
NATURAL DIFFERENTIAL OPERATORS AND GRAPH COMPLEXES

MARTIN MARKL

Abstract. We show how the machine invented by S. Merkulov [19, 20, 22] can be used to study
and classify natural operators in differential geometry. We also give an interpretation of graph
complexes arising in this context in terms of representation theory. As application, we prove
several results on classification of natural operators acting on vector fields and connections.

Introduction

This work started in an attempt to understand S. Merkulov’s idea of ”PROP profiles” [19, 22]

and see if and how it may be used to investigate natural structures in geometry. It turned

out that classifications of these geometric structures in many interesting cases boiled down to

calculations of the cohomology of certain graph complexes. More precisely, for a wide class of

natural operators, the following principle holds.

Principle. For a given type of natural differential operators, there exists a graph complex

(Gr∗, δ) = (Gr0 δ
→ Gr1 δ

→ Gr2 δ
→ · · · )

such that, in stable ranges,

{natural operators of a given type} ∼= H0(Gr∗, δ).

Stability means that the dimension of the underlying manifold is bigger than some constant

explicitly determined by the type of natural operators. For example, for multilinear natural

operators TM×d → TM from the d-fold product of the tangent bundle into itself the stability

means that dim(M) ≥ d. In smaller dimensions, “exotic” operations described in [5] occur.

In all cases we studied, the corresponding graph complex appeared to be acyclic in positive

dimensions, so the cohomology describing natural operators was the only nontrivial piece of the

cohomology of (Gr∗, δ). Standard philosophy of strongly homotopy structures [13] suggests that

the graph complex (Gr∗, δ) describes stable strongly homotopy operators of a given type.

Graph complexes arising in the Principle are in fact isomorphic to subspaces of fixed ele-

ments in suitable Chevalley-Eilenberg complexes, so, formally speaking, we claim that a certain

Chevalley-Eilenberg cohomology is the cohomology of some graph complex. Instances of this
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2 M. MARKL

phenomenon were systematically used by M. Kontsevich in his seminal paper [11]. The de-

tails of operadic graph complexes were then written down by J. Conant [2], J. Conant and

K. Vogtmann [3, 4], M. Mulase and M. Penkava [23], M. Penkava [25], and M. Penkava and

A. Schwarz [26]. What makes the Principle exciting is the miraculous fact that the correspond-

ing graph complexes are of the type studied during the ”renaissance of operads” and powerful

methods developed in this period culminating in [16, 18, 21] apply.

Another way to view the proposed method is as a formalization of the ”abstract tensor cal-

culus” attributed to R. Penrose. When we studied differential geometry in kindergarten, many

of us, trying to avoid being swamped by dozens of indices, draw simple pictures consisting of

nodes representing tensors (which resembled little insects) and lines joining legs of these insects

symbolizing contraction of indices. We attempt to put this kindergarten approach on a solid

footing.

Thus the purpose of this paper is two-fold. The first one is to set up principles of abstract ten-

sor calculus as a useful language for ‘stable’ geometric objects. This will be done in Sections 1–4.

The logical continuation should be translating textbooks on differential geometry into this lan-

guage, because all basic properties of fundamental objects (vector fields, forms, currents, con-

nections and their torsions and curvatures) are of stable nature.

We then show, in Sections 5–7, how results on graph complexes may give explicit classifications

of natural operators in stable ranges. As an example we derive from a rather deep result of [15]

a characterization of operators on vector fields (Theorem 5.1 and its Corollary 5.3). As another

application we prove that all natural operators on linear connections and vector fields, with values

in vector fields, are freely generated by compositions of covariant derivatives and Lie brackets, and

by traces of these compositions – see Theorems 7.2 and 7.6, and their Corollaries 7.3 and 7.7, in

conjunction with Theorems 6.2 and 6.3. It is interesting that in the concrete geometric situations

studied in this paper, the graph complexes popping out are variants of the insertion operad of [1].

The article is supplemented by an appendix in which we explain the relation between invariant

tensors and graphs. We believe that the appendix, which can be read independently, will help

to understand the constructions of Sections 3 and 4.

The theory of invariant operators sketched out in this paper leads to directed, not necessarily

connected or simply-connected, graphs. A similar theory can be formulated also for symplectic

manifolds, where the corresponding graph complexes would be those appearing in the context of

anti-modular operads (modular versions of anticyclic operads, see [17, Definition 5.20]). Some-

thing very close to a symplectic version of our theory has in fact already been worked out in [28].

Acknowledgment. I would like to express my thanks to S. Merkulov for sharing his ideas with

me. I am indebted to A. Alekseev for suggesting an interpretation of the homological vector field
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my reasoning to me and gave me a preliminary version of [28]. Also conversations with J. Slovák

at the Winter School in Srńı were extremely useful. Remarks and suggestions of the referee lead

to a substantial improvement of the paper. I am also indebted to the Institut des Hautes Études

Scientifiques, Bures-sur-Yvette, for the hospitality during the period when the final revision was
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The first version of this paper was finished during my stay at the Max-Planck-Institut für
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1. Natural operators

Informally, a natural differential operator is a recipe that constructs from a geometric ob-

ject another one, in a natural fashion, and which is locally a function of coordinates and their

derivatives.

1.1. Example. Let M be a n-dimensional smooth manifold. The classical Lie bracket X, Y 7→

[X, Y ] is a natural operation that constructs from two vector fields on M a third one.

Given a local coordinate system (x1, . . . , xn) on M , the vector fields X and Y are locally

expressions

X =
∑

1≤i≤n

X i ∂

∂xi
, Y =

∑

1≤i≤n

Y i ∂

∂xi
,

where X i, Y i are smooth functions on M . If we define X i
j := ∂X i/∂xj and Y i

j := ∂Y i/∂xj ,

1 ≤ i, j ≤ n, then the Lie bracket is locally given by the formula

[X, Y ] =
∑

1≤i,j≤n

(
XjY i

j − Y jX i
j

) ∂

∂xi
.

In the rest of the paper, we use Einstein’s convention assuming summations over repeated

indices. In this context, indices i, j, k, . . . will always be natural numbers between 1 and the

dimension of the underlying manifold, which will typically be denoted n.

1.2. Example. The covariant derivative (Γ, X, Y ) 7→ ∇XY is a natural operator that constructs

from a linear connection Γ and a two vector fields X and Y , a vector field ∇XY . In local

coordinates,

(1) ∇XY =
(
Γi

jkX
jY k +XjY i

j

) ∂

∂xi
,

where Γi
jk are Christoffel symbols.
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4 M. MARKL

Natural operations can be composed into more complicated ones. Examples of these ‘com-

posed’ operations are the torsion

T (X, Y ) := ∇XY −∇YX − [X, Y ]

and curvature

R(X, Y )Z := ∇[X,Y ]Z − [∇X ,∇Y ]Z

of the linear connection Γ.

1.3. Example. Let X be a vector field and ω a 1-form on M . Denote by ω(X) ∈ C∞(M) the

evaluation of the form ω on X. Then (X,ω) 7→ exp(ω(X)) defines a natural differential operator

with values in smooth functions. Clearly, the exponential can be replaced by an arbitrary smooth

function ϕ : R → R, giving rise to a natural operator Oϕ(X,ω) := ϕ(ω(X)).

1.4. Example. ‘Randomly’ generated local formulas need not lead to natural operators. As we

will see later, neither

O1(X, Y ) = X1
3Y

4 ∂

∂x2
nor O2(X, Y ) = XjY i

j

∂

∂xi

behaves properly under coordinate changes, so they do not give rise to vector-field valued natural

operators.

We may summarize the above examples by saying that a natural differential operator is a recipe

given locally as a smooth function in coordinates and their derivatives, such that the local

formula is invariant under coordinate changes. After this motivation, we give precise definitions

of geometric objects and operators between them. Our exposition follows [8], see also [10].

Let us say first what we mean by a geometric object. Denote by Mann the category of n-

dimensional manifolds and open embeddings. Let Fibn be the category of smooth fiber bundles

over n-dimensional manifolds with morphisms differentiable maps covering morphisms of their

bases in Mann.

1.5. Definition. A natural bundle is a functor B : Mann → Fibn such that for each M ∈ Mann,

B(M) is a bundle over M . Moreover, B(M ′) is the restriction of B(M) for each open submanifold

M ′ ⊂ M , the morphism B(M ′) → B(M) induced by M ′ ↪→ M being the inclusion B(M ′) ↪→

B(M).

Let us recall a structure theorem for natural bundles due to Krupka, Palais and Terng [12, 24,

27]. For each s ≥ 1 we denote by GL(s)
n the group of s-jets of local diffeomorphisms Rn → Rn at

0, so that GL(1)
n is the ordinary general linear group GLn of linear invertible maps A : Rn → Rn.

Let Fr (s)(M) be the bundle of s-jets of frames on M whose fiber over z ∈ M consist of s-jets of

local diffeomorphisms of neighborhoods of 0 ∈ Rn with neighborhoods of z ∈M . It is clear that

Fr (s)(M) is a principal GL(s)
n -bundle and that Fr (1)(M) is the ordinary GLn-bundle of frames

Fr(M).

[November 11, 2007]
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1.6. Theorem (Krupka, Palais, Terng). For each natural bundle B, there exists l ≥ 1 and

a manifold B with a smooth GL(l)
n -action such that there is a functorial isomorphism

(2) B(M) ∼= Fr (l)(M) ×
GL

(l)
n

B := (Fr (l)(M) × B)/GL(l)
n .

Conversely, each smooth GL(l)
n -manifold B induces, via (2), a natural bundle B. We will call

B the fiber of the natural bundle B. If the action of GL(l)
n on B does not reduce to an action of

the quotient GL(l−1)
n we say that B has order l.

1.7. Example. Vector fields are sections of the tangent bundle T (M). The fiber of this bundle

is Rn, with the standard action of GLn. The description

T (M) ∼= Fr(M) ×GLn
Rn

is classical.

1.8. Example. De Rham m-forms are sections of the bundle Ωm(M) whose fiber is the space of

anti-symmetric m-linear maps Lin(∧m
(Rn),R), with the obvious induced GLn-action. The pre-

sentation

Ωm(M) ∼= Fr(M) ×GLn
Lin(∧m

(Rn),R)

is also classical.

A particular case is Ω0(M) ∼= Fr(M)×GLn
R ∼= M ×R, the bundle whose sections are smooth

functions. We will denote this natural bundle by R, believing there will be no confusion with the

symbol for the reals.

1.9. Example. Linear connections are sections of the bundle of connections Con(M) [10, Sec-

tion 17.7] which we recall below. Let us first describe the group GL(2)
n . Its elements are expressions

of the form A = A1 +A2, where A1 : Rn → Rn is a linear invertible map and A2 is a linear map

from the symmetric product Rn � Rn to Rn. The multiplication in GL(2)
n is given by

(A1 + A2)(B1 +B2) := A1(B1) + A1(B2) + A2(B1, B1).

The unit of GL(2)
n is idRn + 0 and the inverse is given by the formula

(A1 + A2)
−1 = A−1

1 − A−1
1 (A2(A

−1
1 , A−1

1 )).

Let C be the space of linear maps Lin(Rn ⊗ Rn,Rn), with the left action of GL(2)
n given as

(3) (Af)(u⊗ v) := A1f(A−1
1 (u), A−1

1 (v)) − A2(A
−1
1 (u), A−1

1 (v)),

for f ∈ Lin(Rn ⊗ Rn,Rn), A = A1 + A2 ∈ GL(2)
n and u, v ∈ Rn. The bundle of connections is

then the order 2 natural bundle represented as

Con(M) := Fr (2)(M) ×
GL

(2)
n

C.

[November 11, 2007]



6 M. MARKL

Observe that, while the action of GL(2)
n on the vector space C is not linear, the restricted action

of GLn ⊂ GL(2)
n on C is the standard action of the general linear group on the space of bilinear

maps.

For k ≥ 0 we denote by B(k) the bundle of k-jets of local sections of the natural bundle B so

that B(0) = B. If B is represented as in (2), then

B(k)(M) ∼= Fr (k+l)(M) ×
GL

(k+l)
n

B(k),

where B(k) is the space of k-jets of local diffeomorphisms Rn → B defined in a neighborhood of

0 ∈ Rn.

1.10. Definition. Let F and G be natural bundles. A (finite order) natural differential operator

O : F → G is a natural transformation (denoted by the same symbol) O : F(k) → G, for some

k ≥ 1. We denote the space of all natural differential operators F → G by Nat(F,G).

If F and G are natural bundles of order ≤ l, with fibers F and G, respectively, then each

natural operator in the above definition is induced by an GL(k+l)
n -equivariant map O : F(k) → G,

for some k ≥ 0. Conversely, such an equivariant map induces a natural operator O : F → G.

This means that the study of natural operators between natural bundles is reduced to the study

of equivariant maps. The procedure described above is therefore called the IT reduction (from

invariant-theoretic).

From this moment on, we impose the following assumptions on natural bundles F, G an

operators O : F → G between them.

A1 The fibers F and G of the bundles F and G are vector spaces and the restricted actions

of GLn ⊂ GL(l)
n on F and G are rational linear representations,

A2 the action of GL(l)
n on the fiber G of G is linear, and

A3 we consider only polynomial differential operators for which the induced map of the fibers

O : F(k) → G is a polynomial map.

Observe that we do not require the action of the full group GL(l)
n on the fiber of F to be linear.

Assumption A2 is needed for the cohomology in Theorem 2.2 in Section 2 to be well-defined,

assumptions A1 and A3 are necessary to relate this cohomology to a graph complex.

Polynomiality A3 rules out operators as Oϕ from Example 1.3. There is probably no systematic

way how to study operators of this type – imagine that ϕ is an arbitrary, not even real analytic,

smooth function. Clearly most if not all “natural” natural operators considered in differential

geometry are polynomial, so assumption A3 seems to be justified. As argued in [10, Section 24]

and as we will also see later in Remarks 5.2 and 7.1, in some situations the operators possess a

certain homogeneity which automatically implies polynomiality.

[November 11, 2007]
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1.11. Example. Given natural bundles B′ and B′′ with fibers B′ resp. B′′, there is an obviously

defined natural bundle B′ × B′′ with fiber B′ × B′′. With this notation, the Lie bracket is a

natural operator

[−,−] : T × T → T

and the covariant derivative an operator

∇ : Con × T × T → T,

where T is the tangent space functor and Con the bundle of connections recalled in Example 1.9.

The corresponding equivariant maps of fibers can be easily read off from local formulas given in

Examples 1.1 and 1.2.

1.12. Example. The operator Oϕ : T × Ω1 → C∞ from Example 1.3 is induced by the GLn-

equivariant map Oϕ : Rn × Rn∗ → R given by oϕ(v, α) := ϕ(α(v)). Clearly, Oϕ satisfies A3 if

and only if ϕ : R → R is a polynomial.

2. Natural operators and cohomology

We start this section by a brief recollection of two classical constructions. For a Lie algebra h

and a h-module W , the Chevalley-Eilenberg cohomology H∗(h,W ) of h with coefficients in W is

the cohomology of the cochain complex (C∗(h,W ), δCE) defined by

Cm(h,W ) := Lin(∧m
h,W ), m ≥ 0,

with δCE the sum δCE = δ1 + δ2, where

(δ1f)(h1, . . . , hm+1) :=
∑

1≤i≤m+1

(−1)i+1 · hif(h1, . . . , ĥi, . . . , hm+1) and(4)

(δ2f)(h1, . . . , hm+1) :=
∑

1≤i<j≤m+1

(−1)i+j · f([hi, hj], h1, . . . , ĥi, . . . , ĥj, . . . , hm+1),(5)

for f ∈ Cm(h,W ), h1, . . . , hm+1 ∈ h and ˆ denoting the omission. If m = 0, the summation in

the right hand side of (5) runs over the empty set, so we put (δ2f)(h) := 0 for f ∈ C0(h,W ).

The second notion we need to recall is the semidirect product of groups. Assume that G and

H are Lie groups, with G acting on H by homomorphisms. One then defines the semidirect

product G×H as the Cartesian product G×H with the multiplication

(g1, h1)(g2, h2) := (g1g2, g
−1
2 (h1)h2), g1, g2 ∈ G, h1, h2 ∈ H.

Both G and H are subgroups of G×H and their union G∪H generates G×H. Let us close this

introductory part by formulating a proposition that ties the above two constructions together.

If W is a left G×H-module, the inclusion H ⊂ G×H induces a left H-action on W which in

turn induces an infinitesimal action of h on W . One may therefore consider the cochain complex

(C∗(h,W ), δCE).

