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Abstract. Unimprovable effective sufficient conditions are estab-
lished for the unique solvability of the periodic problem

u′
i(t) =

i+1∑
j=2

`i,j(uj)(t) + qi(t) for 1 ≤ i ≤ n− 1,

u′
n(t) =

n∑
j=1

`n,j(uj)(t) + qn(t),

uj(0) = uj(ω) for 1 ≤ j ≤ n,

where ω > 0, `ij : C([0, ω]) → L([0, ω]) are the linear bounded
operators, and qi ∈ L([0, ω]).
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1. Statement of Problem and Formulation of Main
Results

Consider on [0, ω] the system

(1.1)

u′
i(t) =

i+1∑
j=2

`i,j(uj)(t) + qi(t) for 1 ≤ i ≤ n− 1,

u′
n(t) =

n∑
j=1

`n,j(uj)(t) + qn(t),

with the periodic boundary conditions

(1.2) uj(0) = uj(ω) for 1 ≤ j ≤ n,

where ω > 0, `i,j : C([0, ω]) → L([0, ω]) are linear bounded operators
and qi ∈ L([0, ω]).

By a solution of the problem (1.1), (1.2) we understand a vector

function u = (ui)
n
i=1 with ui ∈ C̃([0, ω]) (i = 1, n) which satisfies the
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system (1.1) almost everywhere on [0, ω] and satisfies the conditions
(1.2).

Much work has been carried out on the existence and uniqueness
of the solution for a periodic boundary value problem for systems of
ordinary differential equations and many interesting results have been
obtained (see, for instance, [1–3,5,10] and the references therein). How-
ever, an analogous problem for functional differential equations, even
in the case of linear equations remains less detailed investigated.

Thus, in the present paper, we study the problem (1.1) (1.2) under
the assumptions that `n,1, `i,i+1 (i = 1, n− 1) are monotone linear op-
erators. We establish new unimprovable, integral, sufficient conditions
of unique solvability of the problem (1.1),(1.2) which from one hand
generalize the well-known results of A. Lasota and Z. Opial (see the Re-
mark 1.1) obtained for ordinary differential equations in [6], and from
the other hand the results obtained for linear functional differential
equations in our works (see [7–9] ). These results are new also if (1.1)
is the following system of ordinary differential equations

(1.3)

u′
i(t) =

i+1∑
j=2

pi,j(t)uj(t) + qi(t) for 1 ≤ i ≤ n− 1,

u′
n(t) =

n∑
j=1

pn,j(t)uj(t) + qn(t),

where qi, pi,j ∈ L([0, ω]). The method used for the investigation of the
considered problem is based on the method developed in our previous
papers (see [7–9]) for functional differential equations.

The following notation is used throughout: N(R) is the set of all
natural (real) numbers; Rn is the space of n-dimensional column vectors
x = (xi)

n
i=1 with elements xi ∈ R (i = 1, n); R+ = [0, +∞[; C([0, ω])

is the Banach space of continuous functions u : [0, ω] → R with the
norm ||u||C = max{|u(t)| : 0 ≤ t ≤ ω}; C([0, ω]; Rn) is the space of

continuous functions u : [0, ω] → Rn; C̃([0, ω]) is the set of absolutely
continuous functions u : [0, ω] → R; L([0, ω]) is the Banach space of
Lebesgue integrable functions p : [0, ω] → R with the norm ‖p‖L =∫ ω

0
|p(s)|ds; if ` : C([0, ω]) → L([0, ω]) is a linear operator, then ‖`‖ =

sup0<||x||C≤1 ‖`(x)‖L.

