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MIROSLAV ENGLIŠ, KUNYU GUO AND GENKAI ZHANG

Abstract. We compute the Dixmier trace of pseudo-Toeplitz operators on the Fock
space. As an application we find a formula for the Dixmier trace of the product of
commutators of Toeplitz operators on the Hardy and weighted Bergman spaces on
the unit ball of Cd. This generalizes an earlier work of Helton-Howe for the usual
trace of the anti-symmetrization of Toeplitz operators.

1. Introduction

In the present paper we will study the Dixmier trace of a class of Toeplitz and Hankel
operators on the Hardy and weighted Bergman spaces on the unit ball of Cd. We give
a brief account of our problem and explain some motivations. Consider the Bergman
space L2

a(D) of holomorphic functions on the unit disk D in the complex plane. For a
bounded function f let Tf be the Toeplitz operator on L2

a(D). It is a well-known that
for a holomorphic function f the commutator [T ∗

f , Tf ] is of trace class and the trace is
given by the square of the Dirichlet norm of f ,

tr[T ∗
f , Tf ] =

∫

D

|f ′(z)|2 dm(z),

which is one of the best known Möbius invariant integrals. This formula actually holds
for Toeplitz operators on any Bergman space on a bounded domain with the area
measure replaced any reasonable measure [2]. There is a significant difference between
Toeplitz operators on the unit disk and on the unit ball B = Bd in Cd, d > 1. Let Lp be
the Schatten - von Neumann class of p-summable operators. The commutator [T ∗

f , Tf ]
on the weighted Bergman space, say for holomorphic functions f in a neighborhood
of the closed the unit disk, is in the Schatten - von Neumann class Lp, for p > 1

2

and is zero if it is in Lp, for p ≤ 1
2
, 1

2
being called the cut-off; on the Hardy space

[T ∗
f , Tf ] can be in any Schatten - von Neumann class Lp, for p > 0; see [12] and [13]

for the case of Hardy space and [1] for the case of weighted Bergman space. However
for d > 1, it is in Lp for p > d, with p = d being the cut off, both on the weighted
Bergman spaces and on the Hardy space. Thus no trace formula was expected for the
commutators. Nevertheless Helton and Howe [10] were able to find an analogue of the
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previous formula. They showed, for smooth functions f1, · · · , f2d on the closed unit
ball, that the anti-symmetrization [Tf1 , Tf2 , · · ·Tf2d

] of the 2d operators Tf1 , Tf2 , · · ·Tf2d

is of trace class and found that

tr[Tf1 , Tf2 , · · ·Tf2d
] =

∫

B

df1 ∧ df2 · · · ∧ df2d.

On the other hand, we observe that [Tf , Tg] is, for smooth functions f and g, in
the Macaev class Ld,∞ (which is an analogue of the Lorentz space Ld,∞), thus the
product of d such commutators [Tf1 , Tg1 ][Tf2 , Tg2 ] · · · [Tfd

, Tgd
] is in L1,∞ and hence has

a Dixmier trace. One of the goals of the present paper is to prove the following formula
for the Dixmier trace of this product of commutators:

trω[Tf1 , Tg1 ] · · · [Tfd
, Tgd

] =

∫

S

{f1, g1} · · · {fd, gd}.

Here {f, g} is the Poisson bracket of f and g; its restriction to the boundary S of B

depends only on the boundary values of f and g and can be expressed in terms of the
boundary CR operators. This can be viewed as a generalization of the Helton-Howe
theorem. We apply our result also to Hankel operators and obtain a formula for the
Dixmier trace of the d-th power of the square modulus of the Hankel operators H∗

f
Hf

for holomorphic functions f . This provides a boundary Ld,∞ result for the Schatten-
von Neumann Lp (p > d) properties of the square modulus of the Hankel operators
(see [3], [5] and [16]).

