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THE DIRICHLET BVP FOR THE SECOND ORDER
NONLINEAR ORDINARY DIFFERENTIAL EQUATION
AT RESONANCE

S. MUKHIGULASHVILI

ABSTRACT. Efficient sufficient conditions are established for the
solvability of the Dirichlet problem

' (t) = p(t)u(t) + f(t,u(t)) + h(t) for a<t< b,
u(a) =0, u(b) =0,
where h,p € L([a,b]; R) and f € K([a,b]; R), in the case where
the linear problem

o' (t) = p(t)u(t), wu(a)=0, u(d)=0

has nontrivial solutions.
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INTRODUCTION

Consider on the set I = [a,b] the second order nonlinear ordinary
differential equation

u'(t) = p(t)u(t) + f(t,u(t)) + h(t) for tel (0.1)
with the boundary conditions
u(a) =0, wu(b) =0, (0.2)

where h,p € L(I; R) and f € K(I; R).

By a solution of the problem (0.1), (0.2) we understand a function
u € C'(I, R), which satisfies the equation (0.1) almost everywhere on
I and satisfies the conditions (0.2).

Consider also the homogeneous problem

w"(t) = p(t)w(t) for tel, (0.3)

w(a) =0, w(b) =0. (0.4)

At present, the foundations of the general theory of two-point bound-
ary value problems are already laid and problems of this type are stud-

ied by many authors and investigated in detail (see, for instance, [1],

[4], [5], [8], [12], [13], [14]- [16], [17] and references therein). On the
1
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other hand, in all of these works, only the case when the homogeneous
problem (0.3), (0.4) has only a trivial solution is studied. The case
where the problem (0.3), (0.4) has also a nontrivial solution is still
little investigated and in the majority of articles, the authors study
the case with ¢ constant in the equation (0.1), i.e., when the problem
(0.1), (0.2) and the equation (0.3) are of type

u’(t) = —=\2u(t) + f(t,u(t)) + h(t) for te 0,7, (0.5)
u(0) =0, wu(m)=0, (0.6)

and
w’(t) = —Nw(t) for t€l0,n] (0.7)

respectively and A = 1. (see, for instance, (2], [3], [4], [6]- [11], [14]- [16],
and references therein).

In the present paper, we study the problem (0.1), (0.2) in the case
when the function p € L(I; R) is not necessarily constant, under the
assumption that the homogeneous problem (0.3), (0.4) has the non-
trivial solution with an arbitrary number of zeroes. For the equation
(0.7), this is the case when A is not necessarily the first eigenvalue of
the problem (0.7), (0.6).

The obtained results are new and generalise some well-known re-
sults(see, [2], [3], [4], [6], [10]).

The following notation is used throughout the paper:

N is the set of all natural numbers. R is the set of all real num-
bers, R, = [0,+oc[. C(I;R) is the Banach space of continuous
functions u : I — R with the norm ||u|lc = max{|u(t)| : t € I}.
C'(I; R) is the set of functions u : I — R which are absolutely con-
tinuous together with their first derivatives. L(I;R) is the Banach
space of Lebesgue integrable functions p : I — R with the norm
Iplle = f; Ip(s)|ds. K(I; R) is the set of functions f : I — R satisfy-
ing the Carathéodory conditions. i.e., f(-,x): [ — R is a measurable
function for all z € R, f(t,-) : R — R is a continuous function for
almost all ¢ € I, and for every r > 0 there exists ¢, € L(I; R;) such
that | f(t,z)| < g-(t) for almost all t € I, |z| <.

For w: I — R we put: N, et {t €]a,b[: w(t) =0},

O Y eriwe) >0 QY terwe <o,

and [w(t)]y = (lw(t)[+w(?))/2, [wt)]- = (jwt)] —w(t))/2 for t € I.

Definition 0.1. Let, A be a finite (empty) subset of I. We say that
feE(A),if f € K(I; R), and for any measurable set G C [ and the
constant r > 0, we can choose € > 0 such that if

/ |f(s,z)|ds # 0 for x > 7 (z < —7)
e



then

/ |f(s,x)|ds—/ |f(s,x)|ds >0 for z>r (z<—r),
G\U. Ue

where U, = 1IN (ngl]tk —&/2n, tp + 5/2n[> it A= {ti,to,....,t.},
and U, =0 if A=40.

Remark 0.1. If f € K(I; R) then f € E(0).

Remark 0.2. It is clear that if f(¢t,2) = fo(t)go(z), where fy €
L(I; R) and gy € C(I; R), then f € E(A) for every finite set A C I.

The example below shows that there exists a function f € K(I; R)
such that f & E({ti,...,tx}) for some points t1,...,1; € I.

Example 0.1. Let f(¢,z) = [t|~"/?¢(t,z) for t € [0,1], and £(0,.) =0,
where g(—t,z) = g(t,z) fort e [—1,1] and

T for z<1/t, t>0
g(t,r) =
1/t for x>1/t, t>0

Then f € K([—1,1]; R) and it is clear that f ¢ E({0}) because, for

every ¢ > 0, if x > 1/e then f; f(s,x)ds — [5 f(s,x)ds = 4(e71/* —
/%) -2 <0.

1. MAIN RESULTS

Theorem 1.1. Let w be an arbitrary nonzero solution of the problem

(0.3), (0.4),
N, =0, (1.1)

there exist the constant r > 0, the functions f~, fT € L(I; Ry) and
g, ho € L(I; 10, +00[ ) such that

f(t,x)sgnx < g(t)|x| + ho(t) for tel, |x| >r, (1.2)

and
fltx) < —=f~(@t) for x< -,
: (13
@) < f(t,x) for x>,
on I. Let, moreover, there exist € > 0 such that
b b
- [ £ Ods +elhille < = [ bl <
b
< [ rroluolds - elbl (14)
where
Ve (t) = sup{[f(t, 2)| : 2] < r}. (1.5)

Then the problem (0.1), (0.2) has at least one solution.



4 S. MUKHIGULASHVILI

Example 1.1. It follows from Theorem 1.1 that the equation

u”(t) = —Nu(t) + olu(t)|*sgnu(t) + h(t) for 0<t<m (1.6)
where 0 = 1, A = 1, and « €]0,1], under the conditions (0.6) has at
least one solution for every h € L([0, 7], R).