Definition 1.1. We will say that a linear operator ` : C([0, ω]) →
L([0, ω]) is nonnegative (nonpositive), if for any nonnegative x ∈
C([0, ω]) the inequality `(x)(t) ≥ 0 (`(x)(t) ≤ 0) for 0 ≤ t ≤ ω is
satisfied. We will say that an operator ` is monotone if it is nonnega-
tive or nonpositive.
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Definition 1.2. For the system (1.1) we define the matrix A1 =

(a
(1)
i,j )n

i,j=1 by the equalities

a
(1)
1,1 = −1, a

(1)
n,1 =

1

4
||`n,1||, a

(1)
i,1 = 0 for 2 ≤ i ≤ n− 1,

(1.4) a
(1)
i+1,i+1 = ||`i+1,i+1||−1, a

(1)
i,i+1 =

1

4
||`i,i+1|| for 1 ≤ i ≤ n−1,

a
(1)
i,j = 0 for i + 2 ≤ j ≤ n, a

(1)
i,j = ||`i,j|| for 3 ≤ j + 1 ≤ i ≤ n.

and the matrices Ak = (a
(k)
i,j )n

i,j=1, (k = 2, n) by the recurrent relations

(1.5) A2 = A1,

(1.6) a
(k+1)
i,j = a

(k)
i,j for i ≤ k or j 6∈ {k, k + 1},

(1.7) a
(k+1)
i,j = a

(k)
i,j +

a
(k)
k,j

|a(k)
k,k|

a
(k)
i,k for k +1 ≤ i ≤ n, k ≤ j ≤ k +1.

Theorem 1.1. Let `n,1, `i,i+1 : C([0, ω]) → L([0, ω]) (i = 1, n− 1) be
linear monotone operators,

(1.8)

ω∫
0

`n,1(1)(s)ds 6= 0,

ω∫
0

`i,i+1(1)(s)ds 6= 0 for 1 ≤ i ≤ n− 1,

the matrices Ak be defined by the relations (1.4)-(1.7), and

(1.9) a
(k)
k,k < 0 for 2 ≤ k ≤ n.

Let moreover

(1.10)

∫ ω

0

|`n,1(1)(s)|ds
n−1∏
j=1

∫ ω

0

|`j,j+1(1)(s)|ds < 4n

n∏
j=2

|a(j)
j,j |.

Then the problem (1.1), (1.2) has a unique solution.

Definition 1.3. For the system (1.3) we define the matrix A1 =

(a
(1)
i,j )n

i,j=1 by the equalities (1.4)-(1.7) with

(1.11) `i,j(x)(t) = pi,j(t)x(t) for i, j ∈ 1, n, x ∈ C([0, ω]).

Corollary 1.1. Let

(1.12) 0 ≤ σnpn,1(t) 6≡ 0, 0 ≤ σipi,i+1(t) 6≡ 0 for 1 ≤ i ≤ n− 1

where σi ∈ {−1, 1} (i = 1, n), the matrices Ak be defined by the rela-
tions (1.5)-(1.7), (1.11) and

(1.13) a
(k)
k,k < 0 for 2 ≤ k ≤ n.
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Let moreover

(1.14)

∫ ω

0

|pn,1(s)|ds
n−1∏
j=1

∫ ω

0

|pj,j+1(s)|ds < 4n

n∏
j=2

|a(j)
j,j |.

Then the problem (1.3), (1.2) has a unique solution.

Now, assume that

(1.15)
`1,j ≡ 0 for j 6= 2, `i,j ≡ 0 for j 6∈ {i, i + 1}, i = 2, n− 1,

`n,j = 0 for j = 2, n− 1.

Then the system (1.1) is of the following type

(1.16)

u′
1(t) = `1,2(u2)(t) + q1(t),

u′
i(t) = `i,i(ui)(t) + `i,i+1(ui+1)(t) + qi(t) for 2 ≤ i ≤ n− 1,

u′
n(t) = `n,1(u1)(t) + `n,n(un)(t) + qn(t),

and from Theorem 1.1 we obtain

Corollary 1.2. Let `n,1, `i,i+1 (i = 1, n− 1) be linear monotone oper-
ators, the conditions (1.8) hold and

(1.17)

∫ ω

0

|`k,k(1)(s)|ds < 1 for 2 ≤ k ≤ n.

Let moreover

(1.18)

∫ ω

0

|`n,1(1)(s)|ds
n−1∏
j=1

∫ ω

0

|`j,j+1(1)(s)|ds <

< 4n

n∏
j=2

(
1−

∫ ω

0

|`j,j(1)(s)|ds
)
.

Then the problem (1.16), (1.2) has a unique solution.