There has been an intensive study of Dixmier trace and residue trace of pseudo-
differential operators, mostly on compact manifolds where the analysis is relatively
easier, see e.g. [4] and [7] and references therein, thus the Toeplitz operators on Hardy
spaces on the boundary of a bounded strictly pseudo-convex domains can be treated
using the techniques developed there. The Hankel and Toeplitz operators on Bergman
spaces, generally speaking, behaves rather differently from those on Hardy space, and
the result of Howe [11] roughly speaking proves that Toeplitz operators of certain
class can be treated similarly as in Hardy space case (also called the de Monvel -
Howe compactification [6]). Our result can thus be viewed a generalization of the
compactification to weighted Bergman spaces and an application of the [8] ideas of
computing Dixmier traces. In particular our Theorem 4.1 are closely related to the
results in [4] where the residue trace of pseudo-differential operators of certain class
is computed; here we use the Weyl transforms and they differ from pseudo-differential
operators of lower order, so that Theorem 4.1 can also be obtained from [4] provided
one proves the the lower order terms are of trace class.

In another paper we will study the Dixmier trace for Toeplitz operators on a general
strongly pseudo-convex domain. One of the authors, G. Zhang, would also like to
thank Professor Richard Rochberg and Professor Harald Upmeier for introducing him
the work of Connes [9, Chapter IV.2] on Dixmier traces of pseudo-differential operators.
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2. Toeplitz operators on Bergman spaces and their realization as

pseudo-Toeplitz operators on Fock spaces

Let dm(z) be the Lebesgue measure on Cd and consider the weighted measure

dµν = Cν(1− |z|2)ν−d−1dm(z),

where Cν is the normalizing constant to make dµν a probability measure and ν > d.
We let Hν be the corresponding Bergman space of holomorphic functions on B. We
will also consider the Hardy space of square integrable functions on S which are holo-
morphic on B. This can be viewed as the analytic continuation of Hν at ν = d. Thus
we assume throughout this paper that ν ≥ d.

Let f be a bounded smooth function on B̄, the closure of B. The Toeplitz operator
Tf on Hν with symbol f is defined by

Tfg = P (fg)

where P is the Bergman or the Hardy projection for ν > d and ν = d, respectively.
As was shown by Howe [11] there is a more flexible and effective way of studying the

spectral properties of Toeplitz operators with smooth symbol, by using the theories of
representations of the Heisenberg group and of pseudo-differential operators. We will
adopt that approach. We will be very brief and refer to [11] and [15, Chapter XII] for
details. So let Hn = Cd × T be the Heisenberg group as in loc. cit.. The Heisenberg
group has an irreducible representation, ρ, on the Fock space F consisting of entire
functions f on Cd such that

∫

Cd

|f(z)|2e−π|z|2dm(z) < ∞.

The action of the Heisenberg group is explicitly given as follows. For w ∈ Cd viewed
as an element in Hd,

ρ(w)f(w′) = e−π/2|w|2+πw′·wf(w′ − w),

where w′ · w is the Hermitian inner product on Cd. The action of T is given by the
change of variables.

Identifying the Lie algebra h of the Heisenberg group with R2n ⊕ R and thus R2n

with a subspace of the Lie algebra we get an action of R2n as holomorphic differential
operators on F , which extends from h to the whole enveloping algebra U(h) and which
will also be denoted by ρ. In particular, taking the basis elements ∂j = ∂/∂wj and

∂j = ∂/∂wj of R2n we have

(2.1) ρ(∂j)f(w) = −∂jf(w), ρ(∂j)f(w) = πwjf(w).

Let, following the notation in [11], ∆ ∈ U(h) be the element

∆ =
1

2
(∂j · ∂j + ∂j · ∂j).
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Then ρ(∆) acts on F as a diagonal self-adjoint operator [11], under the orthogonal
basis {wα, α = (α1, · · · , αd)}, viz

(2.2) ρ(∆)wα = −π
(
|α|+ d

2

)
wα.

Let F (z) be a function on Cd (viewed as a function on the Heisenberg group). The
Weyl transform ρ(F ) of F is defined by

ρ(F ) =

∫

Cd

F (w)ρ(w)dm(w).

To understand the operator theoretic properties of ρ(F ) we will need the Fourier

transform of F . Let F̂ be the (symplectic-) Fourier transform of F

F̂ (w′) = 2−d

∫

Cd

F (w)eπi Im w′·wdm(w),

and F ∗G the twisted symplectic convolution

F ∗G(w) =

∫

Cd

F (z)G(w − z)eπi Im w·zdm(z).