Theorem 1.2. Let w be an arbitrary nonzero solution of the problem
(0.3), (0.4), condition (1.1) holds, there exist the constant r > 0, the
functions f~, ft € L(I;Ry) and q € K(I; Ry) such that q is non-
decreasing in the second argument,

[f(t2)] <q(t,x) for tel, [zf=r (1.7)

f@) < f(t,x) for x< -, r
flt,x) < —fH(t) for x>, (18)

on I, and

1 b
lim —/ q(s,z)ds = 0. (1.9)

|z|—+o0 T
Let, moreover, there exist € > 0 such that

b b
~ [ s+l < [ hs)uls)ds <

< / F()w(s)lds — ellrelle. (1.4,)

where 7, is defined by (1.5). Then the problem (0.1), (0.2) has at least
one solution.

Example 1.2. From Theorem 1.2 it follows that the problem (1.6),
(0.6) with 0 = —1, A =1, and « €]0, 1] has at least one solution for
any h € L([0,7]; R).

Remark 1.1. In the Theorem 1.7 (i = 1,2), the condition (1.4;) can
be replaced by

b b
_/ f(s)|w(s)lds < (—1)’/ h(s)|w(s)|ds <
‘ ¢ (1.10;)

< [ F s

because, from (1.10;) there follows the existence of a constant £ > 0
such that the condition (1.4;) is satisfied.

Theorem 1.3. Let i € {0,1}, w be an arbitrary nonzero solution of
the problem (0.3), (0.4), f € E(N,), there exist the constant r > 0
such that the function (—1)'f is non-decreasing in the second argument
for |z| =,

(—1)'f(t,2)sgne >0 for tel, || >, (1.11)



| rmlds [ 1. -nlds 20 (1.12)
Qb Qu
and -

|Ji“3mm/a (s, 2)|ds = 0. (1.13)

Then there exists § > 0 such that the problem (0.1), (0.2) has at least
one solution for every h satisfying the condition

| /ab h(s)w(s)ds

Corollary 1.1. Let the assumptions of Theoreml.3 be satisfied and
let

<6 (1.14)

b
/ h(s)w(s)ds = 0. (1.15)
Then the problem (0.1),(0.2) has at least one solution.

Example 1.3. From Theorem 1.3 it follows that the problem (1.6),
(0.6) with 0 € {—1,1}, A € N, and a €]0, 1| has at least one solution
if h € L([0, 7], R) is such that [ h(s)sinAsds = 0.

Theorem 1.4. Let i € {0,1}, w be an arbitrary nonzero solution of
the problem (0.3),(04), f(t.2) = fo(t)go(x) with fo € L(I:R.), go €
C(R; R), there exist the constant r > 0 such that (—1)'gy is non-
decreasing for |x| > r, and

(=1)'go(z)sgnx >0  for |z|>r. (1.16)

Let, moreover,

()| | o+ (=)l [ s 20 ()

and

lim |go(z)| = 400, lim 9o()

|z|—+o0 |z|—400 T

Then, for every h € L(I; R), the problem (0.1), (0.2) has at least one
solution.

= 0. (1.18)

Example 1.4. From the Theorem 1.4 it follows that the equation
u"(t) = po(t)u(t) + p1(t)|u(t)|*sgnu(t) + h(t) for tel, (1.19)

where a €10, 1] and pg, p1, h € L(I; R), under the conditions (0.2) has
at least one solution provided that p;(t) >0 for te€ 1.

Theorem 1.5. Let i € {0,1} and w be an arbitrary nonzero solution
of the problem (0.3),(0.4). Let, moreover, there exist the constants
r >0, g9 > 0, and the functions o, f*, f~ € L(I; Ry) such that the

conditions ,
(=D f(t,z) < —f~(t) for x< -

f+(t) < (_1>if<t,$) fO’I” > (1.200
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sup{|f(t,z)| : € R} = «(t) (1.21)
hold on I, and let
b
—/ (fT()w(s)]- + [ ()w(s)]+)ds +ellallr <
< (-1 / h(s)u(s)ds < (1.22;)

b
< / (f7(w(s)]- + [T () w(s)]+)ds — ellal]..
Then the problem (0.1), (0.2) has at least one solution.

Remark 1.2. If f # 0 then the condition (1.22;) (i = 1, 2) of Theorem
1.5 can be replaced by

b
—/ (fH(s)[w(s)]- + f(s)[w(s)]4)ds <
< (—1)”1/ h(s)w(s)ds < (1.23;)

< / () [w(®)- + 7 (5)w(s)] )ds.

because from (1.23;) there follows the existence of a constant € > 0
such that the condition (1.22;) is satisfied.

Example 1.5. From Theorem 1.5 it follows that the equation
£)[*
u'(t) = = Nu(t) + il sgnu(t) + h(t) for 0<t<m, (1.24
(1) = —Nult) + 1 rsEm(t) 4 A() for 0t <, (120

where A € N and « €0, +00][ , under the conditions (0.6) has at least
one solution if h € L([0, 7], R) is such that |h(t)| <1 for 0<t <.

2. ProBLEM (0.5), (0.6).

Throughout this section we will assume that a = 0, b = 7, and
I =[0,7]. In view of the fact that the functions £sin\t are the solu-
tions of the problem (0.7), (0.6), from Theorems 1.1-1.5 the following
corollaries are true

Corollary 2.1. Let A = 1 and all the assumptions of Theorem 1.1
(resp. Theorem 1.2) except (1.1) be fulfilled with w(t) = sint. Then
the problem (0.5), (0.6) has at least one solution.

Now, note that

N 0 for A=1
SinAr {mn/A:n=1,..,A—-1} for AX>2°
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Corollary 2.2. Let i € {0,1}, A € N, f € E(Ngux), there exist
the constant r > 0 such that the function (—1)'f is non-decreasing in
the second argument for |x| > r, and let the conditions (1.11)—(1.13)
be fulfilled with w(t) = sinAt. Then there exists 6 > 0 such that the
problem (0.5), (0.6) has at least one solution for every h € L(I;R)
satisfying the condition | [ h(s)sin Asds| < 6.

Corollary 2.3. Let i € {0,1}, A € N, and let all the assumptions of
Theorem 1.4 be fulfilled with w(t) = sin A\t. Then, for any h € L(I; R),
the problem (0.5), (0.6) has at least one solution.