It is clear that for the cyclic feedback system

(1.19)
u′

i(t) = `i(ui+1)(t) + qi(t) for 1 ≤ i ≤ n− 1,

u′
n(t) = `n(u1)(t) + qn(t),

from Corollary 1.2 we get

Corollary 1.3. Let `i : C([0, ω]) → L([0, ω]) (i = 1, n) be the linear
monotone operators,

(1.20) ||`i|| 6= 0 for i = 1, n,

and

(1.21)
n∏

i=1

||`i|| < 4n.

Then the problem (1.19), (1.2) has a unique solution.
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Remark 1.1. It is clear that the problem

(1.22) u′′(t) = p(t)u(t) + q(t), u(0) = u(ω), u′(0) = u′(ω),

is equivalent to the problem (1.19), (1.2) with n = 2, `1(x)(t) =
x(t), `2(x)(t) = p(t)x(t), q1(t) ≡ 0 and q2(t) = q(t).

Then if p, q ∈ L([0, ω]), p(t) ≤ 0 and
∫ ω

0
p(s)ds 6= 0 from the corol-

lary 1.3 it follows that the problem (1.19), (1.2) and then the problem
(1.22), has a unique solution if the condition

∫ ω

0
|p(s)|ds < 16

ω
is ful-

filled, which follows from the well-known result of A. Lasota and Z.
Opial (see [6]).

Example 1.1. The example below shows that condition (1.21) in
Corollary 1.3 is optimal and it cannot be replaced by the condition

(1.211)
n∏

i=1

||`i|| ≤ 4n.

Define the functions u0 ∈ C̃([0, 1]) on [0, 1/2], and [1/2, 1] by the equal-
ities

u0(t) = u0(1− t) for 1/2 < t ≤ 1,

u0(t) =


1 for 0 ≤ t ≤ 1/8

sin π(1− 4t) for 1/8 < t ≤ 3/8

−1 for 3/8 < t ≤ 1/2

.

Now, let a measurable functions τi : [0, 1] → [0, 1], and the linear
nonnegative operators `i : C([0, 1]) → L([0, 1]), (i = 1, n) be given by
the equalities:

τi(t) =

{
1/8i for 0 ≤ u′

0(t)

1/2− 1/8i for 0 > u′
0(t)

, `i(x)(t) = |u′
0(t)|x(τi(t)).

Then it is clear that u0(0) = u0(1), `i 6= `j if i 6= j, and ||`i|| =∫ 1

0
|`i(1)(s)|ds = 16π

∫ 1/4

1/8
cos π(1 − 4s)ds = 4 for i = 1, n. Thus, all

the assumptions of Corollary 1.3 are satisfied except (1.21), instead
of which the condition (1.211) is fulfilled with ω = 1. On the other
hand, from the relations u′

0(t) = |u′
0(t)|u0(τi(t)) = `i(u0)(t) (i = 1, n),

it follows that the vector function (ui(t))
n
i=1 if ui(t) ≡ u0(t) (i = 1, n)

is the nontrivial solution of the problem (1.1), (1.2) with ω = 1, q(t) ≡
0, which contradicts the conclusion of Corollary 1.3.

2. Auxiliary Propositions

Lemma 2.1. Let the matrices Ak (k = 1, n) be defined by the equalities
(1.4)-(1.7). Then the following relations

(2.1m) a
(m)
i,j ≥ 0 for i 6= j, m = 1, n,

(2.20) a
(1)
n,1 = a

(n)
n,1
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(2.2m) a
(λ)
i,j ≤ a

(m)
i,j for i ≥ m ≥ 2, j ≥ m, λ ≤ m,

hold.

Proof. From the definition of A1, A2 immediately follows that the in-
equalities (2.11) and (2.22) are true. Now, we assume that (2.1m)
holds for m = 3, ..,m0 (m0 < n) and prove (2.1m0+1). If i ≤ m0 or
j 6∈ {m0, m0 + 1}, from (1.6) there immediately follows the inequality
(2.1m0+1), and if i ≥ m0 + 1, j ∈ {m0, m0 + 1}, then (2.1m0+1) follows
from (1.7).