[November 11, 2007]
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Since G acts by homomorphisms, the unit of H is G-fixed, so there is an induced action of G

on the Lie algebra h of H. The group G acts also on W , via the inclusion G ⊂ G×H. These

two actions give rise, in the usual way, to an action of G on C∗(h,W ). Let us denote C∗
G(h,W )

the subspace of G-fixed elements of C∗(h,W ). We have the following:

2.1. Proposition. The subspace of fixed elements C∗
G(h,W ) ⊂ C∗(h,W ) is δCE -closed, so it

makes sense to consider the cohomology H∗
G(h,W ) := H∗(C∗

G(h,W ), δCE ). For H connected,

there is an isomorphism

(6) H0
G(h,W ) ∼= WG×H ,

where WG×H denotes, as usual, the space of G×H-fixed elements in W .

Proof. We leave a direct verification of the δCE -closeness of C∗
G(h,W ) as a simple exercise to the

reader. It is equally easy to see that H0
G(h,W ) consists of elements ofW which are simultaneously

G-fixed and h-invariant. If H is connected, the exponential map is an epimorphism, thus h-

invariant elements in W are precisely those which are H-fixed. This, along with the fact that

G ∪H generates G×H, gives (6). �

– – – – –

In Section 1 we recalled that natural differential operators O ∈ Nat(F,G) between natural

bundles of order ≤ l with fibers F resp. G, correspond to GL(k+l)
n -equivariant maps O : F(k) → G

with some k ≥ 0. This can be expressed by the isomorphism:

(7) Nat(F,G) ∼=
⋃

k≥0

Map
GL

(k+l)
n

(F(k),G),

where Map
GL

(k+l)
n

(F(k),G) is the space of polynomial GL(k+l)
n -equivariant maps F(k) → G – see

assumption A3 on page 6. The space Map(F(k),G) of all polynomial maps has the standard

GL(k+l)
n -action induced from the actions on F(k) and G. As usual, the space of equivariant maps

is the fixed subspace

Map
GL

(k+l)
n

(F(k),G) = Map(F(k),G)
GL

(k+l)
n

.

Let us see how Proposition 2.1 describes these spaces.

The crucial observation is that GL(s)
n is, for each s ≥ 1, a semidirect product [10, Section 13].

If (Rn)�r denotes the rth symmetric power of Rn, r ≥ 1, then elements of GL(s)
n are expressions

A = A1 + A2 + A3 + · · · + As, Ai ∈ Lin
(
(Rn)�i,Rn

)
, 1 ≤ i ≤ s,

such that A1 : Rn → Rn is invertible. The space Lin
(
(Rn)�i,Rn

)
is of course canonically

isomorphic to the space Sym
(
(Rn)⊗i,Rn

)
of symmetric multilinear maps. We will identify these

two spaces in the sequel. We leave as an exercise to write formulas for the product and inverse;

for s = 2 it was done in Example 1.9.

[November 11, 2007]
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Denote by NGL(s)
n the prounipotent radical of GL(s)

n ,

NGL(s)
n = {A = A1 + A2 + A3 + · · ·+ As ∈ NGL(s)

n ; A1 = id}.

Then GL(s)
n is the semidirect product

GL(s)
n = GLn×NGL(s)

n ,

with GLn acting on NGL(s)
n by adjunction. Denote finally ngl(s)n the Lie algebra of NGL(s)

n ,

(8) ngl(s)n = {a = a2 + a3 + · · ·+ as; ai ∈ Sym
(
(Rn)⊗i,Rn

)
, 2 ≤ i ≤ s}.

Assume that the action of GL(l)
n on the fiber G of G is linear. Then Map(F(k),G) is a linear

representation of GL(k+l)
n and Proposition 2.1 applied to G = GLn, H = NGL(k+l)

n and W =

Map(F(k),G) gives

(9) Map
GL

(k+l)
n

(F(k),G) ∼= H0
GLn

(
ngl(k+l)

n ,Map(F(k),G)
)
.

For each k ≥ 0, the inclusion Map(F(k),G) ↪→ Map(F(k+1),G) together with the projection

ngl(k+l+1)
n → ngl(k+l)

n induces a GLn-invariant inclusion

C∗(ngl(k+l)
n ,Map

(
F(k),G)

)
↪→ C∗

(
ngl(k+l+1)

n ,Map(F(k+1),G)
)

which commutes with the differentials. Let us denote

(10) C∗
(
ngl(∞)

n ,Map(F(∞),G)
)

:=
⋃

k≥0

⋃

l≥1

C∗
(
ngl(k+l)

n ,Map(F(k),G)
)

and C∗
GLn

(
ngl(∞)

n ,Map(F(∞),G)
)

the GLn-stable subspace of C∗
(
ngl(∞)

n ,Map(F(∞),G)
)
. Finally,

let

H∗

GL
(∞)
n

(
ngl(∞)

n ,Map(F(∞),G)
)

:= H∗(C∗
GLn

(
ngl(∞)

n ,Map(F(∞),G)), δCE

)
.

Then (7) together with (9) and the fact that cohomology commutes with direct limits implies:

2.2. Theorem. Let F and G be natural bundles with fibers F resp. G of orders ≤ l. Suppose that

the action of GL(l)
n on G is linear. Then, under the above notation

(11) Nat(F,G) ∼= H0
GLn

(
ngl(∞)

n ,Map(F(∞),G)
)
.

In the following sections we show that, in many interesting cases, the cohomology in the right

hand side of (11) is the cohomology of a certain graph complex.
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3. Natural operators and graphs

We are going to describe natural differential operators by certain spaces spanned by graphs.

Roughly speaking, graphs, viewed as contraction schemes for indices, will encode elementary

GLn-invariant tensors in (10). Our approach is based on a translation of the Invariant Tensor

Theorem into the graph language which we formulate in the Appendix. Although this translation

is probably known to experts, we were not able to find a suitable reference providing all necessary

details. We believe that the Appendix will help to understand the following sections.

Suppose that B is a natural bundle satisfying A1 on page 6, so that the induced action of

GLn ⊂ GL(l)
n on the fiber B is rational linear. According to standard facts of the representation

theory of GLn recalled, for instance, in [8, § 1.4], an equivalent assumptions is that, as a GLn-

module, B is the direct sum of GLn-modules

(12) B =
⊕

1≤i≤b

Bi,

where Bi is, for each 1 ≤ i ≤ b, either the space Lin(Rn⊗qi,Rn⊗pi) for some pi, qi ≥ 0, with the

standard GLn-action, or a subspace of this space consisting of maps whose inputs and/or outputs

have a specific symmetry, which can for example be expressed by a Young diagram.

In other words, Bi are spaces of multilinear maps whose coordinates are tensors T
a1,...,api

b1,...,bqi
with

qi input indices and pi output indices, which may or may not enjoy some kind of symmetry. We

will graphically represent these tensors as corollas with qi-inputs and pi outputs:

(13)
�

���
@

@@I
A

AAK

�
���

@
@@I

�
���
•
. . .︸ ︷︷ ︸

qi inputs

. . .
pi outputs︷ ︸︸ ︷

.

Instead of the dot • we may sometime use different symbols for the node, such as ∇, , ◦, &c.

3.1. Example. The fiber of the tangent bundle T is Rn = Lin(Rn⊗0,Rn⊗1), so one has in (12)

b = 1, p1 = 1, q0 = 0. Elements of the fiber of T are tensors Xa symbolized by

•
6.

The fiber C of the connection bundle Con (see Example 1.9) is Lin(Rn⊗2,Rn⊗1), therefore b = 1,

p1 = 1 and q1 = 2. Elements of C are GLn-tensors (Christoffel symbols) Γa
bc represented by

∇ .
6

AAK@@I

[November 11, 2007]
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An example with a(n anti-)symmetry is the bundle Ωm of de Rham m-forms, m ≥ 0. Its fiber

is the space Lin(∧m
Rn,Rn⊗0) = Lin(∧m

Rn,R) of anti-symmetric tensors ω)b1,...,bm( which in our

pictorial language will be represented as

�
���

@
@@I

�
���
•

) (. . .︸ ︷︷ ︸
m inputs

with inverted braces indicating antisymmetry.

Sometimes we will need decorations of nodes. For example, the product bundle T × T has

fiber Rn × Rn generated by tensors Xa, Y a which will be denoted

• 1
6

• 2
6 or • X

6
• Y
6

.

Let again B be a natural bundle with fiber B decomposed as in (12). It is easy to see that

the fiber B(k) of the k-jet bundle B(k) decomposes, as a GLn-module, into

B(k) =
⊕

1≤i≤b

B
(k)
i ,

where

(14) B
(k)
i =

⊕

0≤v≤k

Sym(Rn⊗v,R) ⊗ Bi.

This means that if elements of Bi are tensors T
a1,...,api

b1,...,bqi
, then elements of B

(k)
i are tensors

(s1,...,sv)T
a1,...,api

b1,...,bqi
, v ≤ k,

with braces indicating the symmetry in (s1, . . . , sv). In terms of pictures this amounts to adding

new symmetric inputs to corollas (13), so elements of B
(k)
i will be symbolized by

(15) • , v ≤ k.

( )

�
���

@
@@I

A
AAK

C
CCO
A

AAK
HHHHHY

. . .︸ ︷︷ ︸
qi inputs

�
���

�
���

�����*

. . .︸ ︷︷ ︸
v inputs

. . .
pi outputs︷ ︸︸ ︷

3.2. Example. The fiber of the kth tangent bundle T (k) is the space of tensors

(16) Xa
(s1,...,sv) :=

∂uXa

∂xs1 · · ·∂xsv
, v ≤ k,

which we draw as

(17)

6

�
���

@
@@I

�
���
• , v ≤ k.

( ). . .︸ ︷︷ ︸
v inputs
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12 M. MARKL

The fiber of the bundle Con(k) is the space of tensors

(s1,...,sv)Γ
a
bc :=

∂uΓa
bc

∂xs1 · · ·∂xsv
, v ≤ k,

which we depict as

(18) ∇ , v ≤ k.
6

AAK@@I�
��

�
��

����*
. . .︸ ︷︷ ︸

v inputs

( )

As follows from (8), ngl(k+l)
n =

⊕
2≤u≤k+l Sym(Rn⊗u,Rn). Therefore ngl(k+l)

n is the space of

symmetric tensors ϕb
(s1,...,su), 2 ≤ u ≤ k + l, or in pictures,

(19)

6

�
���

@
@@I

�
���
◦ , 2 ≤ u ≤ k + l.

( ). . .︸ ︷︷ ︸
u inputs

In what follows, white corollas (19) will always denote elements of ngl(k+l)
n for some k + l ≥ 2.

– – – – –

In the rest of this section we construct a graded space Gr∗F,G spanned by graphs representing

GLn-invariant cochains in C∗
GLn

(
ngl(∞)

n ,Map(F(∞),G)
)
. Since

C0
GLn

(
ngl(∞)

n ,Map(F(∞),G)
)

= MapGLn
(F(∞),G),

this in particular means that we describe equivariant maps from MapGLn
(F(∞),G) by linear

combinations of graphs. The differentials will be studied in the next section.

Suppose that the natural bundles F and G satisfy assumption A1 on page 6, and see what

can be said about the space Cm
GLn

(
ngl(k+l)

n ,Map(F(k),G)
)

of GLn-equivariant polynomial maps

from Map(ngl(k+l)
n × F(k),G) that are m-homogeneous and antisymmetric in ngl(k+l)

n . By the

polynomiality assumption A3,

(20) Cm
GLn

(
ngl(k+l)

n ,Map(F(k),G)
)
∼=
⊕

t≥0

LinGLn

(
∧m

ngl(k+l)
n ⊗ F(k)⊗t

,G
)
,

where LinGLn
(−,−) denotes the space of GLn-equivariant linear maps.

Let us decompose the fibers F and G of natural bundles F and G into the direct sum (12),

F =
⊕

1≤i≤f

Fi and G =
⊕

1≤i≤g

Gi.

By (14), the components of the fiber F(k) of the k-jet bundle F(k), k ≥ 0, are the direct sums

F
(k)
i =

⊕

0≤v≤k

F
[v]
i , 1 ≤ i ≤ f,

[November 11, 2007]



OPERATORS AND GRAPH COMPLEXES 13

with F
[v]
i := Sym(Rn⊗v,Rn)⊗Fi. Using the above decompositions and description (8) of ngl(k+l)

n ,

one can rewrite the right hand side of (20) into

(21)
⊕

t≥0

⊕

S(k,l,t)

LinGLn

(

∧
1≤i≤m

Sym(Rn⊗ui,Rn) ⊗
⊗

1≤s≤t

F
[vs]
is
,Gi

)
,

where S(k, l, t) is the set of integers u1, . . . , um, i1, . . . , it, v1, . . . , vt and i such that

2 ≤ u1, . . . , um ≤ k + l, 1 ≤ i1, . . . , it ≤ f, 0 ≤ v1, . . . , vt ≤ k and 1 ≤ i ≤ g.

Let us fix a multiindex ω = (u1, . . . , um, i1, . . . , it, v1, . . . , vt, i) ∈ S(k, l, t). By our assumptions,

the space F
[vs]
is

is, for each 1 ≤ s ≤ t, isomorphic to the space LinOs

Is
(Rn⊗(vs+qis),Rn⊗pis ) of linear

maps having a symmetry specified by subsets Is ⊂ k[Σvs+qis
], Os ⊂ k[Σpis

], see Remark 8.6 of

the Appendix for the notation. Similarly, Gi
∼= LinO

I (Rn⊗c,Rn⊗d), for some c, d ≥ 0 and subsets

I ⊂ k[Σc], O ⊂ k[Σd]. The expression

(22) LinGLn

(

∧
1≤i≤m

Sym(Rn⊗ui ,Rn) ⊗
⊗

1≤s≤t

F
[vs]
is
,Gi

)

in (21) is therefore isomorphic to

(23) LinGLn

(

∧
1≤i≤m

Sym(Rn⊗ui,Rn) ⊗
⊗

1≤s≤t

LinOs

Is
(Rn⊗(vs+qis),Rn⊗pis ),LinO

I (Rn⊗c,Rn⊗d)

)
.

Let us remark that in all applications discussed in this paper, we will always have pis = 1 for

1 ≤ s ≤ t, c = 0 and d = 1.

Observe that (23) is the space in (81) of the Appendix, with an appropriate choice of the

parameters, which in this case is r := t−m, and

hi := ui for 1 ≤ i ≤ m, and

hi := vs + qis , Ii := Is, Oi := Os for i = s+m, 1 ≤ s ≤ t,

therefore the methods developed in the Appendix apply. We believe that the reader can tolerate

a certain incompatibility between the notation used in this section and the notation of the

Appendix – the alphabet does not have enough letters to avoid notational conflicts.

By Proposition 8.10 and Remark 81 of the Appendix, the space (23) is related to the space

Grm
ω spanned by graphs with vertices of three types:

1st type: t ‘black’ vertices (15) with pi := pis , qi := qis and v := vs, representing tensors

in F
[vs]
js

, 1 ≤ s ≤ t,

2nd type: one vertex (13) with pi := c and qi := d called the anchor , representing tensors

in the dual G∗
i of Gi, and

3rd type: m ‘white’ vertices (19) with u := ui representing generators of the Lie algebra

ngl(k+l)
n , 1 ≤ i ≤ m.

[November 11, 2007]



14 M. MARKL

Our graphs are directed and oriented, where an orientation is, by definition, an equivalence class

of linear orders of the set of white vertices, modulo the relation identifying orders that differ

by an even number of transpositions. If the orientations of two graphs G′ and G′′ differ by an

odd number of transpositions, we put G′ = −G′′ in Grm
ω . Our notion of orientation is not the

traditional one but resembles orientations in various graph complexes [17, § II.5.5].

Let us emphasize that the graphs spanning Grm
ω are not required to be connected, and multiple

edges and loops are allowed . The vertices above are Merkulov’s genes [22]. The unique vertex of

the 2nd type marks the place where we evaluate the composition along the graph at an element

of G∗, which explains the dualization in the definition of this vertex.

Proposition 8.10 (or its obvious extension mentioned in Remark 8.12), combined with the

isomorphism between (22) and (23), gives an epimorphism

(24) Rm
n,ω : Grm

ω � LinGLn

(

∧
1≤i≤m

Sym(Rn⊗ui,Rn) ⊗
⊗

1≤s≤t

F
[vs]
is
,Gi

)

which is, by Proposition 8.11, a monomorphism if n + m ≥ the number of edges of graphs in

Grm
ω .

The central result of this section, Theorem 3.3 below, uses the limit

(25) Grm
F,G :=

⋃

k≥0

⋃

l≥1

⊕

t≥0

⊕

ω∈S(k,l,t)

Grm
ω .

The space Grm
F,G is spanned by graphs with an arbitrary number of the 1st type vertices with an

arbitrary v ≥ 0 in (15), one 2nd type vertex representing tensors in G∗
i for 1 ≤ i ≤ g, and m 3rd

type vertices with an arbitrary u ≥ 2 in (19).

3.3. Theorem. The epimorphisms Rm
n,ω in (24) assemble, for each m ≥ 0, into a surjection

(26) Rm
n : Grm

F,G � Cm
GLn

(
ngl(∞)

n ,Map(F(∞),G)
)
.