We recall that

F̂ ∗G = F ∗ Ĝ

and

ρ(F )ρ(G) = ρ(F ∗G)

for appropriate class of functions. A well-known theorem of Calderón-Vaillancourt
states that if F̂ and all its derivatives are bounded then ρ(F ) can be defined as a
bounded operator on F .

We will need a finer class of symbols introduced by Howe. Let

PT (m, µ) = {F ∈ S∗(Cd) : |∂α∂
β
F̂ | ≤ Cαβ(1 + |w|)m−µ(|α|+|β|)}

and

PT rad(m,µ) = {F ∈ PT (m,µ) : F̂ = (1−g(|w|))ψ(
w

|w|)|w|
m+D1, D1 ∈ PT (m−µ, µ)}.

Here g is a smooth function on R such that 0 ≤ g(t) ≤ 1 on R, g(t) = 0 for |t| ≥ 2 and
g(t) = 1 for 0 ≤ t ≤ 1.

For F ∈ PT rad(m,µ) we will call

(2.3) σm(F ) := ψ(
w

|w|)|w|
m

its principal symbol. It can be obtained, up to the factor |w|m, by

ψ(w) = lim
t→∞

t−mF̂ (tw), w ∈ S.

Following Howe [11], we will call ρ(F ), F ∈ PT (m,µ), a pseudo-Toeplitz operator of
order m and smoothness µ. One has [11, Lemma 4.2.2]

(2.4) F ∈ PT (m1, µ), G ∈ PT (m2, µ) =⇒ F ∗G ∈ PT (m1 + m2, µ).



TOEPLITZ AND HANKEL OPERATORS AND DIXMIER TRACES 5

We will realize the Toeplitz operators Tf on Hν for f on B (or on S for the Hardy
space) as Weyl transforms ρ(F ) of certain symbols F on Cd. First we notice that

eβ :=
((ν)|β|

β!

) 1
2
zβ

form an orthonormal basis of Hν , and so do

Eβ :=
( 1

π|β|β!

) 1
2
wβ

for F . (Here (ν)j := ν(ν + 1) . . . (ν + j − 1) is the usual Pochhammer symbol.) Thus
the map

(2.5) U : eβ → Eβ

is an unitary operator. First we will find the action of the elementary Toeplitz operators
Tzα under the intertwining map U .

Lemma 2.1. The operator UTzαU∗ on F is given by

(2.6) UTzαU∗ = ρ(z)αρ

(
π|α|

(
ν − d

2
− 1

π
∆

)
|α|

)−1/2

This can be proved by direct computation. Indeed we have

Tzαeβ =
( (β)α

(ν + |β|)|α|
) 1

2
eβ+α,

and the right hand side (2.6) can be easily computed by (2.1) and (2.2).
By using the previous Lemma we have then the following result which was proved

by Howe [11, Proposition 4.2.3] in the case when ν = d + 1; the general case of ν ≥ d

is essentially the same.

Proposition 2.2. Let f ∈ C∞(S) and let f̃ be a C∞ extension to B and Tf̃ the
Toeplitz operator onHν . Then under the unitary equivalence ofHν and the Fock space
F on Cd, the Toeplitz operators are pseudo-Toeplitz operators with radial asymptotic
limits PT rad(0, 1). More precisely, there exists F ∈ PT rad(0, 1) such that UTf̃U

∗ =

ρ(F ), and f(ζ) = limt→∞ F̂ (tζ) for each ζ ∈ S.

3. Schatten-von Neumann properties of pseudo-Toeplitz operators

Recall that the Schatten-von Neumann class Lp, p ≥ 1, consists of compact operators
T such that the eigenvalues {µn} of |T | = (T ∗T )

1
2 are p-summable,

∑
µp

n < ∞.
In particular L2 is the Hilbert-Schmidt class, L1 the trace class and L∞ are the compact
operators. For 1 < p < ∞, 1 ≤ q ≤ ∞, the Macaev class Lp,q is obtained by the real
interpolation between L1 and L∞. However, we will need the Macaev class L1,∞, which
consists of all compact operators such that, if µ1 ≥ µ2 ≥ . . . ,

N∑
n=1

µn = O(log N).
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There exists a linear functional on the space L1,∞ that resembles the usual trace,
called the Dixmier trace. Its definition is rather involved and we refer to [9, Chapter IV]
for details. Let Cb(R+) be the space of bounded continuous functions on R+ and
C0(R+) the subspace of functions vanishing at ∞. Let ω be a positive linear functional
on the quotient space Cb(R+)/C0(R+) such that ω(1) = 1. For a positive compact
operator T ∈ L1,∞ with eigenvalues {µn}, extend µn to a step function on R+ and
let MT (λ) be its Cesáro mean, which is a bounded continuous function on R+. The
Dixmier trace of T is then defined by

trω T = ω(MT ).

