31) is equal to γ(qζβ−1 − 1).

The details how to specify the second coefficient in (31) are left to the reader.
Note just that for general case we have

Dq(R
1−α(t)) = (q − 1)α−2

( n∑
j=0

qj− n
α−1 r1−β(qj)

)α−1

−

(
n−1∑
j=0

qj− n
α−1 r1−β(qj)

)α−1


with t = qn, n ∈ N0, and in some particular cases this expression can substantially
be simplified.

From the previous section we know that for the oscillation constant of (31) one
has λ0 = γ(M), where M = q1+δ−δβ − 1 for the former r while M = qζβ−1− 1 for the
latter r.

8 Concluding remarks

In this last section we indicate some directions for a future research related to the
topic of this paper. We have established Hille-Nehari type criteria for half-linear
dynamic equations. The theorems are new even in some special cases, and in view of
the presence of the critical constant, the results are non-improvable in a certain sense.
A much wider class of equations than before can now be examined by our criteria. In
spite of these facts, there are still some problems to solve in this field. Moreover, our
results could serve for possible establishing new results in related fields.
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In the oscillation and asymptotic theory of second order equations, it is usual
to distinguish between the divergence and the convergence of the integral of the
coefficient in the differential term, i.e., in our case, R =

∫∞
a

r1−β(s) ∆s. The properties
of this integral substantially affects the behavior of solutions. In our paper we assume
the divergence. Thus it is natural to ask how about the case when R < ∞. In a
linear case, there is no substantial difference between these two cases in view of the
transformation of dependent variable (we transfer an equation with R < ∞ into an
equation with R = ∞ and then we may apply known criteria). However, in a half-
linear case such a transformation is not available (even in the continuous case), and
hence equations with R < ∞ needs to be investigated by means of other methods.

Another question is what happens with oscillation or nonoscillation of (1) when
M∗ < M∗, i.e., γ(M∗) < γ(M∗), and the limit values of the expression A(t) as
t →∞ remains between γ(M∗) and γ(M∗). Such a situation is not very common in
applications but generally it may occur.

The final remark concerns a utilization of our results in the theory of inequalities.
The so-called variational principle (see [20]) says that there is an equivalence between
the positive definiteness of the α-degree functional∫ b

a

{
r(t)|ξ∆(t)|α − p(t)|ξσ(t)|α

}
∆s

on a certain class of the so-called admissible functions and the disconjugacy of (1)
on [a, b]. Thanks to this relation we hope that the application of Hille-Nehari criteria
could serve in establishing a Hardy type inequality (involving delta integrals) in quite
general setting. In particular, we believe that the knowledge of the oscillation constant
in the generalized Euler equation could yield the Hardy type inequality involving the
best possible constant (depending on time scales). Till now there is known just that∫ ∞

a

(
F σ(t)

σ(t)− a

)α

∆t <

(
α

α− 1

)α ∫ ∞

a

(f(t))α∆t,

where F (t) =
∫ t

a
f(s) ∆s. The constant is the best possible provided limt→∞ µ(t)/t =

0 (see [21]). A closer examination (in particular, applying the variational principle and
the above inequality to an Euler type inequality) shows that this result coincides with
our observations when M = limt→∞ µ(t)/t = 0. Indeed, the fact that the constant
in Hille-Nehari type criteria is critical corresponds to the fact that the constant in a
Hardy type inequality is the best possible. What remains to solve and will hopefully
be handled in our subsequent paper is the case M 6= 0. The cases with more general
weight functions which then correspond to appropriate choices of r are also of interest.
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[23] P. Řehák, How the constants in Hille-Nehari theorems depend on time scales,
Adv. Difference Equ. 2006 (2006), 1–15.

[24] C. A. Swanson, Comparison and Oscillation Theory of Linear Differential Equa-
tions, Academic Press, New York, 1968.

[25] D. Willett, Classification of second order linear differential equations with respect
to oscillation, Adv. Math. 3 (1969), 594–623.

[26] G. Zhang, S. S. Cheng, A necessary and sufficient oscillation for the discrete
Euler equation, Panam. Math. J. 9 (1999), 29–34.

17