Now we prove the inequality (2.2m). First assume that j ≥ m + 1.
Then from (1.6) it is clear that

(2.3) a
(λ)
i,j = a

(λ+1)
i,j = ... = a

(m)
i,j for j ≥ m + 1, i ≥ m, λ ≤ m.

Now, let j = m. Then from (1.6) we get a
(λ)
i,m = a

(λ+1)
i,m = ... = a

(m−1)
i,m for

i ≥ m, λ ≤ m. By the last equalities and (2.1m), from (1.7) it follows

a
(m)
i,m = a

(m−1)
i,m +

a
(m−1)
m−1,m

|a(m−1)
m−1,m−1|

a
(m−1)
i,m−1 ≥ a

(m−1)
i,m = a

(λ)
i,m for i ≥ m, λ ≤ m,

From this inequality and (2.3) we conclude that (2.2m) is fulfilled for
all j ≥ m and i ≥ m. The equality (2.20) immediately follows from
(1.5) and (1.6). �

Also we need the following simple lemma proved in the paper [10].

Lemma 2.2. Let σ ∈ {−1, 1} and σ` : C([0, ω]) → L([0, ω]) be a
nonnegative linear operator. Then

−m|`(1)(t)| ≤ σ`(x)(t) ≤ M |`(1)(t)| for 0 ≤ t ≤ ω, x ∈ C([0, ω]),

where m = − min
0≤t≤ω

{x(t)}, M = max
0≤t≤ω

{x(t)}.

Now, consider on [0, ω] the homogeneous problem

(2.4i) v′i(t) =
i+1∑
j=2

`i,j(vj)(t) for 1 ≤ i ≤ n,

(2.5) vj(0) = vj(ω) for 1 ≤ j ≤ n,

where the operator `n,n+1 and function vn+1 are defined by the equal-
ities `n,n+1 ≡ `n,1 and vn+1 ≡ v1. Also define the functional ∆i :
C([0, ω]; Rn) → R+ by the equality ∆i(v) = max

0≤t≤ω
{vi(t)}− min

0≤t≤ω
{vi(t)}

(i = 1, n) for any vector function v = (vi)
n
i=1 and let ∆n+1 ≡ ∆1.

Lemma 2.3. Let `i,i+1 : C([0, ω]) → L([0, ω]) (i = 1, n) be linear
monotone operators,

(2.6)

∫ ω

0

`i,i+1(1)(s)ds 6= 0 for 1 ≤ i ≤ n,
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the matrices Ak be defined by the equalities (1.4)-(1.7) and

(2.7) a
(k)
k,k < 0 for 2 ≤ k ≤ n.

Let, moreover v = (vi)
n
i=1 be a nontrivial solution of the problem ((2.4i))

n
i=1,

(2.5) for which such k1 ∈ {2, ..., n} exists that vk1 6≡ 0. Then if

(2.8) k0 = min{k ∈ {2, ..., n} : vk 6≡ 0},
the inequalities

(2.9k) 0 < ||vk||C ≤ ∆k(v) for k = 1, k0 ≤ k ≤ n,

(2.10k) 0 ≤ a
(k)
k,k∆k(v) + a

(k)
k,k+1∆k+1(v) for k0 ≤ k ≤ n,

with a
(1)
n,n+1 = a

(1)
n,1, hold.

Proof. Define the numbers Mk, mk ∈ R, t′k, t
′′
k ∈ [0, ω] by the relations

(2.11k) Mk = vk(t
′
k) = max

0≤t≤ω
{vk(t)}, −mk = vk(t

′′
k) = min

0≤t≤ω
{vk(t)},

and if t′k < t′′k, the sets I
(1)
k = [t′k, t′′k], I

(2)
k = I \ I

(1)
k . From (2.8) it is

clear

(2.12) vk0 6≡ 0.

On the other hand, from (2.4k0−1) by (2.8) we obtain

(2.13)

∫ ω

0

`k0−1,k0(vk0)(s)ds = 0.

From (2.13), in view of (2.6) and Lemma 2.2 there follows the existence
of such t0 ∈ [0, ω] that vk0(t0) = 0. Then from (2.12) we get (2.9k0).