It is then extended to all of L1,∞ be linearity. In particular it is bounded and vanishes
on trace class operators. The fact that we will need is that

trω T = lim
N→∞

1

log N

N∑
n=1

µn(T )

if T is a positive operator and if the right hand side exists.

Lemma 3.1. For any c ≥ 0 the operator (c−ρ(∆))−d = ρ(cδ0−∆)−d is in the Macaev
class L1,∞.

Proof. It follows from (2.2) that the eigenvalues of (c − ρ(∆))d are (c + π(m + d
2
))d,

m = 0, 1, · · · , each of multiplicity dm := dim{wα, |α| = m} =
(

d+m−1
d−1

) ≈ md−1. The
partial sums thus satisfy

∑
m≤N

(c + π(m +
d

2
))−ddm ≈

∑
m≤N

(c + π(m +
d

2
))−dmd−1 ≈ log N,

completing the proof. ¤

Proposition 3.2. Let F ∈ PT (−2d, 1). Then the Weyl transform ρ(F ) is in the
Macaev class L1,∞.

Proof. By (3.5.6) in [11],

(3.1) ∆̂ = −π2

4
|w|2,

so −∆ ∈ PT (2, 1), whence by (2.4) (−∆)∗d ∈ PT (2d, 1) and (−∆)∗d ∗ F ∈ PT (0, 1).
By the Calderón-Vaillancourt theorem [11, Theorem 3.1.3], the corresponding Weyl
transform, ρ(−∆)dρ(F ), is bounded. Hence by the previous lemma ρ(F ) ∈ L1,∞, since
the Macaev class L1,∞ is an ideal. ¤

4. Dixmier trace formula for Toeplitz operators

Theorem 4.1. Let F ∈ PT rad(−2d, 1) with the principal symbol σ−2d(F̂ ) as defined
in (2.3). Then the Dixmier trace trω ρ(F ) is independent of ω and is given by

trω ρ(F ) =
πd

4d

∫

S

σ̂−2d(F )(w)

where
∫

S
is the normalized integral over the unit sphere.
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Proof. The proof is quite similar to that of Connes [8] for pseudo-differential operators
on compact manifolds. Namely, by [11, Theorem 4.2.5] and the definition of PT rad,

the Dixmier trace trω ρ(F ) depends only on the leading symbol of σ−2d(F̂ ) and defines
a positive measure on the unit sphere S in Cd. By the unitary invariance of ρ(F ) the
measure has to be a constant multiple of the area measure. To find the constant we
note that the symbol of cδ0 − ∆, c > 0, is absolutely elliptic in the sense of (4.2.20)
in [11], and thus by pp. 246–247 in [11] we can construct F0 ∈ PT rad(−2d, 1) such
that ρ(F0) = (c−ρ(∆))−d. The eigenvalue of ρ(F0) on the space of all m-homogeneous
polynomials is, by the proof of Lemma 3.1,

1

(c + π(m + d
2
))d

.

Its Dixmier trace exists and is

trω ρ(F0) =
1

πd
.

On the other hand the principal symbol σ−2d(F0) is the constant function (4/π2)d|w|−2d

by the definition (cf. (3.1)), whose integration over the sphere is (4/π2)d. This com-
pletes the proof. ¤

To apply our result to Toeplitz operators we need to introduce some more notation.
We let

∂b
j = ∂j − z̄jR, ∂̄b

j = ∂̄j − zjR̄,

be the boundary Cauchy-Riemann operators [14], where R =
∑d

j=1 zj∂j is the holo-
morphic radial derivative. As vector fields they are linearly dependent, to wit,

(4.1)
d∑

j=1

zj∂
b
j = 0,

d∑
j=1

z̄j ∂̄
b
j = 0.