Corollary 2.4. Let i € {0,1}, A € N and let there exist the constant
r > 0 such that (1.20;)—(1.22;) be fulfilled with w(t) = sin\t. Then the
problem (0.5), (0.6) has at least one solution.

Remark 2.1. In the Corollary 2.1 (resp. Corollary 2.4), the condition
(1.4;) (vesp. (1.22;)) can be changed by the condition (1.10;) (resp.
(1.23;)) with w(t) = sint (resp. w(t) = sinAt).

3. AUXILIARY PROPOSITIONS

Let u, € C'(I;R), |[un|lc # 0 (n € N), w be an arbitrary solution

of the problem (0.3), (0.4), and r > 0. Then, for every n € N, we
define: Any ™ {te I @] <1} Awa ™ {te I+ fun(t)] > 1},

def

Bh; = {t € A5 sgnu,(t) = (1) 'sgnw(t)} (i = 1,2),

Cot D {t € Aps: Jw(t)] > 1/n},  Chs

def

Yt e Ay |w(t) < 1/n},

{t € 1:w(t)] > rf|us|lc" +1/2n},
AE, e Ay Hun(t) > v}, BE, Y A%, 0B,
CE, A% ,NC (i =1,2), DE S {t e I +uw(t) > rl|ua||g +1/2n},
From these definitions it is clear that, for any n € N, we have
Api N A, =0,A ,NA =0, BiiNBpa=0, ConNCra =10,
DynD, =0, Bi,NB, ,=0,C:,nC,=0(i=1,2), (3.1)
AptUAno =1, A UA ;= Apy, ByuiUBno= Az \ Ny,
Co1 UChp = Anz, By UB, , = Bys, CiyUCT, = A,

3.2
C;Z.UC;Z._OM (i=1,2), DI UD, = D,. (3:2)

Lemma 3.1. Let u, € C'(I; R) (n € N), v > 0, w be an arbitrary
solution of the problem (0.3), (0.4) and

l|un||lc > 2rn for ne N, (3.3)
l|on, —wlle <1/2n  for n € N, (3.4)
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where v, (t) = u,(t)||un||o'. Then there exists ng € N such that

Dy CAY, D, CA,, for n>ng, (3.5)
Ch.CDy Co,CD, for n>n. (3.6)
Moreover
lirf mesA,; =0, lirJqu mesA, = mes/, (3.7)
Cn,l C Bn,la Bn,2 C Cn,27 (38)
Bf, c Cr,, B, CC,,, (3.9)
Cry C By, Co, C B, (3.10)
lim mesC,; = lim mesB, ; = mesl/,

n—+oo n—+o0o (311)

lirf mesCy, 2 = lir+n mesB, 2 = 0,
lon(t)| <1/2n for  t € By, (3.12)
lon(t)] > 1/2n for  t€Cya, (3.13)
liIE mes (Cil N Qi) = mesQ);. (3.14)

Proof. From the unique solvability of Caushy’s problem for the equa-

tion (0.3) it follows that the set N,, is finite. Consequently we can

assume that N, = {t1,...,tx}. Let also ty = a, tgy1 = b and T, =

In <Uf;“01 [ti—1/n, t; + 1/n]> We first show that, for every ng € N,
there exists n; > ng such that
A1 CT,, for n>n. (3.15)

Suppose on the contrary that, for some ny € N, there exists the
sequence tj, € Ay 1 (j € N) with nj < nji, such that ¢, ¢ T, for
Jj € N. Without loss of generality we can assume that lim;_, t’nj =
ty- Then from the conditions (3.3),(3.4), the definition of the set A, ;
and the equality w(ty) = (w(ty) —w(t;,,))+(w(t),, ) —va; (8,,)) +vn,; (8,),
we get |w(ty)| =0, i.e., t € {to,t1,...,tx+1}. But this contradicts the
condition ¢;, ¢ T}, and thus (3.15) is true. Since lim mesT,, = 0, it

n—-+00
follows from (3.2) and (3.15) that (3.7) is valid.
Let to € D, . Then from (3.4) it follows that unllo) > 4 (t) —

llunllo
lun(to) — w(ty)] > m + ﬁ — = > m for n > ngp, and thus
to € A, for n > ng, ie., D C A, for n > ng. The second relation
of (3.5) can be proved analogously. Now suppose that ¢, € C,,; and
to & Bpi. Then, in view of (3.1) and (3.2), it is clear that ¢y € B,

and thus

|vn(to) — wlto)| = |vn(to)| + [w(te)| > 1/n, (3.16)
which contradicts (3.4). Consequently, C,,; C B, for n € N. This,
together with the relations Cy, 52 = A, 2\Cp.1, Bna C Ay, 2\ By, implies
Bo C Cpa, ie., (3.8) holds. The conditions (3.9) and (3.10) follow
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immediately from (3.8). In view of the fact that lim,_, . mesC,; =
(2 —i)mesI, from (3.8) we gat (3.11). Now, let ¢, € B,,» and suppose
that |v,(to)| > 1/2n. Then from (3.4) we obtain the following contra-
diction 1/2n > |v,(ty) — w(to)| = |valto)| + |w(to)| > 1/2n + |w(to)],
i.e., (3.12) holds. From (3.4) and the definition of the set C; we
obtain (3.13). Now we will show that

Coy={te A,z tw(t)>1/n} for neN. (3.17)
Let there exists ty € C,f, such that to & {t € Any : w(t) > 1/n}.
Then from the definition of the sets Cp, 1 and Cf; we get that w(t) <
—1/n and ty € A} ,. In this case the inequality (3.16) is fullfild, which
contradict (3.4). Therefore Cf} C {t € Anz : w(t) > 1/n}. Let now
to € {t € Apa :w(t) > 1/n} and ty & C, . Then from the definition
of the set C,; and (3.2) it is clear that ¢ty € C, , i.e. tp € A, ,, and
that the inequality (3.16) is fullfild, which contradicts (3.4).Thérefore
{t € Aps:w(t) >1/n} C C,. From the last two inclusions it follows
that (3.17) is valid for C;;. From (3.2) and (3.17) for C,, it is clear
that (3.17) is true for €, too. From (3.17), the definition of the sets

D* and (3.3) we obtain (3.6). From the definition of the set Q& and
(3.17) we get Coy NQE ={t € I : fw(t) > 1/n}\ (I \ A,2) and then

mes(Cpy N Q) > mes({t € 1 : tw(t) > 1/n}) —mes(I \ A,2)
where in view of (3.7) the equality liril mes(/ \ A,2) = 0 holds.