The restriction

Rm
n (e) : Grm

F,G(e) → Cm
GLn

(
ngl(∞)

n ,Map(F(∞),G)
)

of the map Rm
n to the subspace Grm

F,G(e) ⊂ Grm
F,G spanned by graphs with ≤ e edges, is a monomor-

phism whenever n = dim(M) ≥ e−m.

Proof. The maps Rm
n,ω of (24) assemble, for each k ≥ 0 and l ≥ 1, into an epimorphism

Rm
n,k,l :=

⊕

t≥0

⊕

ω∈S(k,l,t)

Rm
n,ω :

⊕

t≥0

⊕

ω∈S(k,l,t)

Grm
ω �

⊕

t≥0

LinGLn

(
∧m

ngl(k+l)
n ⊗ F(k)⊗t

,G
)
.

Recalling (10), (20), and the definition (25) of the graph complex Grm
F,G, we conclude that Rm

n :=
⊕

k≥0

⊕
l≥1R

m
n,k,l is the desired surjection (26). The second part of the theorem follows from

Proposition 8.11 applied to the constituents Rm
n,ω of Rm

n . �

[November 11, 2007]



OPERATORS AND GRAPH COMPLEXES 15

3.4. Example. Let us discuss the case F = T × T and G = T , where T is the tangent bundle

functor. Graphs spanning the vector space Grm
T×T,T have finite number of the 1st type vertices (17)

6

�
���

@
@@I

�
���
• X

. . .︸ ︷︷ ︸
v inputs

and/or
6

�
���

@
@@I

�
���
• Y

. . .︸ ︷︷ ︸
v inputs

, v ≥ 0,

marking the places where to insert tensors Xa
(s1,...,sv) and Y a

(s1,...,sv) of the fiber of (T ×T )(∞). The

unique vertex

6

of the 2nd type is the place to insert a tensor of the fiber Rn∗ of T ∗. There of course will also be

m vertices (19) of the 3rd type for generators of ngl(∞)
n .

Observe that we omitted braces indicating the symmetry because inputs of all vertices are

symmetric and no confusion may occur. Let us inspect how Gr0
T×T,T describes GLn-equivariant

maps in

MapGLn

(
(Rn × Rn)(∞),Rn

)
= C0

GLn

(
ngl(∞)

n ,Map((Rn × Rn)(∞),Rn)
)
.

The graph

6
• Y
6
• X

describes the equivariant map that sends an element (Xa, Xa
b , Y

a, Y a
b ) ∈ (Rn × Rn)(1) into the

element (XjY a
j ) ∈ Rn. It is precisely the map O2 considered in Example 1.4. The linear

combination

6
• Y
6
• X

-
6
• X
6
• Y

represents the local formula

(Xa, Xa
b , Y

a, Y a
b ) 7→ (XjY a

j − Y jXa
j )

for the Lie bracket [X, Y ] of two vector fields. We allow also graphs as

6
• X ��
��
•
6

Y ,

which represents the map

(Xa, Xa
b , Y

a, Y a
b ) 7→ (XaY i

i )

[November 11, 2007]



16 M. MARKL

involving the trace Y i
i of Y . We leave as an exercise to identify the map defined by

6
• X

�
��

• Y @
@I
• Y

.

An example of a degree 1 cochain in C1
GLn

(
ngl(2)n ,Map(Rn × Rn,Rn)

)
is provided by

6
◦

�
��

• X @
@I
• Y

,

which defines the GLn-equivariant 1-cochain

(ϕa
bc, X

a, Y a) 7→ (ϕa
ijX

iY j).

As explained in Remark 8.14 of the Appendix, for degrees ≥ 2 our interpretation of graphs

involves the antisymmetrization in white vertices. For instance, the graph

��

��
◦2

◦1

•Y

•X
@@I6

6@@I

represents the cochain in C2
GLn

(ngl(2)n ,Map(Rn × Rn,R)) given by

(ϕa
bc, ψ

a
bc, X

a, Y a) 7→ (ϕi
jkψ

j
il − ψi

jkϕ
j
il)X

kY l.

The reason why the expected traditional
1

2!
-factor is missing is explained in Remark 4.5.

3.5. Example. In this example we express local formulas for the covariant derivative, torsion

and curvature in terms of graphs. The covariant derivative is the operator ∇ : Con × T ×2 → T

locally given by the graph

(27) ∇ +∇XY :
6

AAK@@I
•
X

Y
•

6
• Y
6
• X

,

which is a graphical form of formula (1). The torsion T : Con × T×2 → T is given by

∇ −T (X, Y ) :
6

AAK@@I
•
X

Y
•

∇
6

AAK@@I
•
Y

X
•

[November 11, 2007]



OPERATORS AND GRAPH COMPLEXES 17

and the curvature R : Con × T×3 → T as

∇ −R(X, Y )Z :
6

AAK@@I

�
•
XY Z
••

∇ + − .
6

AAK@@I

�
•
YX Z
••

∇
6

AAK@@I
•
Y

∇
AAK@@I
•
X

Z
•

∇
6

AAK@@I
•
X

∇
AAK@@I
•
Y

Z
•

3.6. Example. This example shows that the map Rm
n from Theorem 3.3 need not be a monomor-

phism below the ‘stable range.’ Consider again the two graphs from Example 3.4:

6
• Y
6
• X

G1 := and G2 := .6
• X ��
��
•
6

Y

The number of edges of both graphs is 2. As we already saw, G1 represents the formula

G1 :
∑

1≤i,j≤n

Xj ∂Y
i

∂xj

∂

∂xi

and G2 the formula

G2 :
∑

1≤i,j≤n

∂Y j

∂xj
X i ∂

∂xi
.

For n = 1 both formulas give the same result, namely

X
∂Y

∂x

∂

∂x
,

therefore R0
1(G1) = R0

1(G2). For n ≥ 2 one clearly has R0
n(G1) 6= R0

n(G2).

4. The differential

In this section we express the restriction of the Chevalley-Eilenberg differential onto the sub-

complex C∗
GLn

(
ngl(∞)

n ,Map(F(∞),G)
)

of GLn-equivariant cochains in terms of graph complexes.

This very straightforward interpretation of the graph complex differential was suggested by Anton

Alekseev.

Let us describe first the bracket in the limit ngl(∞)
n = lim

−→
ngl(s)n of Lie algebras ngl(s)n recalled

in (8). If finite sums a = a2 + a3 + a4 + · · · and b = b2 + b3 + b4 + · · · are elements of ngl(∞)
n ,

au, bu ∈ Sym((Rn)⊗u,Rn), u ≥ 2, then [a, b] = [a, b]3 + [a, b]4 + · · · (no quadratic term) with

[a, b]u =
∑

s+t=u+1

∑

1≤i≤s

(
S(as ◦i bt) − S(bs ◦i at)

)
,
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18 M. MARKL

where S(−) denotes the symmetrization (see Remark 4.5) of a linear map Rn⊗u → Rn, as ◦i bt

is the insertion of bt into the ith slot of as and bs ◦i at has the similar obvious meaning. For

v1, . . . , vu ∈ Rn we easily get

[a, b]u(v1, . . . , vu) =
∑

s+t=u+1

s!t!

u!

∑

σ

{
as(bt(vσ(1), . . . , vσ(t)), vσ(t+1), . . . , vσ(u))−(28)

− bs(at(vσ(1), . . . , vσ(t)), vσ(t+1), . . . , vσ(u))
}
,

where σ runs over all (t, s−1)-unshuffles σ, i.e. permutations σ ∈ Σu such that σ(1) < . . . < σ(t),

σ(t + 1) < . . . < σ(u).

4.1. Remark. In the rest of the paper, we will consider ngl(∞)
n with the modified Lie bracket,

given by formula (28) without the
s!t!

u!
-coefficients. Since this modified Lie algebra is isomorphic

to the original one, via the isomorphism as 7→ s! ·as, for as ∈ Sym
(
(Rn)⊗s,Rn

)
, s ≥ 2, our modi-

fication is purely conventional. The advantage of this modified bracket is that the corresponding

replacement rule (29) is a linear combination of graphs without fractional coefficients.

To help the reader to appreciate the idea of the differential, we start with an informal definition.

A precise formula including signs and orientations is given in (32). At the beginning of Section 2

we decomposed the CE-differential into the sum δCE = δ1 + δ2. Let us analyze the action of the

second piece δ2 first. A graph G representing a GLn-invariant m-cochain has m white vertices

that mark the places where to insert elements of ngl(∞)
n . Let us label, for m ≥ 1, these white

vertices by ` ∈ {1, . . . , m} and denote the vertex labelled ` by w`. If m = 0, there are no white

vertices and no labelling is necessary.

The effect of the differential δ2 on the graphG is, by the definition recalled in (5), the following.

For each ` ∈ {1, . . . , m} insert to the vertex w` the element [hi, hj] and to the remaining white

vertices elements h1, . . . , ĥi, . . . , ĥj, . . . , hm+1, make the summation over all 1 ≤ i < j ≤ m + 1

and antisymmetrize in h1, . . . , hm+1. Denote the resulting (m+ 1)-cochain by G`. Then δ2(G) =

ε1 ·G1 + · · ·+ ε1 ·Gm, where ε1, . . . , εm ∈ {−1,+1} are appropriate signs. A moment’s reflection

reveals that G` is obtained by replacing the vertex w` by:

(29)

6

�
���

@
@@I

�
���
◦
. . .︸ ︷︷ ︸

u inputs

7−→
∑

t+s=u+1

6

�
���

@
@@I

�
���
◦
. . .︸ ︷︷ ︸
s

�
���

@
@@I

�
���
◦
. . .︸ ︷︷ ︸
t

( )

ush

,

where the braces (−)ush indicate that the summation over all (t, s − 1)-unshuffles of the inputs

has been performed. This is precisely the formula for the generators of the homological vector
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field introduced by Merkulov [20, 22]. One also recognizes (29) as the graphical representation

of the axioms of L∞-algebras as given in [13, page 160].

A similar analysis shows that δ1 acts by replacing each vertex of type 1 or 2 by the pictorial

representation of the action of ngl(∞)
n on tensors corresponding to this vertex. We will show

instances of these ‘pictorial presentations’ in the following two examples.

4.2. Example. Consider a symmetric map ξ : Rn⊗v → Rn representing an element in the fiber

of the k-th tangent space T (k) with coordinates Xa
(s1,...,sv) (see (16) of Example 3.2). The action

of an element a = a2 +a3 +a4 + · · · ∈ ngl(∞)
n on ξ is given by aξ = (aξ)u+1 +(aξ)u+2 + · · · , where

(aξ)v =
∑

s+u=v+1

(
∑

1≤i≤s

S(as ◦i ξ) −
∑

1≤i≤v

S(ξ ◦i as)

)
.

Removing fractional coefficients by modifying the ngl(∞)
n -action (compare Remark 4.1), one can

graphically express the above rule by the following polarization of (29):

(30)

6

�
���

@
@@I

�
���
•

X

. . .︸ ︷︷ ︸
v inputs

7−→
∑

s+u=v+1

6

�
���

@
@@I

�
���
◦
. . .︸ ︷︷ ︸
s

�
���

@
@@I

�
���
•

X

. . .︸ ︷︷ ︸
u

( )

ush

−

6

�
���

@
@@I

�
���
•

X

. . .︸ ︷︷ ︸
u

�
���

@
@@I

�
���
◦
. . .︸ ︷︷ ︸
s

( )

ush

.

4.3. Example. Let us write explicitly two initial replacement rules for the connection and its

derivatives. The first one is the infinitesimal version of (3):

∇
6

AAK@@I
7−→ −

6

��� AAK
◦ .

The next one is a graphical form of an equation that can be found in [10, Section 17.7] (but

notice a different convention for covariant derivatives used in [10]):

∇
6

AAK@@I���
7−→

6

�
�
��� @@I
◦
∇

AAK@@I
−

∇
6

6

J
J

J]

��� AAK
◦ −

∇
6

A
AAK@
@I

�
�3

@@I
◦ −

6

��� @@I6
◦ .

We are not going to give a general formula. For our purposes, it will be enough to know that it

is of the form

(31) ∇
6

AAK@@I�
��

�
��

����*
. . .︸ ︷︷ ︸

w inputs

7−→ Gw −

6

��� @@I���
◦
. . .︸ ︷︷ ︸

w + 2

,

where Gw is a linear combination of 2-vertex trees with one vertex (18), with v < w, and one

vertex (19) with u < w + 2.
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Let us write a formal definition of the graph differential. For each oriented graph G ∈ Grm
F,G

we define δ(G) ∈ Grm+1
F,G as the sum over the set Vert(G) of vertices of G,

(32) δ(G) =
∑

v∈Vert(G)

εv · δv(G),

where δv is the replacement of the vertex v determined by the type of v and geometric data as

explained above. The signs εv and the orientations of the graphs in δv(G) are determined in the

following way.

(i) The operation δv replaces a 1st or 2nd type vertex v by a linear combination of graphs

containing precisely one white vertex. The orientation of the graphs in δv(G) is given by the

unique linear order such that this new white vertex is the minimal element and the relative order

of the remaining white vertices is unchanged. The sign εv is +1. Symbolically

(33) δv(◦ < · · · < ◦) = +1 · (δv(•) < ◦ < · · · < ◦).

(ii) Let v be a white vertex. We may assume that, after changing the sign of the graph G if

necessary, v is the minimal element in an order determining the orientation. The orientation of

graphs in δv(G) is then given by requiring that the lower left white vertex in the right hand side

of (29) is the minimal one, the upper right white vertex of (29) is the next one, and that the

relative order of the remaining white vertices is unchanged. The sign εv is again +1. Symbolically,

δv(◦ < · · · < ◦) = +1 · (δv(◦) < ◦ < · · · < ◦).

We leave as a simple exercise to derive from the rule (ii) that, if the white vertex v is the ith

element of a linear order determining the orientation of G, for some 1 ≤ i ≤ m, the orientations

of graphs in δv(G) are symbolically expressed as

(34) δv(◦ < · · · < ◦) = (−1)i+1 · (◦ < · · · < ◦︸ ︷︷ ︸
i − 1

< δv(◦) < ◦ < · · · < ◦︸ ︷︷ ︸
m − i

).

Let us emphasize that the applications in this paper use only the initial part δ : Gr0
F,G → Gr1

F,G

of the differential, so we do not need to pay much attention to signs and orientations. Since

the graphs spanning Gr0
F,G (resp. Gr1

F,G) have no white vertices (resp. one white vertex), the

orientation issue is trivial and all εv’s in (32) are +1.

4.4. Theorem. The object Gr∗F,G = (Gr∗F,G, δ) is a cochain complex and the maps Rm
n in (26)

assemble into a cochain map

R∗
n : (Gr∗F,G, δ) →

(
C∗

GLn

(
ngl(∞)

n ,Map(F(∞),G)
)
, δCE

)
.
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Proof. Using the antisymmetry of f , one can rewrite equations (4) and (5) into

(δ1f)(h1, . . . , hm+1) =
1

m!
Ant

(
h1f(h2, . . . , hm+1)

)
and

(δ2f)(h1, . . . , hm+1) =
1

2(m− 1)!
Ant

(
f([h2, h1], h3, . . . , hm+1)

)
,

where Ant(−) denotes the antisymmetrization, see Remark 4.5 below. The inverted order of h1

and h2 in the bracket [h2, h1] in the second line reflects our ordering of the white vertices in the

right hand side of (29). If the multilinear map f itself is an antisymmetrization Ant(F ) of a map

F , one can further rewrite the above displays into

(δ1f)(h1, . . . , hm+1) = Ant
(
h1F (h2, . . . , hm+1)

)
and(35)

(δ2f)(h1, . . . , hm+1) = Ant
( ∑

1≤i≤m

(−1)i+1F (h1, . . . , hi−1, [hi+1, hi], hi+2, . . . , hm+1)
)
.(36)

After this preparation, we prove that R∗
n is a chain map by verifying that (Rm+1

n ◦ δ)(G) =

(δCE ◦Rm
n )(G) for each graph G generating Grm

F,G. After choosing a linear order of white vertices

of G compatible with its orientation, an appropriate version of the ‘state sum’ (68) gives a

multilinear map F such that Rm
n (G) = Ant(F ), see Remark 8.14 of the Appendix.

It is not difficult to see that R∗
n translates the part of the differential δ(G) in (32) given by

the summation over the 1st and 2nd type vertices into formula (35) for δ1(f) and the part of

δ(G) given by the summation over the white vertices to formula (36) for δ2(f). This fact is also

reflected by the obvious similarity between formulas (35) and (36) for the Chevalley-Eilenberg

differential and symbolic formulas (33) and (34) for the graph differential.

The condition δ2 = 0 can be verified directly using the fact that the local replacement rules

used in (32) are duals of Lie algebra actions and checking that the orientations were defined in

such a way that the signs combine properly. One may, however, proceed also as follows.