Let the numbers Mk0 , mk0 ∈ R, t′k0
, t′′k0

∈ [0, ω] be defined by the
relations (2.11k0) and t′k0

< t′′k0
(the case t′′k0

< t′k0
can be proved anal-

ogously). The integration of (2.4k0) on I
(r)
k0

, by virtue of (2.5) and (2.8)
results in

(2.14)
∆k0(v) = (−1)r

[ ∫
I
(r)
k0

`k0,k0(vk0)(s)ds +

∫
I
(r)
k0

`k0,k0+1(vk0+1)(s)ds
]

for r = 1, 2. From the last equality, by virtue of (1.4), (2.7), (2.9k0) and
(2.2k0) with λ = 1, i = j = k0 we get

(2.15r) 0 < −a
(k0)
k0,k0

∆k0(v) ≤ (−1)r

∫
I
(r)
k0

`k0,k0+1(vk0+1)(s)ds

for r = 1, 2. Assume that vk0+1 is a constant sign function. Then
in view of the fact that the operator `k0,k0+1 is monotone we get the
contradiction with (2.151) or (2.152), i.e., vk0+1 changes its sign. Then

(2.16) Mk0+1 > 0, mk0+1 > 0,

and the inequality (2.9k0+1) holds ((2.91) if k0 = n). If `k0,k0+1 is a non-
negative operator, from (2.15r) (r = 1, 2) in view of (2.16) by Lemma
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2.2 we get 0 < −a
(k0)
k0,k0

∆k0(v) ≤ mk0+1

∫
I
(1)
k0

|`k0,k0+1(1)(s)|ds, 0 <

−a
(k0)
k0,k0

∆k0(v) ≤ Mk0+1

∫
I
(2)
k0

|`k0,k0+1(1)(s)|ds. By multiplying these es-

timates and applying the numerical inequality 4AB ≤ (A + B)2, in

view of the notations (1.4) we obtain 0 ≤ a
(k0)
k0,k0

∆k0(v) + 1
4
(Mk0+1 +

mk0+1)
( ∫

I
(1)
k0

|`k0,k0+1(1)(s)|ds+
∫

I
(2)
k0

|`k0,k0+1(1)(s)|ds
)

= a
(k0)
k0,k0

∆k0(v)+

a
(1)
k0,k0+1∆k0+1(v), (0 ≤ a

(n)
n,n∆n(v) + a

(1)
n,1∆1(v) if k0 = n), from which by

(2.20) if k0 = n and (2.2k0) with λ = 1, i = k0, j = k0 + 1 if k0 < n,
follows (2.10k0). Analogously from (2.15r) we get (2.10k0), in the case
when the operator `k0,k0+1 is non-positive.

Consequently we proved the proposition:
i. Let 2 ≤ k0 ≤ n, then the inequalities (2.9k0), (2.9k0+1) ((2.91) if

k0 = n) and (2.10k0) hold.
Now, we shall prove the following proposition:
ii. Let k1 ∈ {k0, ..., n−1} be such that the inequalities (2.9k),(2.10k)

for (k = k0, k1), and (2.9k1+1) hold. Then the inequalities (2.9k1+2) if
k1 ≤ n− 2, (2.91) if k1 = n− 1 and (2.10k1+1) hold too.

Define the numbers Mk1+1, mk1+1 ∈ R, t′k1+1, t
′′
k1+1 ∈ [0, ω] by the

relations (2.11k1+1) and let t′k1+1 < t′′k1+1 (the case t′′k1+1 < t′k1+1 can be

proved analogously). The integration of (2.4k1+1) on I
(r)
k1+1, by virtue

of (2.5) and (2.8) results in

(2.17) ∆k1+1(v) = (−1)r

k1+2∑
j=k0

∫
I
(r)
k1+1

`k1+1,j(vj)(s)ds

for r = 1, 2. From this equality, by the conditions (1.4),(2.7),(2.9k) with
k = k0, ..., k1 + 1, and (2.2k0) with λ = 1, i = k1 + 1, j = k0, ..., k1 + 1
we get

(2.18) 0 ≤
k1+1∑
j=k0

a
(k0)
k1+1,j∆j(v) + (−1)r

∫
I
(r)
k1+1

`k1+1,k1+2(vk1+2)(s)ds

for r = 1, 2. By multiplying (2.10k) with a
(k)
k1+1,k/|a

(k)
k,k| for k ∈ {k0, ..., k1}

in view of the inequalities (2.7) we obtain

(2.19k) 0 ≤ −a
(k)
k1+1,k∆k(v) +

a
(k)
k,k+1

|a(k)
k,k|

a
(k)
k1+1,k∆k+1(v).