From the last two relation and the fact that C’il NOE c O we
obtain (3.14). O

Lemma 3.2. Leti € {1,2}, r >0, k € N, w be an arbitrary solution
of the problem (0.3), (0.4), Ny = {t1, ..., tx}, the function f; € E(N,)
be non-decreasing in second argument for |x| > r, and let the condi-

tions (3.3) and
filt,z)sgnx >0 for tel, |x|>r, (3.18)
hold. Then:
a)If G C I and

/ a(s, (—1)r)(s)|ds 20, (3.19)
G
then there exist 69 > 0 and 1 > 0 such that
NG, U.,x) < / i (s, 2)w(s)|ds — / fuls, 2)w(s)|ds > b, (3.20)
G\U. 0.

for (=1)'z >r,0 < e <& whereU. = 1N (Ué?:l [t;—e/2k, tj+€/2k]).
b)For any r > 0 and 6; > 0 there exist e5 > 0 and ng € N such that
(D}, U z)>—6, for x>, (3.214)
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(D, ,U-,x) > =61 for x=<-—r, (3.215)
forn >ng and 0 < e < ey, where UX = {t € U. : Tw(t) > 0}.
Proof. a)For any a € Ry, we put Gy = ([a,a+a]U[b—a,b])NG. In

view of the condition (3.19) we can choose a €]0, (b — a)/2[ such that
if Go =G\ Gy, t, = inf{Gy} and t;, = sup{Gs}, then

a<tg, ty, <D, (3.22)
and [, [f(s, (=1)'r)w(s)|ds # 0, [, [f(s,(=1)"r)|ds # 0. From these
inequalities, by the conditions (3.18) and f; € E(N,) where f; is

non-decreasing in the second argument, there follows the existence of
0o > 0 and €* > 0 such that

/ |f1(s,x)|ds—/ fils,2)[ds >0 for (—1)iz >r (3.23)
G2\Ug* U.x

€

/ | f1(s, z)w(s)|ds > dp for (=1)'z >r. (3.24)
G1\U.
Now we put I* = [t*, t;], where t* = —Hmig(t“’tl) and ¢} = —max(t’;’tb)er.

In view of (3.22), we obtain
Gy CI', N, C I, w(t;) # 0, w(ty) # 0. (3.25)

Then it is clear that there exists 73 > 0 such that for any v €]0, |
the equation |w(t)| = ~, on the set I*, has only t,;,t*; (i = 1,..., k)
solutions and

tya <t <tl,(i=1,.k), (3.26)

|w()\<7 for te H,, |w ()]>7 for te "\ H,, (3.27)
where M, ¥ ltyatr,], and

11m7_>+0t%i = 1im,y_>+0t,>:ﬂ- = tz (Z = 1, ceey k?) (328)

The relations (3.26) and (3.28) imply that there exist v €]0, ;] and
e1 €0, e*] such that
U, C H, C U.-. (3.29)

Moreover, from the inclusion G; C G it is clear that

G\U., = [(G\G1)\U.,|U(G:\Us,), [(G\G1)\U.,|N(G:\U.,) =0,
and thus

I(G,U,,,x) = / | f1(s, 2)w(s)|ds+1(Gy, Us,, x) for (—1)% > 7.
Gi\U:,
By virtue of (3.23), (3.25), (3.27), and (3.29), we gt

G Uee) 23( [ 1= [ 1o olas) 2

29[ s = [ 1 als) 20
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for (—1)'z > r. In view of the last two relations, (3.24), and the fact
that U, C U.~, we conclude that the inequality (3.20) holds.
b) First consider the case when

/ |fi(s,x)w(s)|ds =0 for x >r, n € N. (3.30)
Dy

By (3.3) and the definitions of the sets D and U we get
lim,,_, 4 somes(UE \ DF) = 0. (3.31)
Then in view of (3.30) and the fact that for any ¢ > 0 and n € N
UF = (UZND)UWUN\Dy), (UZnDy)n(UZ\Dy) =0, (3.32)
we have [ |fi(s,z)w(s)|ds = [+ ps |fi(s,2)w(s)|ds for z > 7, n €

N, and € > 0. Thus in view of (3.31) we get ij | fi(s, z)w(s)|ds = 0.
From the last equality and (3.30) we conclude that

I(Df, U z)=0 for z>r,ne N, e>0. (3.33)

Therefore in this case (3.21;) is true.
Now, consider the case when for some r; > r there exists ng € N
such that

/ |f1(s,x)w(s)|ds #0 for x > ry, n > ng. (3.34)
D
It is clear that there exist n > 0 and g5 > 0 such that
/ |fi(s,x)w(s)|ds <6 for r<ax <ri+mn, € <ey,
U

and then
I(DYUF 2)>—6, for r<ax<ri+mn n>ng c<e. (3.35)

On the other hand, from the fact that f; is non-decreasing in the
second argument (3.18) and (3.34) it is clear that [, |fi(s,r +
no

nw(s)|ds # 0. Therefore from item a) of our lemma with G = D",
and the inclusions D)} C D}, U C U. for n > ng, € > 0 we get
I(Df, U x) > 6 for x>r+mn n>ng < ey From this in-
equality and (3.35) we obtain (3.21) in second case too. Analogously
one can prove (3.215). O

Lemma 3.3. Let all the conditions of Lemma3.1 be fulfilled and there
exist v > 0 such that the condition (3.18) holds where f; € K(I; R).
Then

lim inf /t fi1(& un(€))sgnu, ()de >0 for a<s<t<b (3.36)

n—-+00
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Proof. Let

v () Y sup{|fi(t, )| : o] <7} for tel (3.37)

Then, according to (3.1), (3.2), and (3.18), we obtain the estimate

/ £1(6, 1 (€))sgnun, (€)dE >

— *(€)d 1(&, uy, d
> /[ e / (€ unl€)))de

[S,t]ﬁAn’Q

for a <s <t <b, ne N. This estimate and (3.7) imply (3.36). O

Lemma 3.4. Let r > 0, u, € C'(I; R) (n € N), w be a nonzero
solution of the problem (0.3), (0.4), the condition (3.3) hold and