Since both the domain and target of the map R∗
n, as well as R∗

n itself, are defined in terms

of “standard representations,” Rm
n makes sense for an arbitrary natural n. Let G ∈ Grm

F,G. By

the finitary nature of objects involved, there exists e ≥ 0 such that all graphs that constitute

δ2(G) ∈ Grm+2
F,G have ≤ e edges. Choose n ≥ e−m−2. We already know that R∗

n commutes with

the differentials, therefore

Rm+2
n (δ2(G)) = δ2

CE
(Rm

n (G)) = 0.

By the second part of Theorem 3.3 this implies that δ2(G) = 0. �

4.5. Remark. In this paper, the antisymmetrization of an element x of some (say) right Σk-

module, k ≥ 1, is given by the formula

Ant(x) :=
∑

σ∈Σk

sgn(σ) · xσ,
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without the traditional
1

k!
-factor. This convention is forced by the standard definition of the

Lie algebra associated to an associative algebra (A, ·) – the bracket [a′, a′′] := a′ · a′′ − a′′ · a′,

a′, a′′ ∈ A, does not involve the
1

2!
-factor. On the other hand, we define the symmetrization of x

as above by the expected formula

S(x) :=
1

k!

∑

σ∈Σk

xσ.

4.6. Remark. Applications of our theory will often be based on a suitable choice of a subspace

of Nat(F,G), together with the corresponding subcomplex of the graph complex Gr∗F,G. These

subobjects, denoted for the purposes of this remark by Nat(F,G) and Gr∗F,G = (Gr∗F,G, δ), will be

chosen so that the number of edges of graphs spanning Grm
F,G will be, for each m ≥ 0, bounded

by C +m, where C is a fixed constant.

An example is the subcomplex Gr∗•(d) of the graph complex Gr∗T×d,T , introduced in Section 5,

that describes d-multilinear operators on vector fields. Graphs spanning Gr∗•(d) have precisely

d + m edges, so C = d for this subcomplex. Another example is the subcomplex Gr∗•∇(d) of

Gr∗
Con×T×d,T describing ‘connected’ d-multilinear operators used in Section 7. Each degree m

graph spanning this subcomplex has at most 2d+m− 1 edges, i.e. C = 2d− 1 in this case. The

third example is the complex Gr∗•∇�(d) introduced on page 25 describing ‘connected’ operators

in Nat(Con × T⊗d,R). For this complex, C := 2d.

Let (Gr∗F,G, δ), Nat(F,G) and the constant C be as above. By Theorem 2.2 combined with

Theorem 4.4, the restriction R∗
n of R∗

n induces the map

(37) H0(R∗
n) : H0(Gr∗F,G, δ) → Nat(F,G)

which is an isomorphism in stable dimensions. By this we mean that the dimension n of the

underlying manifold M is ≥ C. If this happens, then the map R∗
n is, by Proposition 8.11, a chain

isomorphism, so H0(R∗
m) is an isomorphism, too. If the dimension of M is less than the stable

dimension, one cannot say anything about the induced map H0(R∗
m), although the chain map

R∗
n is still a chain epimorphism.

4.7. Example. In this example we prove a baby version of Theorem 5.1. Namely, we show that

the only natural bilinear operations on vector fields on manifolds of dimensions ≥ 2 are scalar

multiples of the Lie bracket.

It will be convenient to have ready some initial cases of formula (30) for the replacement rule

of vertices representing vector fields and their derivatives:

δ
(
•
6
)

= 0, δ
(
•
6

6

)
=

6

6@@I•
◦ , δ

( 6

��� AAK
•

)
= −

6
6

��� AAK

•
◦ +

6

�
���

A
AAK
K
•
◦ +

6

��� AAK
HHY•

◦ , . . .
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It is also clear that

(38) δ
(

6

)
= 0.

Let us denote by Gr∗T⊗T,T ⊂ Gr∗T×T,T the subcomplex describing bilinear operators. Its degree 0

part Gr0
T⊗T,T is spanned by

6
• Y
6
• X

,
6
• X
6
• Y

, 6
• X ��
��
•
6

Y and 6
• Y ��
��
•
6

X .

One easily calculates the differential of the leftmost term:

(39) δ




6
• Y
6
• X


 =

6
• Y
6
• X

δ( )

+
6
• Y
6
• X

δ( ) +
6
• Y
6
• Xδ( )

=
6
◦ Y
6
• X

•HHY ∈ Gr1
T⊗T,T

and similarly one gets

δ


 6
• X ��
��
•
6

Y


 = 6

• X ��
��

���•
◦
6

Y ∈ Gr1
T⊗T,T .

The formula for the differential of the remaining two generators of Gr0
T⊗T,T is obtained by inter-

changing X ↔ Y in the previous two displays. One clearly has

δ




6
• Y
6
• X

−
6
• X
6
• Y


 =

6
◦ Y
6
• X

•HHY −
6
◦ X
6
• Y

•HHY = 0,

because the inputs of white vertices are symmetric. It is easy to verify, using elementary linear

algebra, that the element

(40) b :=
6
• Y
6
• X

−
6
• X
6
• Y

∈ Gr0
T⊗T,T

representing the Lie bracket in fact spans all cochains in Gr0
T⊗T,T . We conclude thatH0(Gr∗T⊗T,T , δ)

is one-dimensional, generated by the bracket [X, Y ]. The complex Gr∗T⊗T,T clearly fits into the

scheme discussed in Remark 4.6 (with C = 2), which proves the statement in the first paragraph

of this example.
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4.8. Example. We close this section by an example suggested by the referee which will further

illuminate the meaning of the graph differential. The graph

(41)
6
• Y
6
• X

represents the local expression

(42)

(
X i∂

∂xi
, Y i∂

∂xi

)
7−→ X i∂Y

j

∂xi

∂

∂xj
.

If {yi} is a different set of coordinates, then X and Y transforms to

X i∂y
s

∂xi

∂

∂ys
and Y j ∂y

r

∂xj

∂

∂yr
,

respectively. Having this transformed X act on the transformed Y gives

X i∂y
s

∂xi

∂

∂ys

(
Y j ∂y

r

∂xj

)
∂

∂yr
= X i∂y

s

∂xi

∂Y j

∂ys

∂yr

∂xj

∂

∂yr
+X i∂y

s

∂xi
Y j ∂

∂ys

(
∂yr

∂xj

)
∂

∂yr
.

The first term in the right hand side is equal to the expression in (42) under change-of-

coordinates, so the second term represents the extent to which this expression is not invariant.

It is equal to

X iY j ∂2yr

∂xi∂xj

∂

∂yr
,

which translates directly to the formula (39) for the differential of (41) in the graph complex.

5. Operations on vector fields

In this section we consider differential operators acting on a finite number of vector fields

X, Y, Z, . . . with values in vector fields, that is, operators in Nat(T×∞, T ) :=
⋃

d≥0 Nat(T×d, T )

The first statement of this section is:

5.1. Theorem. Let M be a smooth manifold and d a natural number such that dim(M) ≥ d.

Then each d-multilinear natural operator from vector fields to vector fields is a sum of iterations

of the Lie bracket containing each of d variables precisely once, and all relations between these

expressions follow from the Jacobi identity and antisymmetry.

In particular, there are precisely (d− 1)! linearly independent operators of the above type.

Theorem 5.1 is an obvious consequence of Proposition 5.6 below and the formula for the

dimension of the kth piece of the operad Lie for Lie algebras that can be found for example in [7,

Example 3.1.12]. Theorem 5.1 describes multilinear operators and does not cover operators as

O(X, Y, Z) := [X, Y ] + [X, [X,Z]]
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but can easily be extended to cover also these cases. Since all operators are assumed to be

polynomial, they decompose into the sum of their homogeneous parts. For instance, the operator

in the above display is the sum of the homogeneity-2 part [X, Y ] and the homogeneity-3 part

[X, [X,Z]].

5.2. Remark. As indicated above, each operator O ∈ Nat(T×∞, T ) decomposes into the sum of

its homogeneous parts. Let us explain this phenomenon in more detail. The local formula O for

the operator O is the sum

O = O1 + · · ·+Or,

where Od is the part of O consisting of terms with precisely d occurrences of the vector field

variables. The action of the structure group GL(∞)
n on the typical fiber of the prolongation of

T×∞ is linear, which is expressed by the manifest linearity of the replacement rule (30) in the

vector field variable. This implies that the map O is GL(∞)
n -equivariant if and only if each of its

homogeneous components Od is GL(∞)
n -equivariant, 1 ≤ d ≤ r. Therefore

O = O1 + · · ·+ Or,

where Od is the operator defined by the local formula Od, 1 ≤ d ≤ r.

We conclude that to classify operators of the above type, it suffices to classify homogeneous

operators. It is a standard fact that each homogeneous operator of degree d is either d-multilinear

or a sum of operators obtained from d-multilinear operators by repeating one or more of their

variables. We will call this procedure the depolarization of multilinear operators.

Theorem 5.1 therefore implies the following.

5.3. Corollary. Let M be a smooth manifold. Each natural differential operator from vector fields

on M to vector fields on M whose all components are of homogeneity ≤ dim(M) is a sum of

iterations of the Lie bracket. All relations between these iterations follow from the Jacobi identity

and antisymmetry.

In Example 4.7 we studied in detail the graph complex Gr∗T⊗T,T describing bilinear operators.

Bearing this example in mind, we introduce Gr∗•(d) = Gr∗T⊗d,T ⊂ Gr∗T×d,T , the subcomplex de-

scribing d-multilinear operators. Its degree m component is spanned by graphs with d vertices

of the first type labelled by X1, . . . , Xd, m white vertices of the third type and one 2nd type

vertex 6which we call the anchor . Observe that Gr∗•(d) is precisely the graph complex Gr∗•(b)∇(c)

of Corollary 8.13 with b := d and c := 0. The collection Gr0
• = {Gr0

•(d)}d≥1 of degree 0 subspaces

admits two types of operations.

(i) For graphs G′ ∈ Gr0
•(u), G

′′ ∈ Gr0
•(v) and 1 ≤ i ≤ u, one has the ◦i-product G′ ◦i G

′′ ∈

Gr0
•(u+ v− 1) given by the following straightforward extension of the Chapoton-Livernet vertex

insertion [1, § 1.5] to non-simply connected graphs.
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Assume that X ′
1, . . . , X

′
u are the black vertices of G′, X ′′

1 , . . . , X
′′
v the black vertices of G′′ and

In(X ′
i) the set of inputs of X ′

i in G′. Then

G′ ◦i G
′′ :=

∑

f :In(X′
i)→{X′′

1 ,...,X′′
v }

G′ ◦f
i G

′′ ∈ Gr0
•(u+ v − 1),

where G′ ◦f
i G

′′ ∈ Gr0
•(u + v − 1) is the graph obtained by replacing the vertex X ′

i of G′ by G′′

and grafting the inputs of X ′
i on black vertices of G′′ following f .

In more detail, one starts by cutting off the anchor 6of G′′ and grafts the resulting free edge

on the vertex of G′ immediately above X ′
i. Then one grafts each input edge e of X ′

i on the vertex

f(e) of G′′. Finally, one changes the labels X ′
1, . . . , X

′
i−1, X

′′
1 , . . . , X

′′
v , X

′
i+1, . . . , X

′
u of the black

vertices of the graph obtained in this way into X1, . . . , Xu+v−1.

(ii) The second operation is the right action of the symmetric group: for each G ∈ Gr0
•(d) and

a permutation σ ∈ Σd, one has Gσ ∈ Gr0
•(d) given by permuting the labels X1, . . . , Xd of the

black vertices of G according to σ.

5.4. Proposition. The collection Gr0
• = {Gr0

•(d)}d≥1 with the above operations is an operad with

unit •6∈ Gr0
•(1) [17]. The operad structure of Gr0

• restricts to H0(Gr∗•, δ) = Ker(δ : Gr0
• → Gr1

•).

Proof. The operad axioms for the operations in (i) and (ii) above are verified directly, compare

also [1, § 1.5]. The simplest way to see that the operad structure of Gr0
• restricts to the kernel

of δ is to extend the operations (i) and (ii), in the obvious manner, to the graded collection Gr∗•,

making (Gr∗•, δ) a dg-operad. This, in particular, means that δ is a derivation with respect to

these extended ◦i-operations, which implies the second part of the proposition. �

5.5. Example. An instructive example of the vertex insertion can be found in [1, § 1.5]. We

present here a simpler one, taken from the proof of [1, Theorem 1.9]. Let p be the graph

6
• X1 ∈ Gr0

•(2).
6
• X2

Then one has

6
•

p ◦1 p =
X1

6
• X2

6
• X3

6
X1+ • ∈ Gr0

•(3) andX3
6
• X2

•HHY

6
•

p ◦2 p = ∈ Gr0
•(3).

X1

6
• X2

6
• X3

The above display implies that the associator Ass(p) := p ◦1 p − p ◦2 p equals

6
• X1

�
��

• X2
@

@I
• X3
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and is therefore symmetric in X2 and X3. This, by definition, means that p represents a pre-Lie

multiplication [1, § 1.1]. We will see below that Gr0
• is indeed closely related to the operad pLie

for pre-Lie algebras.

Let τ ∈ Σ2 be the generator. By standard properties of pre-Lie algebras [1, Proposition 1.2],

the antisymmetrization p(τ − 11) of the element p from Example 5.5 is a Lie bracket. Observe

that p(τ − 11) equals the element b introduced in (40).

5.6. Proposition. The 0th cohomology H0(Gr∗•(d), δ) is, for each d ≥ 2, generated by the Lie

bracket b = p(τ − 11) ∈ H0(Gr∗•(2), δ), by iterating operations (i) and (ii) above. There are

no relations between these iterations other than those following from the Jacobi identity and

antisymmetry.

A compact formulation of Proposition 5.6 is that the operad H0(Gr∗•, δ) = {H0(Gr∗•(d), δ)}d≥1

is isomorphic to the operad Lie = {Lie(d)}d≥1 for Lie algebras [17, Example II.3.34], via an

isomorphism that sends the generator β ∈ Lie(2) of Lie into b ∈ Gr0
•(2). Graphs spanning

Gr0
•(d) have d edges which explains the stability condition dim(M) ≥ d in Theorem 5.1. The rest

of this section is devoted to a proof of its main result.

Proof of Proposition 5.6. It is clear from formulas (29), (30) and (38) that the differential pre-

serves connected components of underlying graphs. Therefore, for each d ≥ 1, Gr∗•(d) is the direct

sum

Gr∗•(d) =
⊕

c≥1

Gr∗•c(d),

where Gr∗•c(d) denotes the subcomplex spanned by graphs with c connected components. In

particular, Gr∗•1(d) is the subcomplex of connected graphs. It is easy to see that Gr0
•1 is a suboperad

of Gr∗•.

As the Lie bracket represented by b ∈ Gr0
•1(2) is antisymmetric and satisfies the Jacobi

identity, the rule F (β) := b, where β ∈ Lie(2) is the generator, defines an operad homomorphism

F : Lie → Gr0
•1. Since the Lie bracket and its iterations are natural operators, Im(F ) ⊂ Ker(δ :

Gr0
•1 → Gr1

•1). Proposition 5.6 will clearly be established if we prove that

(i) the operad map F : Lie → Gr0
•1 induces an isomorphism Lie ∼= H0(Gr∗•1, δ), and

(ii) H0(Gr∗•c(d), δ) = 0, for each c ≥ 2, d ≥ 1.

Part (i) is highly nontrivial, but it in fact has already been proved in [15]. Indeed, the

operad Gr0
•1 is precisely the operad pLie describing pre-Lie algebras [1] and F : Lie → Gr0

•1

corresponds, under the identification Gr0
•1

∼= pLie, to the inclusion ι : Lie ↪→ pLie induced by

the antisymmetrization of the pre-Lie product. The dg operad rpL∗ of [15] coincides, in degrees

0 and 1, with the complex Gr∗•1 and the isomorphism in (i) is isomorphism (2) of [15].
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Let us prove (ii). For each m ≥ 0, d ≥ 1, consider the span Grm
•�(d) of connected graphs with

d vertices X1, . . . , Xd of type 1, m ‘white’ vertices of type 3 and no vertex of type 2. The direct

sum

Gr∗•�(d) =
⊕

m≥0

Grm
•�(d)

is a cochain complex, with the differential defined in the same way as the differential in Gr∗•(d)

and denoted again by δ. We claim that, for each c ≥ 2 and d ≥ 1, there is an isomorphism of

cochain complexes

(43) Gr∗•c(d)
∼=

⊕

i1+···+ic=d

Gr∗•1(i1) ⊗
(
Gr∗•�(i2) � · · · � Gr∗•�(ic)

)

where � as usual denotes the symmetric product. To prove this isomorphism, observe that each

graph G ∈ Gr∗•c(d) decomposes into the disjoint union

(44) G = G1 tG2 t · · · tGc,

of its connected components. Precisely one of these components contains the unique type 2

vertex 6, let us assume it is G1. Then G1 ∈ Gr∗•1(i1) and Gs ∈ Gr∗•�(is) for 2 ≤ s ≤ c, with

some i1 + · · ·+ ic = d. Decomposition (44) is clearly unique up to the order of G2, . . . , Gc and is

preserved by the differential. This proves (43). By Künneth and Mashke’s theorems, (ii) follows

from H0(Gr∗•�(d), δ) = 0, d ≥ 1, which is the same as showing that

(45) the map δ : Gr0
•�(d) → Gr1

•�(d) is a monomorphism for each d ≥ 1.