Now, summing (2.18) and (2.19k0) by virtue of (1.7) with k = k0, i =
k1 + 1, j = k0 + 1, we get

0 ≤ a
(k0+1)
k1+1,k0+1∆k0+1(v) +

k1+1∑
j=k0+2

a
(k0)
k1+1,j∆j(v)+
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+(−1)r

∫
I
(r)
k1+1

`k1+1,k1+2(vk1+2)(s)ds,

from which by (2.2k0+1) with i = k1 + 1, j ≥ k0 + 2, λ = k0, we obtain

(2.20) 0 ≤
k1+1∑

j=k0+1

a
(k0+1)
k1+1,j∆j(v) + (−1)r

∫
I
(r)
k1+1

`k1+1,k1+2(vk1+2)(s)ds

for r = 1, 2. Analogously, by summing (2.20) and the inequalities
(2.19k) for all k = k0 + 1, ..., k1 we get

(2.21) 0 < −a
(k1+1)
k1+1,k1+1∆k1+1(v) ≤ (−1)r

∫
I
(r)
k1+1

`k1+1,k1+2(vk1+2)(s)ds

for r = 1, 2. By the same way as the inequality (2.9k0+1) and (2.10k0)
follow from (2.15r), the inequalities (2.9k1+2) ((2.91) if k0 = n− 1) and
(2.10k1+1) follow from (2.21).

From the propositions i. and ii. by the the method of mathematical
induction we obtain that the inequalities (2.91), (2.9k) and (2.10k)
(k = k0, n) hold. �

3. Proofs

Proof of Theorem 1.1. It is known from the general theory of boundary
value problems for functional differential equations that if `i,j (i, j =
1, n) are strongly bounded linear operators, then the problem (1.1),
(1.2) has the Fredholm property (see [4]). Thus, the problem (1.1),
(1.2) is uniquely solvable iff the homogeneous problem (2.4i)

n
i=1, (2.5)

has only the trivial solution.
Assume that, on the contrary, the problem (2.4i)

n
i=1,(2.5) has a non-

trivial solution v = (vi)
n
i=1. Let

(3.1) v1 6≡ 0, vi ≡ 0 for 2 ≤ i ≤ n.

Thus from (2.41) and (2.4n) it follows that v′1(t) ≡ 0 and `n,1(v1)(t) ≡ 0,
i.e., in view of the fact that the operator `n,1 satisfies (1.8) we obtain
that v1 ≡ 0, which contradicts (3.1). Consequently such k0 ∈ {2, ..., n}
exists that vk0 6≡ 0. Then all the conditions of Lemma 2.3 are satisfied,
from which it follows that 0 < ||v1||C ≤ ∆1(v), i.e., v1 6≡ Const and in
view of the condition (2.5) the function v′1 changes its sign. Thus from
(2.41) by the monotonicity of the operator `1,2, we get that v2 changes
its sign too. Consequently if M2, m2 are the numbers defined by the
equalities (2.112) then

(3.2) M2 > 0, m2 > 0,

and if k0 is the number defined by the equality (2.8), then k0 = 2.
Thus from Lemma 2.3 it follows that the inequalities (2.91), (2.9k) and
(2.10k) (k = 2, n) hold.
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Now, assume that the numbers M1, m1, and t′1, t
′′
1 ∈ [0, ω[ are defined

by the equalities (2.111) and t′1 < t′′1 (the case t′′1 < t′1 can be proved

analogously). By integration of (2.41) on the set I
(r)
1 we obtain

(3.3) ∆1(v) = (−1)r

∫
I
(r)
1

`1,2(v2)(s)ds

for r = 1, 2. First assume that the operator `1,2 is non-negative (the
case of non-positive `1,2 can be proved analogously), then from (3.3)
by (2.91), (3.2) and the Lemma 2.2 we obtain

0 < ∆1(v) ≤ m2

∫
I
(1)
1

|`1,2(1)(s)|ds, 0 < ∆1(v) ≤ M2

∫
I
(2)
1

|`1,2(1)(s)|ds.