WD) —wD ()| <1/2n for tel, neN, (i=0,1) (3.38)
where vy, (t) = w, (t)||uy||g" fort €1,
N, =0, (3.39)

and
up(a) =0, u,(b) =0. (3.40)

Let, moreover, fi € K(I;R), hy € L(I; R), there exist the numbers
e >0, ng € N and the functions f*, f~ € L(I; Ry) such that

filte) <=f=(t) for x< -

PO S ) for a2 o
on I, and
b b
[ @ulds el < - [ hles)ids <
b
< [ F©ls)ids -l (3.42)

when ~v* is defined by (3.37) Then there exists ny € N such that

d
M, <

b

/ (hi(s) + fi(s,un(s))w(s)ds >0 for n>mn;. (3.43)
Proof. 1t is not difficult to verify that all the assumptions of Lemma3.1
are satisfied. From the unique solvability of Caushy’s problem for the
equation (0.3) and the conditions (0.4) we conclude that w'(a) # 0
and w'(b) # 0. Therefore in view of (3.38)-(3.40) there exists ny € N
such that

up (t)sgnw(t) >0 for n>mngy, a<t<b. (3.44)
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Also, by (3.1) and (3.2) we gat the estimate

M, > — Yr(s)|w(s)|ds + | hi(s)w(s)ds+
Lot frnse

—i—/A f1(s,un(s))w(s)ds,

where ¥ is given by (3.37). Now, note that f~ = 0, fT = 0 if
fi(t,z) = 0. Then by virtue of (3.7), we see that there exist ¢ >
0 and ny € N (ny > ng), such that fffi(s)|w(s)|ds — Sl <

[ PO ds and 5150 > J, A2 wlo)lds for n'> . By
these inequalities, (3.3), (3.41), and (3.44), from (3.45) we obtain

b b
M, 2 ~elpill+ [ s+ [ )l

if n > n; and w(t) > 0. Analogously we obtain

M, > —€||7f||L—/ hl(S)lw(S)|d8+/ f=(8)[w(s)|ds,

a

for n > ny and w(t) < 0. From the last two estimates in view of (3.42)
it follows that (3.43) is valid. O

Lemma 3.5. Let r > 0, u, € C'(I;R) (n € N), w be an arbitrary
nonzero solution of the problem (0.3),(0.4), and the conditions (3.3),
(3.18), (3.38), (3.40) hold. Let, moreover the function f; € E(N,) be
non-decreasing in the second argument for |x| > r, and

| nisnlds + [ it =rids £0. (3.46)
(O Qo

Then there exist 6 > 0 and ny € N such that if
b
/ hy(s)w(s)ds| < 0, (3.47)

the inequality (3.43) holds.

Proof. 1t is not difficult to verify that all the assumption of Lemma
3.1 are satisfied. Then by the definition of the sets B, 1, B2, (3.1),
(3.2), and (3.18) we obtain the estimate

/ﬁ@%@m@@z—é V(S w(s)ds + ML, (3.48)
where

i, == [ A EDulds+ [ ()

Bn,l



14 S. MUKHIGULASHVILI

On the other hand from unique solvability of Cauchy’s problem for
the equation (0.3) it is clear that

w'(a) #0, w'(b) #0, w'(t;) #0  fori=1,... k. (3.49)
In view of (3.14) and (3.46), there exists ny > ny such that

[ 1nGsnus)ids £0 (3.50,)

no,

and/or

/ | fa(s, —r)w(s)|ds £ 0. (3.50)

no,1

From (3.501) and (3.502) in view of (3.6) it follows that

/D+ | f1(s,m)w(s)|ds # 0 and /or / |fi(s, —r)w(s)|ds # 0 (3.51)

n,

for n > ny respectively, i.e., all the assumptions of Lemma 3.2 are
satisfied with G = D;} and/or G = D, . Then there exist 0 < gy <
min{ey, ea}, n3 > ng, and dp > 0 such that

(D, UL ) > 6y for >r, n>mng (3.521)
if (3.5071) holds,
I(D,,U,,x) >0 for x<—r n>ns, (3.52,)
if (3.507) holds, and
(D, Uf x) > —6/2, for x>r n>ns,

€0’

I(D, U, ,x) > —bp/2, for z<—r n>ns.

£0?

On the other hand the definition of the set U. and (3.17), imply
that there exists ny > ng, such that

ChyCcUL, CrycU, for n>mny (3.54)
By this inclusion, (3.2), and (3.5) we obtain that for n > ny

n,2 €0’ —'n,

(3.53)

Now, suppose N, # ), and let there exists n > ny such that
B2 # 0. (3.56)

Then, by taking into account that f; is non-decreasing in the second
argument for |z| > r, (3.3), (3.12), (3.18) and the definitions of the
sets By, B, 5, we obtain

t < fi(t, ——=) = t, ——— for t € BX
|f1( 7un)| —fl( Y 2n ) |f1( Y 2” )| or E 7’L,27

[|tnlc |[ualle _
|fi(tun)| < —falt, _T> = |f1(t, —Tﬂ fort € B, ,.

(3.57)
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Analogously from (3.3), (3.13), (3.18), and the definitions of the sets
C.r1,C. 1, we obtain the estimates

n,1» ~n,1»
U,
At ()] = A0 o e e, .
3.58
At ()] 2 1020 o te o,

Then from (3.1), (3.2), (3.9), (3.57) and respectively from (3.1), (3.2),
(3.10), and (3.58) we have

/B | f1(s, un(s))w(s)|ds <

s/% |f1(57||1g;|L|C)w(5>|d5+/ |f1<s,—”7“;”n”c)w(s)|ds (3.59)

Cra
and respectively

/ | fi(s, un)w(s)|ds >
Bn 1

Z/CLUI(S’||u2n¢|b|0)w(8)|d8+/cm|f1(8’_||27;|1|c)w(8)‘d8' (3.60)

Then if the condition (3.56) holds, from (3.59), (3.60), (3.521), (3.52,),
(3.53), (3.54), and (3.55) we get
~ J
i, > 1(p+, ur, lley gp = _lllley S %
n — ( n’Ua()? 2n )+ ( n?UE()’ 277/ )—2
On the other hand, in view of (3.10), (3.18), the definition of the

sets A2, B,1 and the fact that f; is non-decreasing in the second
argument, we obtain the estimate