Let us inspect the structure of Gr∗•�(d). It is clear from simple graph combinatorics that each

graph in Grm
•�(d) has genus 1, therefore it contains a unique wheel. Denote Grm

•�(d, w) ⊂ Grm
•�(d)

the subspace spanned by graphs that have precisely w vertices (of either type) on the wheel,

w ≥ 0. It is obvious from (29) and (30) that

δ(Grm
•�(d, w)) ⊂ Grm+1

•� (d, w) ⊕ Grm+1
•� (d, w + 1), d ≥ 1, w ≥ 0;

see also Figure 1. Let us denote by δ0 the component of δ that preserves the number of vertices

on the wheel and δ1 the component that raises it by one. We claim that in order to prove (45),

it is enough to verify that

(46) the map δ0 : Gr0
•�(d) → Gr1

•�(d) is a monomorphism for each d ≥ 1.

The spaces Grm
•�(d, p) form a bicomplex (Gr∗,∗•�(d), δ) with Grp,q

•�(d) := Grp+q
•� (d, p) and δ the

sum δ0 + δ1, where δ0 : Gr∗,∗•�(d) → Gr∗,∗+1
•� (d) and δ0 : Gr∗,∗•�(d) → Gr∗+1,∗

•� (d) are defined above.

Condition (46) then implies (45) via a standard spectral sequence argument. The only subtlety

is that our bicomplex is not a first quadrant one, thus the convergence of the related spectral

sequence has to be checked. We therefore decided to prove the implication (46) =⇒ (45) by the

following elementary calculation.

[November 11, 2007]



OPERATORS AND GRAPH COMPLEXES 29

δ




��

��
...•

6


 =

��

��
...◦

•��� 6
+ replacements of remaining vertices of the graph,

δ




��

��
...•

��� 6


 = + + − + · · ·

��

��
...◦

•
6
��� 6

��

��
...◦

•��� @@I6

��

��
...

◦

•
6

6

���

��

��
...

•

◦
6

6���

δ




��

��
...•

������6


 = + + +

��

��
...◦

•
��� AAK

��� 6

��

��
...◦

•
��� �

�
����� 6

��

��
...◦

•
�

�� ������

6

6

��

��
...◦

������6•@@I

��

��
...•

◦
−

��� AAK

���6
+ 6 more terms belonging to δ1 + · · ·

Figure 1. Action of δ on Gr0
•� – the replacement rule for a type 1 vertex on the wheel.��

��
...◦

•
��� AAK

��� 6

· · ·

r
7−→

��

��
...•

��� 6
· · ·

Figure 2. The map r : Gr
1

•�(d, w) → Gr0
•�(d, w) contracts the unique edge con-

necting the binary white vertex on the wheel with a black vertex outside the wheel.

Suppose that (45) does not hold and let x ∈ Gr0
•�(d) be such that δ(x) = 0 while x 6= 0. There

exists a decomposition x = xa + xa+1 + · · · + xa+s with xw ∈ Gr0
•�(d, w) for a ≤ w ≤ a + s in

which xa 6= 0. Since δ0(xa) is the component of δ(x) in Gr1
•�(d, a), δ0(xa) = 0. Then (46) implies

xa = 0, a contradiction.

Denote by Gr
1

•�(d, w) ⊂ Gr1
•�(d, w) the subspace spanned by graphs with one binary white

vertex on the wheel, as in the left graph in Figure 2. Both Gr
1

•�(d, w) and Gr1
•�(d, w) have

canonical bases provided by isomorphism classes of graphs, therefore one has a canonical pro-

jection π : Gr1
•�(d, w) → Gr

1

•�(d, w). In addition to the projection, there is a second map

r : Gr
1

•�(d, w) → Gr0
•�(d, w) whose definition is clear from Figure 2.

Let G ∈ Gr0
•�(d, w) be a graph. Observe that Gr0

•�(d, 0) = 0, we may therefore assume w ≥ 1.

Recall that the differential δ(G) is the sum (32) of local replacements δv(G) over v ∈ Vert(G). Let

Vert�(G) ⊂ Vert(G) be the subset of vertices on the wheel. For v ∈ Vert�(G), the contribution
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δv(G) contains precisely one graph in Gr1
•�(d, w) with the binary white vertex – see again Figure 1.

Denote this graph δ
0

v(G) and define

δ
0
(G) :=

∑

v∈Vert�(G)

δ
0

v(G).

It is clear that Im(δ
0
) ⊂ Gr

1

•�(d, w), δ
0

= π ◦ δ0 and r ◦ δ
0

= w · id . Combining these facts, we

obtain

r ◦ π ◦ δ0 = w · id ,

which implies (46) and finishes the proof. �

We believe that one can even show that the complex (Gr∗•�(d), δ) used in the above proof

is acyclic in all dimensions. Let us close this section by formulating the following interesting

consequence of the proof of Proposition 5.6.

5.7. Corollary. In stable dimensions, there are no nontrivial differential operators from vector

fields to functions.

Proof. It is clear that d-multilinear operators from vector fields to functions are described by the

graph complex Gr∗•�(d) introduced in our proof of Proposition 5.6. Condition (45) implies that

there are no nontrivial d-multilinear operators of this type. The corollary then follows from the

standard (de)polarization trick. �

6. Structure of the space of natural operators

In Example 1.8 we considered the trivial natural bundle R whose sections are smooth functions.

Let F be another natural bundle. The space Nat(F,R) of natural operators O : F → R with

the obvious ‘pointwise’ multiplication is clearly a commutative algebra, with unit 1 the operator

that sends all sections of F into the constant section 1 ∈ R. This indicates that spaces of

natural operators may sometimes have a rich algebraic structure that can be used to simplify

their classification.

6.1. Definition. We say that F is a bundle with connected replacement rules if the replacement

rules send a connected graph to a linear combination of connected graphs.

All natural bundles considered in this paper have connected replacement rules, and the author

does not know any ‘natural’ natural operator that has not. We will see that the space of natural

operators between bundles with connected replacement rules exhibits some freeness property.

Before we formulate the first statement of this type, we introduce the following convention for

graphs describing operators with values in functions.
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The graph complex Gr∗F,R for operators in Nat(F,R) is spanned by graphs with vertices of the

1st type representing tensors in a prolongation of the fiber of F, vertices (18) of the third type

and one 2nd type vertex which in this case has no inputs and no outputs. Therefore is an

isolated vertex bearing no information and we discard it from the picture. With this convention,

graphs spanning Gr∗F,R have vertices of the 1st and 3rd type only. The disjoint union of graphs

spanning Gr∗F,R translates into the pointwise multiplication of the corresponding operators and

the unit 1 ∈ Nat(F,R) is represented by the ‘exceptional’ empty graph.

6.2. Theorem. Let F be a natural bundle with connected replacement rules. Then, in stable di-

mensions, the commutative unital algebra Nat(F,R) is free, generated by the subspace Nat1(F,R)

of natural operators represented by connected graphs. In other words,

Nat(F,R) ∼= R[Nat1(F,R)],

where R[−] denotes the polynomial algebra functor.

Proof. Each graph spanning Gr∗F,R decomposes into the disjoint union of its connected compo-

nents. The differential δ, by assumption, preserves this decomposition which is clearly unique up

to the order of components. The proof is finished by recalling that the disjoint union of graphs

expresses the pointwise multiplication of operators. �

Let F,G be natural bundles. The pointwise multiplication makes the space Nat(F,G) a unital

module over the unital algebra Nat(F,R). We prove a structure theorem also for this space.

6.3. Theorem. Suppose that both F and G are bundles with connected replacement rules. Then, in

stable dimensions, Nat(F,G) is the free Nat(F,R)-module generated by the subspace Nat1(F,G)

of operators represented by connected graphs,

(47) Nat(F,G) ∼= Nat1(F,G) ⊗ Nat(F,R).

Proof. The proof is similar to the proof of Theorem 6.2. The graph complex Gr∗F,G describing

operators in Nat(F,G) is spanned by graphs with vertices of the first and third types, and one

vertex of the second type. Each such a graph is the disjoint union of its connected components

as in (44) and the differential preserves this decomposition. Precisely one of these components

contains the vertex of the third type thus representing an operator in Nat1(F,G). The remaining

components describe operators from Nat1(F,R) and assemble, via the pointwise multiplication,

into an operator in Nat(F,R). �

Theorems 6.2 and 6.3 imply that in order to classify operators in Nat(F,G), it is enough to

understand the ‘connected’ subspaces Nat1(F,R) and Nat1(F,G). We will use this fact in the

next section.
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6.4. Example. In Section 5 we studied natural operators on vector fields with values in vector

fields, that is, operators in Nat(T×∞, T ) :=
⋃

d≥0 Nat(T×d, T ). We also considered operators

with values in functions and proved, in Corollary 5.7, that there are no nontrivial operators of

this type in stable dimensions.

This means that Nat(T×∞,R) is the trivial commutative algebra R and (47) reduces to the

isomorphism Nat(T×∞, T ) ∼= Nat1(T
×∞, T ) which says that all operators from vector fields to

vector fields live, in stable dimensions, on connected graphs.

7. Operators on connections and vector fields

We will consider operators acting on a linear connection Γ and a finite number of vector fields

X, Y, Z, . . ., with values in vector fields, such as the covariant derivative ∇XY , torsion T (X, Y )

and curvature R(X, Y )Z recalled in Example 1.2. By Theorems 6.2 and 6.3, the structure of the

space Nat(Con × T×∞, T ) :=
⋃

d≥0 Nat(Con × T×d, T ) of these operators is determined by the

‘connected’ subspaces Nat1(Con×T×∞, T ) and Nat1(Con×T×∞,R). In this section we describe

these spaces. The following remark should be compared to Remark 5.2 in Section 5.

7.1. Remark. The local formula O for a natural differential operator O in Nat(Con × T ×∞, T )

or in Nat(Con × T×∞,R) decomposes into

O =
∑

a,b≥0

Oa,b (finite sum)

where Oa,b is the part of O containing precisely a ∇-variables and b vector field variables. For

example, the local formula (1) for the covariant derivative represented by the graph in (27) is

the sum O1,2 +O0,2, where O1,2(X, Y,Γ) := Γi
jkX

jY k
∂

∂xi
and O0,2(X, Y,Γ) := XjY i

j

∂

∂xi
.

In contrast to Section 5, here the action of the structure group GL(∞)
n on the typical fiber is

linear only in the vector-field variables – the non-linearity in the ∇-variables is manifested in the

presence of the ‘isolated’ white vertex in the replacement rule (31). Nevertheless, one may still

decompose

O = O1 + · · ·+ Or,

with Ok the operator represented by the local formula Od :=
∑

a≥0Oa,d, 1 ≤ d ≤ r. Therefore

homogeneity and multilinearity in this section always refer to the vector fields variables.

The first half of this section will be devoted to the study of the space Nat1(Con×T×∞, T ), the

space Nat1(Con × T×∞,R) will be addressed in the second half of this section. As in Section 5,

we start with multilinear operators.
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7.2. Theorem. Let d ≥ 0. On smooth manifolds of dimension ≥ 2d − 1, each d-multilinear

operator in Nat1(Con × T⊗d, T ) is a linear combination of iterations of the covariant derivative

and the Lie bracket which contains each of the vector fields X1, . . . , Xd exactly once. All relations

follow from the anticommutativity and the Jacobi identity of the Lie bracket.

If gd denotes the number of linearly independent operators of this type, the generating function

g(t) =
∑

d≥1

1

d!
gdt

d is determined by the functional equation

(48) eg(t)
(
1 − t− g2(t)

)
= 1.

Equation (48) can be expanded into inductive formula (54) from which one can calculate some

initial values of gk as g1 = 1, g2 = 3, g3 = 26, &c. Theorem 7.2 will follow from Proposition 7.4

below. The depolarization of Theorem 7.2 is:

7.3. Corollary. On a smooth manifold M , each operator from Nat1(Con × T×∞, T ) whose all

components are of homogeneity ≤ 1
2
(dim(M) + 1) is a linear combination of compositions of the

covariant derivative and the Lie bracket. All relations between these compositions follow from the

anticommutativity and the Jacobi identity of the Lie bracket.

The central object of this section will be the subcomplex Gr∗•∇1(d) of the graph complex

Gr∗
Con×T×d,T describing ‘connected’ d-multilinear operators. Its degreem piece Grm

•∇1(d) is spanned

by connected graphs with d vertices (17) labelled by X1, . . . , Xd, some number of vertices (18)

labelled ∇, m white vertices (19) and one vertex 6. It is clear that Gr∗•∇1(d) is precisely the

subcomplex spanned by connected graphs, of the direct sum

Gr∗•∇(d) :=
⊕

c≥0

Gr∗•(d)∇(c),

where Gr∗•(d)∇(c) is the graph complex of Corollary 8.13. As in Proposition 5.4, one easily sees that

the collection Gr0
•∇1 = {Gr0

•∇1(d)}d≥1 forms an operad. It is also not difficult to verify that each

graph spanning Grm
•∇1(d) has at most 2d+m− 1 edges, which explains the stability condition in

Theorem 7.2.

Let P = {P(d)}d≥1 be the operad describing algebras with two independent operations –

a bilinear product ? satisfying no other conditions and a Lie bracket. Of course, P is the free

product (= the coproduct in the category of operads, see [14, p. 137]) of the free operad Γ(?)

generated by the bilinear operation ? and the operad Lie for Lie algebras, P = Γ(?)∗Lie. Recall

that we denoted by β ∈ Lie(2) the generator.

Define the operad homomorphism F : P → Gr0
•∇1 by F (β) := b and F (?) := c, where

b ∈ Gr0
•∇1(2) is the graph (40) representing the Lie bracket and c ∈ Gr0

•∇1(2) the graph (27)

for the covariant derivative. As in Section 5 we easily see that F is well-defined and that

Im(F ) ⊂ Ker(δ : Gr0
•∇1 → Gr1

•∇1). Theorem 7.2 clearly follows from
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7.4. Proposition. The map F : P → Gr0
•∇1 induces an isomorphism P ∼= H0(Gr0

•∇1, δ). The

generating function p(t) :=
∑

d≥1

1

d!
dim(P(d)) · td for the operad P satisfies (48).

Proof. The map F embeds into the following diagram of operads and their homomorphisms:

(49)

P = Γ(?) ∗ Lie Gr0
•∇1 Γ(?) ∗ pLie

Γ(?) ∗ pLie.-

- -

?

F A

T

id ∗ ι

Let us define the remaining maps in (49). As in [1], one can show that the operad Gr0
•∇1 is

isomorphic to the operad Γ(?) ∗ pLie governing structures consisting of a bilinear multiplication

? and an independent pre-Lie product ◦. The map A : Gr0
•∇1 → Γ(?) ∗ pLie in (49) is the

isomorphism that sends the graph

∈ Gr0
•∇1(2)∇

6

AAK@@I
•
X

Y
•

into X ? Y ∈ Γ(?)(2) and the graph

6
• X
6
• Y

∈ Gr0
•∇1(2)

into X ◦ Y ∈ pLie(2). The map T : Γ(?) ∗ pLie → Γ(?) ∗ pLie is the ‘twist’

T (X ? Y ) := X ? Y − Y ◦X and T (X ◦ Y ) := X ◦ Y.

It is evident that the composition TAF coincides with the coproduct id ∗ ι of the identity id :

Γ(?) → Γ(?) and the map ι : Lie → pLie given by the antisymmetrization of the pre-Lie product

ι([X, Y ]) := Y ◦X −X ◦ Y,

which is an inclusion by [15, Proposition 3.1]. This implies that id ∗ ι is a monomorphism,

therefore F is a monomorphism, too.

Now, to prove that F induces an isomorphism P ∼= H∗(Gr0
•∇1, δ), it suffices to show that the

dimensions of the spaces H0(Gr0
•∇1(d), δ) and P(d) are the same, for each d ≥ 1. Our calculation

of the dimension of H0(Gr0
•∇1(d), δ) will be based on the fact that (Gr∗•∇1(d), δ) forms a bicomplex.

For integers p, q denote by Grp,q
•∇1(d) the subspace of Grp+q

•∇1(d) spanned by graphs with precisely −p

∇-vertices. It immediately follows from the replacement rules (29), (30) and (31) that δ = δ ′+δ′′,

where

δ′(Grp,q
•∇1(d)) ⊂ Grp+1,q

•∇1 (d) and δ′′(Grp,q
•∇1(d)) ⊂ Grp,q+1

•∇1 (d).
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Gr0,0
•∇1(3)

Gr0,1
•∇1(3)

Gr0,2
•∇1(3)

Gr−1,1
•∇1 (3)

Gr−2,2
•∇1 (3) Gr−1,2

•∇1 (3)

6

66

-

--

δ′′

δ′′δ′′

δ′

δ′

δ′

Figure 3. The bicomplex (Gr∗,∗•∇1(3), δ′ + δ′′).