Definition 4.2. We define a bracket {f, g}b for smooth functions f and g on S by

{f, g}b :=
d∑

j=1

(∂b
jf ∂

b

jg − ∂
b

jf ∂b
jg)

and call it the boundary Poisson bracket.

Lemma 4.3. Let F and G be two functions in PT rad(0, µ) with principal symbols

σ0(F )(z) = f
( z

|z|
)
, σ0(G)(z) = g

( z

|z|
)

for f and g in C∞(S). Then the principal symbol of F ∗G−G ∗ F is given by

σ−2(F ∗G−G ∗ F )(z) =
4

π
{f, g}b(

z

|z|)|z|
−2.

Proof. By the general result for the symbol calculus for pseudo-Toeplitz operators,
cf. (2.2.5) in [11], we have F ∗G−G ∗ F ∈ PT rad(−2µ, µ) with the principal symbol

σ−2(F ∗G−G ∗ F )(z) =
4

π
{σ0(F )), σ0(G)}(z),
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where {·, ·} is the ordinary Poisson bracket in complex coordinates

{Ψ, Φ} :=
d∑

j=1

(∂jΨ ∂jΦ− ∂jΦ ∂jΨ).

The function σ−2(F ∗ G − G ∗ F )(z) is positive homogeneous degree of −2. We need
only to compute it for z ∈ S. We write the radial derivative as

R = −E +
N

2
, E :=

1

2
(R−R), N := R + R,

E being the Reeb vector field, which is well-defined on S, and N being the outward
unit normal vector field on S. The vector field ∂b

j − zjE is thus a well-defined vector
field on S, and for any function Φ(z) = φ( z

|z|) we have

∂jΦ(z) = (∂b
j + zjR)Φ(z) = (∂b

j − zjE +
zj

2
N)Φ(z) = (∂b

j − zjE)φ(z),

since NΦ(z) = 0 by homogeneity. Similarly ∂jΦ = (∂b
j + zjE)φ on S. From this it

follows that for z ∈ S

{σ0(F ), σ0(G)}(z) =
d∑

j=1

(
(∂b

jf(z)− zjEf(z))(∂
b

jg(z) + zjEg(z))

− (∂
b

jf(z)− zjEf(z))(∂b
jg(z) + zjEg(z))

)

= {f, g}b,

by using (4.1). ¤

Theorem 4.4. Let f1, g1, · · · , fd, gd be smooth functions on S, f̃1, g̃1, · · · , f̃d, g̃d their
smooth extensions to B and Tf̃1

, Tg̃1 , · · · , Tf̃d
, Tg̃d

the associated Toeplitz operators on

Hν for ν ≥ d. Then the product
∏d

j=1[Tf̃j
, Tg̃j

] is in the Macaev class and its Dixmier

trace is given by

trω

d∏
j=1

[Tf̃j
, Tg̃j

] =

∫

S

d∏
j=1

{fj, gj}b.

Proof. The proof is straightforward from the preceding lemma, formula (2.2.5) in [11]
and Theorem 4.1. ¤

We apply our result to Hankel operators with anti-holomorphic symbols. Let f be
a holomorphic function in a neighborhood of B and Hf̄g = (I − P )f̄g, g ∈ Hν the
Hankel operator. Then

[Tf̄ , Tf ] = [T ∗
f , Tf ] = |Hf̄ |2 = H ∗̄

fHf̄ .

Corollary 4.5. Let f be as above. Then the Hankel operator is in L2d,∞, equivalently
the commutator [Tf̄ , Tf ] is in Ld,∞ and we have

trω |Hf̄ |2d = trω([Tf̄ , Tf ]
d) =

∫

S

(|∇f |2 − |Rf |2)d.
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Notice that Hf̄ is in the Schatten class Lp for p > 2d and that its Schatten norm is

‖Hf̄‖p
p ≈

∫

B

(1− |z|2)p(|∇f |2 − |Rf |2) p
2 dm(z);

see [3] and [16] for the Bergman space case (ν = d + 1) and Hardy space (ν = d).
Our result formula provides thus a limiting result of the above estimates, and it is
interesting to note that estimate has an equality as its limit for p → 2n.
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