/B | f1 (s, un(s))w(s)|ds >

(3.61)

2/C+ |f1(3,r)w(s)]ds+/_ 1 (s, —r)w(s)|ds. (3.62)

n,l

Now, suppose that there exists n > ny4 such that
Byo = 0. (3.63)
Thus from (3.50;), (3.502) and (3.62),(3.63) there follows the existence

~

of 0* > 0 such that M,, > ¢*. From this inequality and (3.61) it follows
that in both cases when (3.56) or (3.63) are fulfilled the inequality

I\Aﬂn >4§ for n>ny (3.64)
holds with § = min{dy/2,*}. Then from (3.48) by (3.7) and (3.64),

we see that for any € > 0 there exists n; > ny such that

b
/ fi(s,un(s))w(s)ds > 6 —e for n > ny,
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and then
b
M, > o +/ hi(s)w(s)ds —e for n > n. (3.65)

If N, = 0, then in view of (3.3), (3.38), (3.40) and (3.49), the
condition (3.63) holds, i.e., the inequality (3.65) holds too.

Consequently because € > 0 is arbitrary, from (3.65) and (3.47) the
inequality (3.43) follows. O

Lemma 3.6. Let, all the conditions of Lemma 3.5, except (3.47), be
satisfied with fi(t,x) = fo(t)g1(z) where fo € L(I; Ry), g1 € C(R; R)

‘ |1ir£r1 |g1(z)| = +o0. (3.66)

Then for any function hy € L(I; R) the inequality (3.43) holds.

Proof. From the conditions of our Lemma it is clear that the relations
(3.48)—(3.55),(3.57)— (3.60) and (3.62) with fi(t,z) = fo(t)gi(z) are
fulfilled and the function ¢, is non-decreasing. Note now that, by the
same way as the equality (3.33) in the Lemma 3.2, from the relations
(3.31) and (3.32) there follows the existence of €9 and ng € N such
that

= [ R [ feledszo. @6
Di\UZ U

for n > ng. Now suppose that the condition (3.50;) i.e., (3.521) holds
and first consider the case when n > ny is such that (3.56) is fulfilled.
From (3.52;) it follows that |gi(r)] > 0 and G > 0. Consequently
in view of the fact that g is non-decreasing we get I(D;}, U}, ) >
lg1(r)|BT > 0 for x > r. By virtue of this last inequality and
(3.67) we see that the inequality (3.61) is true with 6 = |g1(r)|57, i.e.,
M, > lg1(r)|BT > 0. Consider, now the case when n > ny is such
that the condition (3.63) holds. Then by virtue of (3.14) and (3.46)
from (3.62) we see that for arbitrary €; > 0 there exists ns > ny such
that M, > 191(7)] Joz fo(s)ds —e1 > 0, if n > ns. From the last
two relation and (3.48) in view of (3.7) it follows that in any case
(when (3.56) or (3.63) hold) there exist 5 > 0 and ny > ny such
that f; fi(s,un(s))w(s)ds > Blgi(r)] —e2 > 0 for n > ny; when
B = min(8", [4+ fo(s)ds). From (3.66) and the last inequality it is
clear that for a}uly function h; we can choose r > 0 such that the
inequality (3.43) will be true. Analogously one can proof (3.43) in the
case when the inequality (3.503) holds. O

Lemma 3.7. Letr > 0, u, € 6”([; R) (n € N), w be an arbitrary
nonzero solution of the problem (0.3),(0.4), and the conditions (3.3),
(3.38), and (3.40) hold. Moreover let there exists ng € N and the
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functions o, f~, fT € L(I, R}) such that the condition (3.41) is satis-
fied,

sup{|fi(t,z)|: x € R} = a(t) for tel, (3.68)
and

b

- [T + £ Ols))ds + <lall. <
b
< —/ hi(s)w(s)ds <

b
< [ )+ OuEL)ds - ol @36
Than there exists ny € N such that the inequality (3.43) holds.

Proof. 1t is not difficult to verify that all the assumption of Lemmad.1
are satisfied. From (3.1), (3.2), and (3.68) we gat

Moz [ a@lds [ AGu)u(sdst
Ap,1UBp 2

Bn,l
X (3.70)
+/ hy(s)w(s)ds.
Also, by the definition of the set B,,; we obtain
sgnu, (t) = sgnw(t) for te Bf UB,,. (3.71)

Then, by (3.1), (3.2), (3.10), (3.41), and (3.71) from (3.70) we readily
obtain the estimate

. +
M, > /A A (s)ds + /C . FH($)[w(s)|ds+

b

+ f(s)]w(s)|ds+/ hy(s)w(s)ds. (3.72)
C;l a

Now, note that f~ =0, fT =0if fi(¢,2) = 0. Then by (3.7), (3.11),

(3.14), and the inclusions Cy, € QF, C; |, C Q we see that there

exist € > 0 and n; € N such that

1
sellalz [ a@lu(slds
An,1UBn,2
| (3.73)
| s - gellalle < [ ©lu)ds
Qw C’n,l

if n > ny. Let w; be an arbitrary solution of the problem (0.3),(0.4).
First suppose that w(t) = w;(t). By virtue of (3.72) and (3.73) we
obtain

M, > —8|]0¢HL+/+ FH()wn(s)]ds+
Quy

o ()len(s)lds + / ()01 (5)ds.

Quwy
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Analogously, if w(t) = —w (t), we obtain

M, > —ellall; + / FH()wn(s)]ds+
0,

b
+ / () (s)lds — / () (s)ds.
Zuy a
Now, by taking into account the fact that the problem (0.3),(0.4) has
only two solutions (different only by sign) and the fact that

b
/Qﬂiq z(s)lwl(s)us:/a 1(s) w1 ()] ds,

b
[ twlds = [ il )sds
Q—wl a
for the arbitrary [ € L(I, R), from the last two inequalities and (3.69)
we immediately obtain (3.43). O

Now we consider the definitions of the sets Vip((a,b)) introduced
and described in [12] (see [Definition 1.3, p. 2350])

Definition 3.1. We shall say that the function p € L([a, b]) belongs
to the set Vig((a, b)), if the initial value problem

u'(t) =p*()u(t) for tel, wula)=0, u'(a) =1, (3.74)

for any function satisfying the inequality p(t) < p*(¢) for t € I has no
zeros in the set |a, b].