It is also clear from simple graph combinatorics that the bicomplex (Gr∗,∗•∇1(d), δ) is bounded by

the triangle p = 0, p+ q = 0 and q = d− 1, see Figure 3.

The horizontal differential δ′ in Gr∗•∇1(d) is easy to describe – it replaces ∇-vertices according

the rule

(50) ∇
6

AAK@@I�
��

�
��

����*
. . .︸ ︷︷ ︸

v inputs

7−→ −

6

��� @@I���
◦
. . .︸ ︷︷ ︸

v + 2

, v ≥ 0,

and leaves other vertices unchanged.

7.5. Remark. At this point we make a digression and observe that (Gr∗•∇1(d), δ
′) is a particular

case of the following construction. For each collection (U ∗, ϑU) = {(U∗(s), ϑU)}s≥2 of right dg-

Σs-modules (U∗(s), ϑU), one may consider the complex Gr∗•1[U ](d) = (Gr∗•1[U
∗](d), ϑ) spanned by

connected graphs with d vertices (17) labelled X1, . . . , Xd, one vertex 6and a finite number of

vertices decorated by elements of U . The grading of Gr∗•1[U
∗](d) is induced by the grading of

U∗ and the differential ϑ replaces U -decorated vertices, one at a time, by their ϑU -images and

leaves other vertices unchanged. It is a standard fact [18] (see also [14, Theorem 21]) that the

assignment (U∗, ϑU) 7→ (Gr∗•1[U
∗](d), ϑ) is a polynomial, hence exact, functor, so

(51) H∗(Gr∗•1[U
∗](d), ϑ) ∼= Gr∗•1[H

∗(U, ϑU)](d).

Let now (E∗, ϑE) = {(E∗(s), ϑE)}s≥2 be such that E0(s) is spanned by symbols (18), with

v + 2 = s, E1(s) by symbols (19) with u = s, and Em(s) = 0 for m ≥ 2. The differential

ϑE is defined by replacement rule (50). More formally, E0(s) = IndΣs

Σs−2
(1s−2) and E1(s) = 1s,

where 1s−2 (resp. 1s) denotes the trivial representation of the symmetric group Σs−2 (resp. Σs).

The differential ϑE then sends the generator 1 ∈ 1s−2 into −1 ∈ 1s. It is clear that, with this

particular choice of the collection (E∗, ϑE),

(52) (Gr∗•∇1(d), δ
′) ∼= (Gr∗•1[E

∗](d), ϑ).
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Let us continue with the proof of Proposition 7.4. Equations (51) and (52) in Remark 7.5

imply that

(53) H∗(Gr∗•∇1(d), δ
′) = Gr∗•1[H

∗(E, ϑE)](d).

Since ϑE : E0(s) → E1(s) is an epimorphism, the collection H∗(E, ϑE) = {H∗(E(s), ϑE)}s≥2 is

concentrated in degree 0 and H0(E(s), ϑE) is the kernel of the map ϑE : E0(s) → E1(s). We con-

clude that Gr∗•1[H
∗(E, ϑE)](d) is spanned by graphs with d vertices (17) labelled X1, . . . , Xd, one

vertex 6and some number of vertices decorated by the collectionH0(E, ϑE) = {H0(E(s), ϑE)}s≥2.

In particular, the graded space Gr∗•1[H
∗(E, ϑE)](d) and hence, by (53), also the horizontal

cohomology H∗(Gr∗•∇1(d), δ
′), is concentrated in degree 0. This implies that the first term

(Ep,q
1 , d1) = (Hp(Gr∗,q•∇1, δ

′), d1) of the corresponding spectral sequence is supported by the di-

agonal p+ q = 0, so this spectral sequence degenerates at this level and

dim(H0(Gr∗•∇1(d), δ)) = dim(H0(Gr∗•∇1(d), δ
′)) = dim(Gr0

•1[H
0(E, ϑE)](d).

Denote the common value of the dimensions in the above display gd. We claim that the

sequence {gd}d≥1 satisfies the recursion:

gn+1

(n+ 1)!
=

gn

n!
+

1

2!

∑

i+j=n

gigj

i!j!
+

1

3!

∑

i+j+k=n

gigjgk

i!j!k!
+

1

4!

∑

i+j+k+l=n

gigjgkgl

i!j!k!l!
+ · · ·(54)

+
2(2 − 1) − 1

2!

∑

i+j=n+1

gigj

i!j!
+

3(3 − 1) − 1

3!

∑

i+j+k=n+1

gigjgk

i!j!k!
+ · · · .

This can be seen as follows. Graphs G spanning Gr0
•1[H

0(E, ϑE)](d) are rooted trees with a

distinguished vertex (= root) 6. The vertex ofG adjacent to the root might either be a vertex (17)

or a vertex decorated by H0(E, ϑE). The contribution from trees of the first type is reflected by

the first line of (54), in which the coefficients 1, 1/2!, 1/3!, . . . equal dim(1s)/s!, s ≥ 1, where 1s

is the trivial representation of the symmetric group Σs spanned by the vertex (17) with u = s.

The second line of (54) counts contributions from trees of the second type. The coefficients are

dim(H0(E(s), ϑE))/s!, s ≥ 2. It is simple to assemble (54) into equation (48).

Let us show that the generating function p(t) :=
∑

d≥1

1

d!
dim(P(d)) · td for the operad P also

satisfies (48). Since P is, as the coproduct of quadratic Koszul operads, itself quadratic Koszul,

one has the functional equation [7, Theorem 3.3.2]:

(55) q(−p(t)) = −t.

relating p with the generating function q(t) :=
∑

d≥1

1

d!
dim(Q(d)) · td of its quadratic dual Q.

For convenience of the reader, we make a digression and briefly recall the definition of quadratic

operads and their quadratic duals. Details can be found in [17, II.3.2] or in the original source [7].
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An operad A is quadratic if it is the quotient Γ(E)/(R) of the free operad Γ(E) on the right Σ2-

module E := A(2) of arity-two operations of A, modulo the operadic ideal (R) generated by

some subspace R ⊂ Γ(E)(3).

Each quadratic operad A = Γ(E)/(R) as above has its quadratic dual A! [17, Definition II.3.37]

defined as follows. Let us denote E∨ := E∗⊗sgn2 the linear dual of the right Σ2-module E twisted

by the signum representation. One then has a natural isomorphism Γ(E∨)(3) ∼= Γ(E)(3)∗ of

right Σ3-modules. Let R⊥ ⊂ Γ(E∨)(3) denote the annihilator of R in Γ(E∨)(3) ∼= Γ(E)(3)∗. The

quadratic dual of A is the quotient A! := Γ(E∨)/(R⊥).

To describe the quadratic dual Q of the operad P introduced on page 33 is an easy task. The

operad Q governs algebras V with two bilinear operations, • and ∗, such that • is commutative

associative, ∗ is ‘nilpotent’

(a ∗ b) ∗ c = a ∗ (b ∗ c) = 0, a, b, c ∈ V,

and these two operations annihilate each other:

(a • b) ∗ c = a ∗ (b • c) = a • (b ∗ c) = 0, a, b, c ∈ V.

It is immediately obvious that

dim(Q(1)) = 1, dim(Q(2)) = 3 and dim(Q(d)) = dim(Com(d)) = 1 for d ≥ 3,

where Com denotes the operad for commutative associative algebras. The generating function

for Q therefore equals q(t) = et − 1 + t2 and equation (55) gives

e−p(t) − 1 + p(t)2 = −t,

which is equivalent to (48). We proved that the generating functions g(t) and p(t) satisfy the

same functional equation and, by definition, the same initial condition p(0) = g(0) = 0, therefore

they coincide and dim(H0(Gr0
•∇1(d), δ)) = dim(P(d)) for each d ≥ 1. �

– – – – –

In the rest of this section we study operators in Nat1(Con × T×∞,R). Roughly speaking, we

prove that all operators in this space are traces in the following sense. Let O ∈ Nat(Con×T ×∞, T )

be an operator acting on vector fields X0, X1, X2, . . . and a connection Γ. Suppose that O is a lin-

ear order 0 differential operator in X0. This means that the local formula O(X0, X1, X2, . . . ,Γ) ∈

R for O is a linear function of X0 and does not contain derivatives of X0. For such an operator

we define TrX0(O) ∈ Nat(Con × T×∞,R) by the local formula

TrX0(O)(X1, X2, . . . ,Γ) := Trace(O(−, X1, X2, . . . ,Γ) : Rn → Rn) ∈ R.

It is easy to see that TrX0(O) is well defined. Let us formulate a structure theorem for multilinear

operators from Nat1(Con × T×∞,R).
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7.6. Theorem. Let d ≥ 0. On smooth manifolds of dimension ≥ 2d, each d-multilinear operator

in Nat1(Con×T⊗d,R) is the trace of a (d+1)-multilinear operator from Nat1(Con×T⊗(d+1), T ).

Theorem 7.6 will follow from Proposition 7.8 below. A depolarized version of Theorem 7.6 is:

7.7. Corollary. On a smooth manifold M , each operator from Nat1(Con × T×∞,R) whose all

components are of homogeneity ≤ 1
2
dim(M) is a trace of an operator from Nat1(Con ×T×∞, T ).

Denote by Gr∗•∇�(d) the graph complex describing operators in Nat1(Con × T⊗d,R). The

degree m-component of this complex is spanned by connected graphs with d vertices (17) labelled

X1, . . . , Xd, some number of vertices (18) labelled ∇ and m white vertices (19). It is not difficult

to see that the number of edges of graphs spanning Gr0
•∇�(d) is ≤ 2d, which explains the stability

assumption in Theorem 7.6.

We will also consider the subcomplex Gr∗•∇Tr
(d) ⊂ Gr∗•∇1(d+1) of graphs describing operators

in Nat1(Con × T⊗(d+1), T ) for which the trace is defined. Clearly, the degree m component

Grm
•∇Tr(d) of this subcomplex is spanned by connected graphs with one vertex •?labelled X0, one

vertex 6, d vertices (17) labelled X1, . . . , Xd, a finite number of vertices (18) labelled ∇ and m

white vertices (19). The trace is represented by the map map Tr : Gr∗•∇Tr
(d) → Gr∗•∇�(d) that

removes the vertices •?and 6and connect the two loose edges created in this way by a directed

wheel. It is clear that this map commutes with the differentials. We now establish Theorem 7.6

by proving the following.

7.8. Proposition. The map Tr : (Gr∗•∇Tr
(d), δ) → (Gr∗•∇�(d), δ) induces an epimorphism of

cohomology H0(Gr∗•∇Tr
(d), δ) → H0(Gr∗•∇�(d), δ).

Proof. As in the proof of Proposition 7.4 we observe that both (Gr∗•∇Tr(d), δ) and (Gr∗•∇�(d), δ) are

bicomplexes, with Grp,q
•∇Tr

(d) (resp. (Grp,q
•∇�

(d)) spanned by graphs in Grp+q
•∇Tr

(d) (resp. (Grp+q
•∇�

(d))

with precisely −p ∇-vertices. The differential in both complexes decomposes as δ = δ ′ + δ′′

where δ′ (the ‘horizontal part’) raises the p-degree by one and preserves the q-degree, and δ ′′ (the

‘vertical part’) preserves the q-degree and raises the p-degree by one.

The map Tr : (Gr∗•∇Tr
(d), δ) → (Gr∗•∇�(d), δ) obviously preserves the bigradings, therefore it

induces the map

(56) H∗(Tr , δ′) : H∗(Gr∗•∇Tr
(d), δ′) → H∗(Gr∗•∇�(d), δ′)

of the horizontal cohomology. Using the same considerations as in the proof of Proposition 7.4,

we identify this map with

(57) Tr : Gr∗•Tr
[H∗(E, ϑE)](d) → Gr∗•�[H∗(E, ϑE)](d),

where (E∗, ϑE) is the dg-collection introduced in Remark 7.5 and the graph complexes in (57) are

defined analogously as the graph complex Gr∗•1[H
∗(E, ϑE)](d) used in the proof of Proposition 7.4.
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Let us show that the map in (57) is an epimorphism. Consider a graphG in Gr∗•�[H∗(E, ϑE)](d)

and choose a directed edge e in the (unique) wheel ofG. Let Ĝ be the graph in Gr∗•Tr
[H∗(E, ϑE)](d)

obtained by cutting e in the middle and decorating the loose ends thus created by vertices •?and

6as in the following display: ��

��
...

6

cut
7−→

e

×
6

6

...

•X1

.

Clearly Tr(Ĝ) = G which proves that (57) is surjective.

So, we have two spectral sequences, (Ep,q
∗ , d∗) and (F p,q

∗ , d∗), such that

(Ep,q
0 , d0) = (Grp,q

•∇Tr
(d), δ), (F p,q

0 , d0) = (Grp,q
•∇�

(d), δ),

and the map Tr∗ : (Ep,q
∗ , d∗) → (F p,q

∗ , d∗) induced by the trace map Tr : Gr∗•∇Tr(d) → Gr∗•∇�(d).

The map Tr1 : (Ep,q
1 , d1) → (F p,q

1 , d1) of the first levels of the spectral sequences is (56) and we

identified this map with epimorphism (57). It is also clear that the first terms of both spectral

sequences are supported by the diagonal p + q = 0, so these spectral sequences degenerate

at this level. A standard argument then implies that the map H0(Tr) : H0(Gr∗•∇Tr(d), δ) →

H0(Gr∗•∇�(d), δ) in Proposition 7.8 is an epimorphism. �

8. Appendix: Invariant tensors and graph complexes

Recall that, for finite-dimensional k-vector spaces U and W , one has canonical isomorphisms

(58) Lin(U,W )∗ ∼= Lin(W,U), Lin(U, V ) ∼= U∗ ⊗ V and (U ⊗W )∗ ∼= U∗ ⊗ V ∗,

where Lin(−,−) denotes the space of k-linear maps, (−)∗ the linear dual and ⊗ the tensor

product over k. The first isomorphism in (58) is induced by the non-degenerate pairing

Lin(U,W ) ⊗ Lin(W,U) → k

that takes f ⊗ g ∈ Lin(U,W ) ⊗ Lin(W,U) into the trace of the composition Tr(f ◦ g), the

remaining two isomorphisms are obvious. In this appendix, by a canonical isomorphism we will

usually mean a composition of isomorphisms of the above types. Einstein’s convention assuming

summation over repeated (multi)indices is used throughout this section. We will also assume

that the ground field k is of characteristic zero.

In what follows, V will be an n-dimensional k-vector space and GL(V ) the group of linear

automorphisms of V . We start by considering the vector space Lin(V ⊗k, V ⊗l) of k-linear maps

f : V ⊗k → V ⊗l, k, l ≥ 0. Since both V ⊗k and V ⊗l are natural GL(V )-modules, it makes sense to

study the subspace LinGL(V )(V
⊗k, V ⊗l) ⊂ Lin(V ⊗k, V ⊗l) of GL(V )-equivariant maps.
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As there are no GL(V )-equivariant maps in Lin(V ⊗k, V ⊗l) = 0 if k 6= l (see, for instance, [10,

§24.3]), the only interesting case is k = l. For a permutation σ ∈ Σk, define the elementary

invariant tensor tσ ∈ Lin(V ⊗k, V ⊗k) as the map given by

(59) tσ(v1 ⊗ · · · ⊗ vk) := vσ−1(1) ⊗ · · · ⊗ vσ−1(k), for v1, . . . , vk ∈ V.

It is simple to verify that tσ is GL(V )-equivariant.

Invariant Tensor Theorem. The space LinGL(V )(V
⊗k, V ⊗k) is spanned by elementary invariant

tensors tσ, σ ∈ Σk. If dim(V ) ≥ k, the tensors {tσ}σ∈Σk
are linearly independent.

This form of the Invariant Tensor Theorem is a straightforward translation of [6, Theo-

rem 2.1.4] describing invariant tensors in V ∗⊗k ⊗ V ⊗k and remarks following this theorem, see

also [10, Theorem 24.4]. The Invariant Tensor Theorem can be reformulated into saying that the

map

(60) Rn : k[Σk] → LinGL(V )(V
⊗k, V ⊗k)

from the group ring of Σk to the subspace of GL(V )-equivariant maps given by Rn(σ) := tσ,

σ ∈ Σk, is always an epimorphism and is an isomorphism for n ≥ k (recall n denoted the

dimension of V ).