By multiplying these estimates and applying the numerical equality

4AB ≤ (A+B)2 and the equalities (1.4) we get 0 ≤ a
(1)
1,1∆1(v)+ 1

4
(m2+

M2)
( ∫

I
(1)
1
|`1,2(1)(s)|ds +

∫
I
(2)
1
|`1,2(1)(s)|ds

)
= a

(1)
1,1∆1(v) + a

(1)
1,2∆2(v),

i.e., all the inequalities (2.10k) (k = 1, n) are satisfied.
On the other hand from (1.4)–(1.6) and Lemma 2.1 it is clear that

(3.4) a
(1)
1,1 = −1, a

(n)
n,1 = a

(1)
n,1, a

(k)
k,k+1 = a

(1)
k,k+1 =

1

4
||`k,k+1||

for 1 ≤ k ≤ n− 1. By multiplying all the estimates (2.10k) (k = 1, n)
and applying (3.4) we get the contradiction to the condition (1.10).
Thus our assumption fails, and vi ≡ 0 (i = 1, n). �

Proof of Corollary 1.1. From (1.11) and (1.12) it is clear that `n,1 and
`i,i+1 are monotone operators and (1.8) holds. Also, from (1.13) and
(1.14), the conditions (1.9) and (1.10) follow. Consequently all the
conditions of Theorem 1.1 for the system (1.3) are fulfilled. �

Proof of Corollary 1.2. From (1.4), (1.6), and (1.15) it is clear that

(3.5) a
(k−1)
k,k = a

(k−2)
k,k = ... = a

(1)
k,k = ||`k,k|| − 1 for 2 ≤ k ≤ n,

and

(3.6)
a

(k−i−1)
k,k−i = a

(k−i−2)
k,k−i = ... = a

(1)
k,k−i = 0 for 3 ≤ k − i ≤ n,

a
(1)
2,1 = 0.

From (1.7), (1.15) and the first equality of (3.6) we get

(3.7)

a
(k−1)
k,k−1 = a

(k−2)
k,k−1 +

a
(k−2)
k−2,k−1

|a(k−2)
k−2,k−2|

a
(k−2)
k,k−2 =

a
(k−2)
k−2,k−1

|a(k−2)
k−2,k−2|

a
(k−2)
k,k−2 =

=
a

(k−2)
k−2,k−1

|a(k−2)
k−2,k−2|

a
(k−3)
k−3,k−2

|a(k−3)
k−3,k−3|

a
(k−3)
k,k−3 = ... = a

(2)
k,2

k−2∏
j=2

a
(j)
j,j+1

|a(j)
j,j |

= 0

for k ≥ 3. From (3.7) and the second equality of (3.6) it is clear that

(3.8) a
(k−1)
k,k−1 = 0 for 2 ≤ k ≤ n
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Then from (1.7) by (3.5) and (3.8) we obtain

a
(k)
k,k = a

(k−1)
k,k + a

(k−1)
k−1,ka

(k−1)
k,k−1/|a

(k−1)
k−1,k−1| = ||`k,k|| − 1.

Thus from the conditions (1.17) and (1.18) it follows that (1.9) and
(1.10) hold. Consequently all the conditions of Theorem 1.1 for the
system (1.16) are fulfilled. �
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public, Žižkova 22, 616 62 Brno, Czech Republic.

2. I. Chavchavadze State University, Faculty of physics and mathe-
matics, I. Chavchavadze Str. No.32, 0179 Tbilisi, Georgia.

E-mail: mukhig@ipm.cz

Iryna Grytsay
1. Taras Shevchenko National University of Kyiv, Faculty of Cyber-

netics, Department of Mathematical Analysis, Vladimirskaya Street,
64, 01033, Kyiv, Ukraine

E-mail: grytsay@mail.univ.kiev.ua