Lemma 3.8. Let i € {1,2}, p € L(I; R), pu(t) = p(t) + (=1)'/n and
w, € C'(I; R) (n € N) be a solution of the problem

wl(t) = pp(wyp(t) for tel, wy(a)=0, w,(b)=0. (3.75,)

n

Then:

a. There exists ng € N such that the problem (3.75,) has only a zero
solution if n > ng.

b.If i = 2 and N, = 0 where w is the solution of the problem
(0.3), (0.4), the inclusion p, € Vio((a,b)) forn € N holds.

Proof. a. Let Nj be the number of zeroes of the function w, on I.
Now, assume to the contrary that there exists the sequence {wn}z;’m
of the nonzero solutions of the problem (3.75,). -

Then if i = 1, from the fact that p,(t) < pp41(t) by Sturm’s com-
parison theorem we obtain Ny .~ < Nj = for w, # 0. From this
inequality there follows the existence of n; € N such that N{;nl = 2,
i.e., Ny, = {a,b}. Then by Sturm’s comparison theorem we see that
w, = 0 for n > ny, and this contradicts our assumption.
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If ¢ = 2, from the fact that p,_1(t) > p.(t) > p(t) by Sturm’s
comparison theorem we obtain

Ny <N, mneN, (3.76)
and if w is the solution of the problem (0.3), (0.4)
N <N neN. (3.77)

On the other hand from (3.76) it follows that there exists ny € N such
that N;j > N; for n > n; and this contradicts (3.77).

b. Let p,(t) < p*(t) and u be the solution of the problem (3.74).
Now, assume to the contrary that there exists n € N such that p, &€
Vio([a, b]). Then there exists ty €]a,b] such that u(ty) = 0. Then in
view of the fact that p(t) < p*(f) by Sturm’s comparison theorem we
obtain that w, the solution of the problem (0.3), (0.4) has zero in the
interval ]a, to[. Which contradicts our assumption that N, =@. O

4. PROOF OF THE MAIN RESULTS

Proof of Theorem 1.1. Let p,(t) = p(t) + 1/n and for any n € N
consider the problem

un (t) = po(t)un(t) + f(t, un(t)) + h(t) for t¢el, (4.1)

up(a) =0, wu,(b)=0. (4.2)

In view of the condition (1.1) and Lemma 3.8 the problem (3.75,,) has
only zero solution for n > ng and the inclusion p,, € Vio((a,b)) holds.
Also from the conditions (1.3) it follows that 0 < f(¢, z)sgnz for t €
I, |x| > r. From the last inequality and the inclusion p, € Vio((a,b)),
as is well-known (see [12, Theorem 2.2, p.2367]), it follows that the
problem (4.1),(4.2) has at last one solution, suppose w,. In view of
the condition (1.2) without loss of generality we can assume that there
exists €* > 0 such that ho(t) > €* on I. Then g(t)|z| + ho(t) > * for
xr € R, t € I. Consequently it is not difficult to verify that wu,, also is
the solution of the equation

U (t) = (pn(t) + po(t, un(8))sgnun (t)Jun(t) + pr(t, un(t))  (4.3)
on the set I where po(t,x) = gM pi(t, z) = h(t) + L2l

(O)lzl+ho(t)’ g@®lxl+ho(t)”
Now, assume that

limy, 4 ool |tn]|c = +00 (4.4)
and v, (t) = U, (t)||un]|g'. Then on I, for any n € N
1
Un(t) = (pn(t) + po(t, un(t))sgnun (t))vn(t) + mm(t,un(t)), (4.5)
vp(a) =0 vn(b) =0, (4.6)
and
anHC =1L (47)
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In view of the condition (1.2) the functions pg, p1 € L(I; R) are bounded
respectively by the functions g(t) and h(t) + ho(t). Then from (4.5)
by virtue of (4.4), (4.6) and (4.7) we see that there exists ro > 0 such
that ||v]||c < ro. Consequently in view of (4.7), by Arzela-Ascoli
lemma, without loss of generality we can assume that there exists
wo € C'(I, R) such that lim,_ . v$(t) = w(()i) (t) (¢ = 0,1) uniformly
on I. From the last equality and (4.4) there follows the existence of
the increasing sequence ay € N, k € N such that ||ug,||c > 2rk and
va,z - w(()i)||c < 1/2k for k € N. Without loss of generality we can
suppose that u, = u,, and v, = v,,. In this case we see that u,
and v,, are the solutions of the problems (4.1), (4.2) and (4.5), (4.6)
respectively with p,(t) = p(t) + 1/« for t € I, n € N, and that the
inequalities

[unllc > 2rn,  [J0® — w(()i)||c <1/2n for me€N, (4.8)
are fullfild. Analogously, because the functions py,p; € L(I; R) are

bounded in view of (4.4), without loss of generality we can assume
that there exists the function p € L(I; R) such that

Jim 1Hj [ s wn(ssenan()ds = (1 =) [ By (1.9)
Un||c Ja a

uniformly on [ for (j = 0,1). By virtue of (4.7)-(4.9,) ( = 0,1) from
(4.5) we obtain

wy(t) = (p(t) + p(t))wo(t), (4.10)
wo(a) =0, wy(b) =0, (4.11)
|[wolle = 1. (4.12)

From the conditions (1.3), and (4.8) it is clear that all the assump-
tions of Lemma 3.3 with f;(¢,x) = f(t, z) are satisfied, and then from
(4.9;) ( = 0) we obtain f;ﬁ(ﬁ)dé’ >0 for a<s<t<b,ie.,

p(t)>0 for tel. (4.13)

Now, assume that p # 0 and w is a solution of the problem (0.3), (0.4).
Then using Sturm’s comparison theorem, for the equations (0.3) and
(4.10), from (4.13) we see that there exists the point ty €]a, b such
that w(tg) = 0 which contradicts (1.1), i.e., our assumption is invalid
and p = 0. Consequently, wy is a solution of the problem (0.3), (0.4),
ie.,

w(t) =we(t) for tel. (4.14)

Consequently, multiplying the equations (4.1) and (0.3) respectively
on w and —u,,and by integrating their sum from a to b, in view of the
conditions (4.2) and (0.4) we obtain
1 b b
—— | w(s)uy(s)ds :/ (h(s) + f(s,un(s)))w(s)ds (4.15)