The tensors {tσ}σ∈Σk
are not linearly independent if dim(V ) < k. For a subset S ⊂ {1, . . . , k}

such that card(S) > dim(V ), denote by ΣS the subgroup of Σk consisting of permutations that

leave the complement {1, . . . , k} \ S fixed. It is simple to verify that then

(61)
∑

σ∈ΣS

sgn(σ) · tσ = 0

in LinGL(V )(V
⊗k, V ⊗k). By [6, II.1.3], all relations between the elementary invariant tensors are

induced by the relations of the above type. In other words, the kernel of the map Rn in (60) is

generated by the expressions ∑

σ∈ΣS

sgn(σ) · σ ∈ k[Σk],

where S and ΣS are as above.

Observe that, with the convention used in (59) involving the inverses of σ in the right hand

side, Rn is a ring homomorphism. In the following example we explain how the Invariant Tensor

Theorem leads to graphs.

8.1. Example. Let us describe invariant tensors in Lin
(
V ⊗2⊗Lin(V ⊗2, V ), V

)
. The canonical

identifications (58) determine a GL(V )-equivariant isomorphism

Φ : Lin
(
V ⊗2 ⊗ Lin(V ⊗2, V ), V

)
∼= Lin(V ⊗3, V ⊗3).
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Φ−1(tσ):
coordinate
form: graph:

σ = identity X ⊗ Y ⊗ F 7→ F (X, Y ) XjY kF i
jkei

6•F

���•
X

@@I•
Y

σ = ���@@I 6
1 2 3

1 2 3

X ⊗ Y ⊗ F 7→ F (Y,X) XjY kF i
kjei

6•F

���•
Y

@@I•
X

σ = 6 ���@@I
1 2 3

1 2 3

X ⊗ Y ⊗ F 7→ Y ⊗ Tr(F (X,−)) XjY iF k
jkei

6
•
Y
��
��

���•
•
6

F

X

σ = ������HHHY

1 2 3

1 2 3

X ⊗ Y ⊗ F 7→ Y ⊗ Tr(F (−, X)) XjY iF k
kjei

6
•
Y
��
��

@@I•
•
6

F

X

σ = ���*6HHHY

1 2 3

1 2 3

X ⊗ Y ⊗ F 7→ X ⊗ Tr(F (−, Y )) X iY jF k
kjei

6
•
X
��
��

@@I•
•
6

F

Y

σ = ���*
@@I @@I

1 2 3

1 2 3

X ⊗ Y ⊗ F 7→ X ⊗ Tr(F (Y,−)) X iY jF k
jkei

6
•
X
��
��

���•
•
6

F

Y

�

�

�

�

�

�

Figure 4. Invariant tensors in Lin(V ⊗2 ⊗ Lin(V ⊗2, V ), V ). The meaning of
vertical braces on the right is explained in Example 8.3.

Applying the Invariant Tensor Theorem to Lin(V ⊗3, V ⊗3), one concludes that the subspace

LinGL(V )(V
⊗2⊗Lin(V ⊗2, V ), V ) is spanned by Φ−1(tσ), σ ∈ Σ3, and that these generators are

linearly independent if dim(V ) ≥ 3. It is a simple exercise to calculate the tensors Φ−1(tσ)

explicitly. The results are shown in the second column of the table in Figure 4 in which X⊗Y ⊗F

is an element of V ⊗2⊗Lin(V ⊗2, V ) and Tr(−) the trace of a linear map V → V .

Let us fix a basis {e1, . . . , en} of V and write X = Xaea, Y = Y aea and F (ea, eb) = F c
abec,

for some scalars Xa, Y a, F c
ab ∈ k, 1 ≤ a, b, c ≤ n. The corresponding coordinate forms of the

elementary tensors are shown in the third column of the table. Observe that the expressions in

this column are all possible contractions of indices of the tensors X, Y and F .

The contraction schemes for indices are encoded by the rightmost column as follows. Given

a graph G from this column, decorate its edges by symbols i, j, k. For example, for the graph in
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the bottom right corner of the table, choose the decoration

6

•
X
"!

# 
���•
•
6

F

Y

i
j

k
.

To each vertex of this edge-decorated graph we assign the coordinates of the corresponding

tensors with the names of indices determined by decorations of edges adjacent to this vertex. For

example, to the F -vertex we assign F k
jk, because its left ingoing edge is decorated by j and its

right ingoing edge which happens to be the same as its outgoing edge, is decorated by k. The

vertex 6, called the anchor , plays a special role. We assign to it the basis of V indexed by the

decoration of its ingoing edge. We get

ei

6

•
Xi
"!

# 
���•
•
6

F k
jk

Y j

i
j

k

As the final step we take the product of the factors assigned to vertices and perform the sum-

mation over repeated indices. The result is
∑

1≤i,j,k≤n

X iY jF k
jkei.

In this formula we made an exception from Einstein’s convention and wrote the summation

explicitly to emphasize the idea of the construction. A formal general definition of this process

of interpreting graphs as contraction schemes is given below.

Let Ĝrex be the vector space spanned by the six graphs in the last column of the table; the hat

indicates that the graphs are not oriented. The subscript “ex” is an abbreviation of “example,”

and distinguishes this graph complex from other objects with similar names used throughout the

paper. The procedure described above gives an epimorphism

(62) R̂n : Ĝrex → LinGL(V )

(
V ⊗2 ⊗ Lin(V ⊗2, V ), V

)

which is an isomorphism if n ≥ 3. The map R̂n defined in this way obviously does not depend

on the choice of the basis {e1, . . . , en} of V .

The space Ĝrex can also be defined as the span of all directed graphs with three unary vertices

(63) • X ,6
• Y
6 and 6 ,

and one “planar” binary vertex

(64)
6•F

��� @@I

whose planarity means that its inputs are linearly ordered. In pictures, this order is determined

by reading the inputs from left to right.
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Let us generalize calculations in Example 8.1 and describe GL(V )-invariant elements in

(65) Lin
(
Lin(V ⊗h1, V ⊗p1) ⊗ · · · ⊗ Lin(V ⊗hr , V ⊗pr),Lin(V ⊗c, V ⊗d)

)
,

where r, p1, . . . , pr, h1, . . . , hr, c and d are non-negative integers. The above space is canonically

isomorphic to

V ∗⊗p1 ⊗ V ⊗h1 ⊗ · · · ⊗ V ∗⊗pr ⊗ V ⊗hr ⊗ V ∗⊗c ⊗ V ⊗d,

which is in turn isomorphic to

(66) V ∗⊗(p1+···+pr+c) ⊗ V ⊗(h1+···+hr+d),

via the isomorphism that moves all V ∗-factors to the left, without changing their relative order.

By the last and first isomorphisms in (58), the space in (66) is isomorphic to

Lin(V ⊗(p1+···+pr+c), V ⊗(h1+···+hr+d)).

We will denote the composite isomorphism between (65) and the space in the above display by Φ.

Since all isomorphisms above are GL(V )-equivariant, Φ is equivariant, too, thus the space (65)

may contain nontrivial GL(V )-equivariant maps only if

(67) p1 + · · ·+ pr + c = h1 + · · ·+ hr + d.

Denote by Ĝr the space spanned by all directed graphs with r + 1 planar vertices

�
���

@
@@I

A
AAK

�
���

@
@@I

�
���
•F1

. . .︸ ︷︷ ︸
h1 inputs

. . .
p1 outputs︷ ︸︸ ︷

· · · �
���

@
@@I

A
AAK

�
���

@
@@I

�
���
•Fr

. . .︸ ︷︷ ︸
hr inputs

. . .
pr outputs︷ ︸︸ ︷

and �
���

@
@@I

A
AAK

�
���

@
@@I

�
���
. . .︸ ︷︷ ︸

d inputs

. . .
c outputs︷ ︸︸ ︷

,

where planarity means that linear orders of the sets of input and output edges are specified.

Observe that the number of edges of each graph spanning Ĝr equals the common value of the

sums in (67). For each graph G ∈ Ĝr we define a GL(V )-equivariant map R̂n(G) in the space (65)

as follows.

As in Example 8.1, choose a basis (e1, . . . , en) of V and let (e1, . . . , en) be the corresponding

dual basis of V ∗. For Fi ∈ Lin(V ⊗hi, V ⊗pi), 1 ≤ i ≤ r, write

Fi = Fi

ai
1,...,ai

pi

bi
1,...,bi

hi

ea1 ⊗ · · · ⊗ eapi
⊗ eb1 ⊗ · · · ⊗ ebhi

with some scalars Fi

ai
1,...,ai

pi

bi
1,...,bi

hi

∈ k or, more concisely, Fi = Fi
Ai

Bi eAi ⊗eBi

, where Ai abbreviates the

multiindex (ai
1, . . . , a

i
pi

), Bi the multiindex (bi1, . . . , b
i
hi

), eAi := ea1⊗· · ·⊗eapi
, eBi

:= eb1⊗· · ·⊗ebhi

and, as everywhere in this paper, summations over repeated (multi)indices are assumed.

A labelling of a graph G ∈ Ĝr is a function ` : Edg(G) → {1, . . . , n}, where Edg(G) denotes

the set of edges of G. Let Lab(G) be the set of all labellings of G. For ` ∈ Lab(G) and 1 ≤ i ≤ r,
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define Ai(`) to be the multiindex (ai
1, . . . , a

i
pi

) such that ai
s equals `(e), where e is the edge that

starts at the s-th output of the vertex Fi, 1 ≤ s ≤ pi. Likewise, put I(`) := (i1, . . . , ic) with

it := `(e), where now e is the edge that starts at the t-th output of the -vertex, 1 ≤ t ≤ c.

Let Bi(`) and J(`) have similar obvious meanings, with ‘inputs’ taken instead of ‘outputs.’ For

F1 ⊗ · · · ⊗ Fr ∈ Lin(V ⊗h1 , V ⊗p1) ⊗ · · · ⊗ Lin(V ⊗hr , V ⊗pr) define finally

(68) R̂n(G)(F1 ⊗ · · · ⊗ Fr) :=
∑

`∈Lab(G)

F1
A1(`)

B1(`) ⊗ · · · ⊗ Fr
Ar(`)
Br(`) eJ(`) ⊗ eI(`) ∈ Lin(V ⊗c, V ⊗d).

It is easy to check that R̂n(G) is a GL(V )-fixed element of the space (65). The nature of the

summation in (68) is close to the state sum model for link invariants, see [9, Section I.8], with

states being the values of labels of the edges of the graph.

8.2. Proposition. Let r, p1, . . . , pr, h1, . . . , hr, c and d be non-negative integers. Then the map

R̂n : Ĝr → LinGL(V )

(
Lin(V ⊗h1, V ⊗p1) ⊗ · · · ⊗ Lin(V ⊗hr , V ⊗pr),Lin(V ⊗c, V ⊗d)

)

defined by (68) is an epimorphism. If n ≥ e, where e is the number of edges of graphs spanning

Ĝr and n = dim(V ), R̂n is also an isomorphism.

Observe that we do not need to assume (67) in Proposition 8.2. If (67) is not satisfied, then

there are no GL(V )-invariant elements in (65) and also the space Ĝr is trivial, thus R̂n is an

isomorphism of trivial spaces.

Proof of Proposition 8.2. By the above observation, we may assume (67). Consider the diagram

(69)

Ĝr LinGL(V )

(
Lin(V ⊗h1, V ⊗p1) ⊗ · · · ⊗ Lin(V ⊗hr , V ⊗pr),Lin(V ⊗c, V ⊗d)

)

k[Σk] LinGL(V )(V
⊗(p1+···+pr+c), V ⊗(h1+···+hr+d))

-

-

6 6

ΦΨ ∼=∼=

R̂n

Rn

in which Rn is the map (60), R̂n is defined in (68) and Φ is the composition of canonical iso-

morphisms and reshufflings of factors described on page 43 above. The map Ψ is defined as

follows.

Let us denote, for the purposes of this proof only, by Ou(Fi) the linearly ordered set of

outputs of the Fi-vertex, 1 ≤ i ≤ r, and by Ou( ) the linearly ordered set of outputs of . The

set Ou := Ou(F1) ∪ · · · ∪ Ou(Fr) ∪ Ou( ) is linearly ordered by requiring that

Ou(F1) < · · · < Ou(Fr) < Ou( )
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(we believe that the meaning of this shorthand is obvious). Let In be the linearly ordered set of

inputs defined in the similar way. The orders define unique isomorphisms

(70) Ou ∼= (1, . . . , k) and In ∼= (1, . . . , k)

of ordered sets.

Since graphs spanning Ĝr are determined by specifying how the outputs of vertices are con-

nected to its inputs, there exists a one-to-one correspondence G ↔ ϕG between graphs G ∈ Ĝr

and isomorphisms ϕG : Ou
∼=
→ In. Given (70), such ϕG can be interpreted as an element of the

symmetric group Σk. The map Ψ is then defined by Ψ(G) := ϕG.

It is simple to verify that the diagram (69) commutes, so the proposition follows from the

Invariant Tensor Theorem. �

In the light of diagram (69), Proposition 8.2 may look just as a clumsy reformulation of the

Invariant Tensor Theorem. Graphs become relevant when symmetries occur.

8.3. Example. Let Sym(V ⊗2, V ) ⊂ Lin(V ⊗2, V ) be the subspace of symmetric bilinear maps,

i.e. maps satisfying f(v′, v′′) = f(v′′, v′) for v′, v′′ ∈ V . Let us explain how to use calculations of

Example 8.1 to describe GL(V )-equivariant maps in Lin
(
V ⊗2⊗Sym(V ⊗2, V ), V

)
.

The right Σ2-action on Lin(V ⊗2, V ) given by permuting the inputs of bilinear maps is such that

the space Sym(V ⊗2, V ) equals the subspace Lin(V ⊗2, V )Σ2 of Σ2-fixed elements. This right Σ2-

action induces a left Σ2-action on Lin
(
V ⊗2⊗Lin(V ⊗2, V ), V

)
which commutes with the GL(V )-

action, therefore it restricts to a left Σ2-action on the subspace LinGL(V )

(
V ⊗2⊗Lin(V ⊗2, V ), V

)

of GL(V )-equivariant maps.

There is also a left Σ2-action on the linear space Ĝrex interchanging the inputs of the F -vertices

of generating graphs. It is simple to check that the map (62) of Example 8.1 is equivariant with

respect to these two Σ2-actions, hence it induces the map

(71) Σ2\R̂n : Σ2\Ĝrex → Σ2\LinGL(V )

(
V ⊗2 ⊗ Lin(V ⊗2, V ), V

)

of left cosets. Observe that, by a standard duality argument,

(72) Σ2\LinGL(V )

(
V ⊗2 ⊗ Lin(V ⊗2, V ), V

)
∼= LinGL(V )

(
V ⊗2 ⊗ Sym(V ⊗2, V ), V

)
.

Let us denote Ĝrex,• := Σ2\Ĝrex. The bullet • in the subscript signalizes the presence of vertices

with fully symmetric inputs. By definition, graphs G′, G′′ ∈ Ĝrex are identified in the quotient

Ĝrex,• if they differ only by the order of inputs of the F -vertex. In Figure 4, this identification

is indicated by vertical braces. We see that Ĝrex,• is again a space spanned by graphs, this time

with no linear order on the inputs of the F -vertex. So we may define Ĝrex,• as the space spanned
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by directed graphs with vertices (63) and one binary (ordinary, non-planar) vertex (64). We

conclude by interpreting (71) as the map

(73) R̂n : Ĝrex,• → LinGL(V )

(
V ⊗2 ⊗ Sym(V ⊗2, V ), V

)
.

It follows from the properties of the map (62) and the characteristic zero assumption that R̂n is

always an epimorphism and is an isomorphism if n ≥ 3.

At this point we want to incorporate, by generalizing the pattern used in Example 8.3, sym-

metries into Proposition 8.2. Unfortunately, it turns out that treating the space (65) in full

generality leads to a notational disaster. To keep the length of formulas within a reasonable

limit, we decided to assume from now on that p1 = · · · = pr = 1, c = 0 and d = 1. This means

that we will restrict our attention to maps in

(74) Lin
(
Lin(V ⊗h1 , V ) ⊗ · · · ⊗ Lin(V ⊗hr , V ), V

)
.

For graphs this assumption implies that the vertices F1, . . . , Fr have precisely one output, and

that the anchor has one input and no outputs. The number of inputs of Fi will be called the

arity of Fi, 1 ≤ i ≤ r. Condition (67) reduces to

r = h1 + · · ·+ hr + 1

and one also sees that r equals the number of edges of the generating graphs.

The above generality is sufficient for the purposes of the present paper concerned with vector-

field valued operators. A modification to the general case is straightforward but notationally

challenging.

The space Lin(V ⊗h, V ) admits, for each h ≥ 0, a natural right Σh-action given by permuting

inputs of multilinear maps. A symmetry of maps in Lin(V ⊗h, V ) will be specified by a subset

I ⊂ k[Σh]. We then denote

LinI(V
⊗h, V ) :=

{
f ∈ Lin(V ⊗h, V ); fs = 0 for each s ∈ I

}
.

For I as above and a left Σh-module U , we will abbreviate by I\U the left coset IU\U .