An Ja
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for n > ng. Then by (4.8) and (4.14) we get

/ (h(s) + F(s, un(s))w(s)ds < 0 for n > no. (4.16)

On the other hand, in view the conditions (1.1)- (1.41), (4.2), and
(4.8) it is clear that all the assumption of Lemma 3.4 with f(t,x) =
f(t,x), hi(t) = h(t) are fulfilled. Then the inequality (3.43) is true,
which contradicts (4.16). Le., assumption (4.4) is invalid and there
exists 71 > 0 such that ||u,||c < r for n € N. Consequently from
(4.1) and (4.2) it is clear that there exists 74 > 0 such that ||u,||c <
i and |ul(t)] < o(t) for t € I, n € N, where o(t) = (1 +
lp(t)|)r1 + |h(t)] + 7+, (t). Hence, by the Arzela-Ascoli lemma, without
loss of generality we can assume that there exists the function ug €
C'(I; R) such that lim,_. ul) (t) = u(()i) (t) (i = 0,1) uniformly on [/
and that ug is the solution of the problem (0.1), (0.2). O

Proof of Theorem 1.2. Let p,(t) = p(t) —1/n and for any n € N con-
sider the problems (4.1), (4.2) and (3.75,). In view of the Lemma 3.8
the problem (3.75,,) has only zero solution if n > ny. Then, as is well-
known (see [9, Theorem 1.1, p.345]), from the conditions (1.7), (1.9) it
follows that the problem (4.1), (4.2) has at least one solution, suppose
,. Now suppose that (4.4) is fulfilled and v, () = u,(t)||u,||5'. Then
the conditions (4.6) and (4.7) are fulfilled,

v (t) = p(t)on(t) + m(f(sa un(s))) + h(s)). (4.17)

Then in view the conditions (1.7) and (1.9), from (4.17) there fol-
lows the existence of 19 > 0 such that ||v]||c < 7. Consequently
in view (4.7) by the Arzela-Ascoli lemma, without loss of general-
ity we can assume that there exists the function wy € C’' (I, R) such
that lim,,_ 4 v5” (t) = w((f) (t) (¢ = 0,1) uniformly on /. Now, anal-
ogously as in the proof of Theorem 1.1, we can choose the sequence
{ap}29 from N such that, if we suppose u, = u,, then the codi-
tions (4.8) will by true when the functions u, and v, are the solu-
tions of the broblems (4.1), (4.2) and (4.17), (4.6) respectively with
pu(t) = p(t) — 1/, for t € I, n € N. From (4.17) by virtue of (4.6),
(4.8) and (1.9) we obtain (4.14). Consequently, analogously as (4.15)
in the proof of the Theorem 1.1 we obtain
b b
L w(s)un,(s)ds :/ (h(s) + f(s,un(s)))w(s)ds (4.18)

An Ja

for n > ng. Now note that in view of the conditions (1.1), (1.8),
(1.49), (4.2), and (4.8), all the assumptions of the Lemma 3.4 with
fi(t,x) = —f(t,x), hi(t) = —h(t) are satisfied. Hence, analogously
as in the proof of the Theorem 1.1, from (4.18) by Lemma 3.4 we see
that the problem (0.1), (0.2) has at least one solution. O
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Proof of Theorem 1.3. Let p,(t) = p(t) + (=1)'/n and for any n €
N consider the problems (4.1), (4.2), and (3.75,). In view of the
condition (1.13) and the fact that (—1)"f(¢;z) is non-decreasing in
the second argument for |x| > r, we obtain

. 1
lim ——
n—+oo || 2,]|c

b
/ |f(s,2,(5))|ds =0 (4.19)

for an arbitrary sequence z, € C(I; R) with lim,, o ||2a]|c = +00.
Also, in view of Lemma 3.8 the problem (3.75,) in the case i = 0 as
in the case ¢ = 2 has only a zero solution for n > ng. Then as it is
well-known (see [9, Theorem 1.1, p. 345]) from the inequality (4.19)
it follows that the problem (4.1), (4.2) has at least one solution, sup-
pose u,,. Now suppose that (4.4) is fulfilled and v, (t) = w,(t)||un||5"-
Then (4.6), (4.7) and (4.17) are fulfilled too. Thus, by the condi-
tions (4.7) and (4.19), from (4.17) we get the existence of ry > 0 such
that ||v]||c < 7. Consequently in view of (4.7) by the Arzela-Ascoli
lemma, without loss of generality we can assume that there exists
the function wy € C'(I, R) such that lim, vg)(t) = w(()i)(t) (1 =
0, 1) uniformly on I. Now, analogously as in the proof of Theorem 1.1,
we can choose the sequence {a;}>] from N such that, if we suppose
Uy = U, the conditions (4.8) will by true when the functions u, and
v, are the solutions of the problems (4.1), (4.2) and (4.17), (4.6) re-
spectively with p,(t) = p(t) + (—1)"/a, for t € I, n € N. From (4.17)
by virtue of (4.6), (4.8) and (1.13) we obtain (4.14). Consequently,
analogously as (4.15) in the proof of the Theorem 1.1 we obtain
b b

_ozi w(s)uny(s)ds = (—1)i/ (h(s) + f(s,un(s)))w(s)ds (4.20)
for n € N. Now note that in view the conditions (1.11), (1.12), (1.14),
(4.2) and (4.8), all the assumptions of Lemma 3.5 with fi(t,z) =
(=1)'f(t,x), hi(t) = (=1)'h(t) are satisfied. Hence, analogously as in
the proof of the Theorem 1.1, from (4.20) by Lemma 3.5 we obtain
that the problem (0.1), (0.2) has at least one solution. 0

Proof of Corollary 1.1. From the condition (1.15) we immediately ob-
tain (1.14). Then all the conditions of Theorem 1.3 are fulfilled. [

Proof of Theorem 1.4. The proof is the same as the proof of theorem
1.3. The only difference is that instead of Lemma 3.5 we will use
Lemma 3.6. U

Proof of Theorem 1.5. From (1.21) it is clear that for an arbitrary
sequence z, € C(I; R) such that lim,, . ||2.||c = 400, the equality
(4.19) is valid. From (4.19) and Lemma 3.7, analogously as in the
proof of Theorem 1.3 from (4.19) and Lemma 3.5, we see that the
problem (0.1), (0.2) has at least one solution. d
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