8.4. Example. Let I := Ih ⊂ k[Σh] be the augmentation ideal. Then LinIh
(V ⊗h, V ) is the space

of symmetric maps,

LinIh
(V ⊗h, V ) = Sym(V ⊗h, V ).

We leave as an exercise to describe in this language the spaces of antisymmetric maps.

8.5. Example. Let h := v+ 2, v ≥ 0, and let ∇ ⊂ k[Σh] be the image of the augmentation ideal

Iv of k[Σv] in k[Σh] under the map of group rings induced by the inclusion Σv ↪→ Σv ×Σ2 ↪→ Σh

that interprets permutations of (1, . . . , v) as permutations of (1, . . . , v, v + 1, v + 2) keeping the

last two elements fixed. Then Lin∇(V ⊗h, V ) consists of multilinear maps V ⊗(v+2) → V that are

symmetric in the first v inputs.

[November 11, 2007]



OPERATORS AND GRAPH COMPLEXES 47

8.6. Remark. It is clear how to generalize the above notion of symmetry to maps in the left Σp-

right Σh-module Lin(V ⊗h, V ⊗p) for general p, h ≥ 0. A symmetry of these maps will be specified

by subsets I ∈ k[Σh] and O ∈ k[Σp], the corresponding subspaces will then be

LinO
I (V ⊗h, V ⊗p) :=

{
f ∈ Lin(V ⊗h, V ⊗p); fs = 0 = tf for each s ∈ I and t ∈ O

}
.

Suppose we are given subsets Ii ⊂ k[Σhi
], 1 ≤ i ≤ r. Our aim is to describe GL(V )-invariant

elements in the space

(75) Lin
(
LinI1(V

⊗h1 , V ) ⊗ · · · ⊗ LinIr
(V ⊗hr , V ), V

)
.

Let

I := I1 ∪ · · · ∪ Ir ⊂ k[Σh1 × · · · × Σhr
],

where Ii is, for 1 ≤ i ≤ r, identified with its image in k[Σh1 × · · · × Σhr
] under the map induced

by the group inclusion Σhi
↪→ Σh1 × · · · × Σhr

.

As in Example 8.3, we use the fact that, for 1 ≤ i ≤ r, each Lin(V ⊗hi, V ) is a right Σhi
-space,

hence the tensor product Lin(V ⊗h1 , V )⊗ · · ·⊗Lin(V ⊗hr , V ) has a natural right Σh1 × · · ·×Σhr
-

action which induces a left Σh1 × · · · × Σhr
-action on the space (74). This action restricts to the

subspace of GL(V )-equivariant maps.

There is also a left Σh1 × · · · ×Σhr
-action on the space Ĝr given by permuting, in the obvious

manner, the inputs of the vertices F1, . . . , Fr of generating graphs. The map R̂n of Proposition 8.2

is equivariant with respect to the above two actions and induces the map

I\R̂n : I\Ĝr → I\LinGL(V )

(
Lin(V ⊗h1, V ) ⊗ · · · ⊗ Lin(V ⊗hr , V ), V

)

of left quotients. Denoting ĜrI := I\Ĝr and realizing that, by duality, the codomain of I\R̂n is

isomorphic to the subspace of GL(V )-fixed elements in (75), we obtain the map (denoted again

R̂n)

(76) R̂n : ĜrI → LinGL(V )

(
LinI1(V

⊗h1, V ) ⊗ · · · ⊗ LinIr
(V ⊗hr , V ), V

)

which is, by Proposition 8.2, an epimorphism and is an isomorphism if dim(V ) ≥ r.

8.7. Remark. As in Example 8.3, it turns out that the quotient ĜrI = I\Ĝr is a space of graphs

though, for general symmetries, “space of graphs” means a free wheeled operad on a certain

Σ-module [16]. In the cases relevant for our paper, we however remain in the realm of ‘classical’

graphs, as shown in the following example, see also the proof of Corollary 8.13.

8.8. Example. Suppose that, for some 1 ≤ i ≤ r, Ii equals the augmentation ideal Ihi
of k[Σhi

]

as in Example 8.4. Then, in the quotient I\Ĝr, one identifies graphs that differ by the order of

inputs of the vertex Fi. In other words, modding out by Ii ⊂ I erases the order of inputs of

Fi, turning Fi into an ordinary (non-planar) vertex. If Ii = ∇ as in Example 8.5, one gets a

vertex (18) of arity v + 2, v ≥ 0, whose first v inputs are symmetric.
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We still need one more level of generalization that will reflect the antisymmetry of the

Chevalley-Eilenberg complex (10) in the Lie algebra variables. As a motivation for our con-

struction, we offer the following continuation of Examples 8.1 and 8.3.

8.9. Example. We will consider the tensor product V ⊗ V as a left Σ2-module, with the action

τ(v′ ⊗ v′′) := −(v′′ ⊗ v′), for v′, v′′ ∈ V and the generator τ ∈ Σ2. The subspace (V ⊗ V )Σ2 of

Σ2-fixed elements is then precisely the second exterior power ∧2
V . This left action induces a

GL(V )-equivariant right Σ2-action on the space Lin
(
V ⊗2⊗Sym(V ⊗2, V ), V

)
such that

Lin
(
V ⊗2 ⊗ Sym(V ⊗2, V ), V

)
/Σ2

∼= Lin
(
∧2

V ⊗ Sym(V ⊗2, V ), V
)
.

The above isomorphism restricts to an isomorphism

(77) LinGL(V )

(
V ⊗2 ⊗ Sym(V ⊗2, V ), V

)
/Σ2

∼= LinGL(V )

(
∧2

V ⊗ Sym(V ⊗2, V ), V
)
.

of the subspaces of GL(V )-equivariant maps.

Likewise, Ĝrex,• carries a right Σ2-action that interchanges the labels X and Y of the •6-vertices

of graphs in the last column of Figure 4 and multiplies the sign of the corresponding generator

by −1. The map (73) is Σ2-equivariant, therefore it induces the map

R̂n/Σ2 : Ĝrex,•/Σ2 → LinGL(V )

(
V ⊗2 ⊗ Sym(V ⊗2, V ), V

)
/Σ2.

Let us denote Gr2
ex,• := Ĝrex,•/Σ2 and R2

n := R̂n/Σ2. Using (77), one rewrites the above map as

an epimorphism

R2
n : Gr2

ex,• � LinGL(V )

(
∧2

V⊗Sym(V ⊗2, V ), V
)

which is an isomorphism if n ≥ 3.

The space Gr2
ex,• is isomorphic to the span of the set of directed, oriented graphs with one

(non-planar) binary vertex F , an anchor 6, and two ‘white’ vertices ◦6. By an orientation we

mean a linear order of white vertices. A graph with the opposite orientation is identified with

the original one taken with the opposite sign. It is clear that, with Gr2
ex,• defined in this way, the

map Gr2
ex,• → Ĝrex,•/Σ2 that replaces the first (in the linear order given by the orientation) white

vertex ◦6by the black vertex •6labelled by X, and the second white vertex by the black vertex

labelled by Y , is an isomorphism.

The symmetry of the inputs of the vertex F implies the following identities in Gr2
ex,•:

6•F

���◦ <@@I◦
= −

6•F

���◦ >@@I◦
= −

6•F

���◦ <@@I◦
,

from which one concludes that

6•F

���◦ <@@I◦
= 0.
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Therefore Gr2
ex,• is in this case one-dimensional, spanned by the equivalence class of the oriented

directed graph

6
◦ ��
��

���◦
•
6

F

<
.

In the notation of Figure 4, the above graph represents the map that sends (X ∧ Y ) ⊗ F ∈

∧2
V ⊗ Sym(V ⊗2, V ) into

X ⊗ Tr(F (Y,−)) − Y ⊗ Tr(F (X,−)) ∈ V.

Let us turn to our final task. We want to describe GL(V )-invariant elements in the space

(78) Lin

(

∧
1≤i≤m

Sym(V ⊗hi, V ) ⊗
⊗

m+1≤i≤r

LinIi
(V ⊗hi, V ), V

)

where, as before, r, h1, . . . , hr are positive integers, Ii ⊂ k[Σhi
] for m + 1 ≤ i ≤ r, and m is

an integer such that 1 ≤ m ≤ r. Having in mind the description of the space of symmetric

multilinear maps given in Example 8.4, we extend the definition of Ii also to 1 ≤ i ≤ m, by

putting Ii := Ihi
. The first step is to identify the exterior power ∧1≤i≤m Sym(V ⊗hi, V ) with the

fixed point set of an action of a suitable finite group. This can be done as follows.

For 1 ≤ w ≤ m, let A(w) ⊂ {1, . . . , m} be the subset A(w) := {1 ≤ i ≤ m; hi = hw}. Then

{1, . . . , m} =
⋃

1≤w≤mA(w)

is a decomposition of {1, . . . , m} into not necessarily distinct subsets. Let Σ̂ ⊂ Σm be the

subgroup of permutations of {1, . . . , m} preserving this decomposition.

The group Σ̂ acts on
⊗

1≤i≤m Sym(V ⊗hi, V ) by permuting the corresponding factors. If we

consider this tensor product as a left Σ̂-module with this permutation action twisted by the

signum representation, then

∧
1≤i≤m

Sym(V ⊗hi, V ) ∼=

(
⊗

1≤i≤m

Sym(V ⊗hi, V )

)bΣ

.

The above left Σ̂-action on
⊗

1≤i≤m Sym(V ⊗hi, V ) induces a dual GL(V )-equivariant right Σ̂-

action on the space (78).

There is a right Σ̂-action on the quotient ĜrI = I\Ĝr defined as follows. For a graph G ∈ Ĝr

representing an element [G] ∈ ĜrI and for σ ∈ Σ̂, let Gσ be the graph obtained from G by

permuting the vertices F1, . . . , Fm according to σ. We then put [G]σ := sgn(σ)[Gσ]. Since, by

the definition of Σ̂, σ may interchange only vertices with the same number of inputs and the

same symmetry, our definition of Gσ makes sense.

It is simple to see that the map R̂n in (76) is Σ̂-equivariant, giving rise to the map

R̂n/Σ̂ : ĜrI/Σ̂ → LinGL(V )(LinI1(V
⊗h1 , V ) ⊗ · · · ⊗ LinIr

(V ⊗hr , V ), V )/Σ̂
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of right cosets. The codomain of R̂n/Σ̂ is easily seen to be isomorphic to the subspace of GL(V )-

equivariant elements in (78). The above calculations are summarized in the following proposition

in which Grm
I := ĜrI/Σ̂ and Rm

n := R̂n/Σ̂.

8.10. Proposition. Let r, h1, . . . , hr be non-negative integers, 1 ≤ m ≤ r, and Ii ⊂ k[Σhi
] for

m + 1 ≤ i ≤ r. Then the map

(79) Rm
n : Grm

I → LinGL(V )


 ∧

1≤i≤m

Sym(V ⊗hi, V ) ⊗
⊗

m+1≤i≤r

LinIi
(V ⊗hi, V ), V




constructed above is an epimorphism. If, moreover, the dimension n of V ≥ the number of edges

of graphs spanning Grm
I , Rm

n is also an isomorphism.

The following result says that the presence of vertices with symmetric inputs miraculously

extends the stability range. In applications, these vertices will represent the Lie algebra generators

in the Chevalley-Eilenberg complex.

8.11. Proposition. Suppose that h1, . . . , hm ≥ 2. If n ≥ e −m, where n is the dimension of V

and e the number of edges of graphs spanning Grm
I , then the map Rm

n in Proposition 8.10 is an

isomorphism.

Proof. Let G be a graph spanning Grm
I and S ⊂ Edg(G) a subset of edges of G such that

card(S) > n. For each permutation σ of elements of S, denote by Gσ the graph obtained by

cutting the edges belonging to S in the middle and regluing them following the automorphism

σ. The linear combination

(80)
∑

σ∈ΣS

sgn(σ) ·Gσ ∈ Grm
I

is then a graph-ical representation of the expression in (61), thus the kernel of Rm
n is generated

by expressions of this type. Since, by assumption, card(S) ≤ n+m and h1, . . . , hm ≥ 2, the set S

must necessarily contain two input edges of the same symmetric vertex of G. This implies that

the sum (80) vanishes, because with each graph Gσ it contains the same graph with the opposite

sign. This shows that the kernel of Rm
n is trivial. �

8.12. Remark. By an absolutely straightforward generalization of the above constructions, one

can obtain versions of Proposition 8.10 and Proposition 8.11 describing the space

(81) LinGL(V )

(

∧
1≤i≤m

Sym(V ⊗hi, V ) ⊗
⊗

m+1≤i≤r

LinOi

Ii
(V ⊗hi, V ⊗pi),LinO

I (V ⊗c, V ⊗d)

)

in terms of a space spanned by graphs. Since the notational aspects of such a generalization are

horrendous, we must leave the details as an exercise to the reader.

[November 11, 2007]



OPERATORS AND GRAPH COMPLEXES 51

We finish the appendix by a corollary tailored for the needs of this paper. For non-negative

integers m, b and c, denote by Grm
•(b)∇(c) the space spanned by directed, oriented graphs with

(i) m unlabeled ‘white’ vertices with fully symmetric inputs and arities ≥ 2,

(ii) b ‘black’ labelled vertices with fully symmetric inputs and arities ≥ 0,

(iii) c labelled ∇-vertices, and

(iv) the anchor 6.

In item (iii), a ∇-vertex means a vertex with the symmetry described in Example 8.5, see also

Example 8.8. As in Example 8.9, an orientation is given by a linear order on the set of white

vertices. If G′ and G′′ are graphs in Grm
•(b)∇(c) whose orientations differ by an odd number of

transpositions, then we identify G′ = −G′′ in Grm
•(b)∇(c).

8.13. Corollary. For each non-negative integers m, b and c there exists a natural epimorphism

Rm
•(b)∇(c),n : Grm

•(b)∇(c) �

⊕

~h∈H

LinGL(V )


 ∧

1≤i≤m

Sym(V ⊗hi, V ) ⊗
⊗

m+1≤i≤m+b

Sym(V ⊗hi, V )
⊗

m+b+1≤i≤m+b+c

Lin∆(V ⊗hi, V ), V


 ,

with the direct sum taken over the set H of all multiindices ~h = (h1, . . . , hm+b+c) such that

h1, . . . , hm ≥ 2, hm+1, . . . , hm+b ≥ 0 and hm+b+1, . . . , hm+b+c ≥ 2.

The map Rm
•(b)∇(c),n is an isomorphism if n = dim(V ) ≥ b + c.

Proof. The map Rm
•(b)∇(c),n is constructed by assembling the maps Rm

n from Proposition 8.10 as

follows. For a multiindex ~h = (h1, . . . , hm+b+c) ∈ H as in the corollary take, in Proposition 8.10,

r := m + b + c and

Ii = Ii(~h) :=

{
Ihi
, for m + 1 ≤ i ≤ m + b and

∇, for m + b+ 1 ≤ i ≤ r,

see Examples 8.4 and 8.5 for the notation. Let Rm
n (~h) be the map (79) corresponding to the above

choices and Rm
•(b)∇(c),n :=

⊕
~h∈H

Rm
n (~h). We only need to show that the graph space Grm

•(b),∇(c) is

isomorphic to the direct sum of the double quotients Grm

I(~h)
= I(~h)\Ĝr/Σ̂.

As we argued in Example 8.8, the left quotient Ĝr
I(~h) = I(~h)\Ĝr is spanned by directed graphs

with r labelled vertices F1, . . . , Fr such that the 1st type vertices F1, . . . , Fm (‘white’ vertices)

have fully symmetric inputs and arities h1, . . . , hm, and the remaining vertices Fm+1, . . . , Fr are

as in items (ii)–(iv) of the definition of Grm
•(b)∇(c) but with fixed arities hm+1, . . . , hr.

Modding out Ĝr
I(~h) by Σ̂ identifies graphs that differ by a relabelling of white vertices of the

same arity and the sign given by to the signum of this relabelling. This clearly means that the
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map

Grm
•(b),∇(c) →

⊕

~h∈H

Grm

I(~h)
=
⊕

~h∈H

Ĝr
I(~h)/Σ̂

that assigns to the first (in the linear order given by the orientation) white vertex of graphs

generating Grm
•(b),∇(c) label F1, to the second white vertex label F2, etc., is an isomorphism. By

simple combinatorics, graphs spanning Grm
•(b),∇(c) have precisely m+ b+ c edges which completes

the proof of the corollary. �

8.14. Remark. Proposition 8.10 and its Corollary 8.13 was obtained by applying the double-coset

reduction I\ −/Σ̂ and standard duality to the map R̂n of Proposition 8.2. Backtracking all the

constructions involved, one can see that, in Corollary 8.13, the invariant linear map Rm
•(b)∇(c),n(G)

corresponding to a graph G ∈ Grm
•(b)∇(c) is given by the ‘state sum’ (68) antisymmetrized in the

white vertices.
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