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Computer control of Darwinian evolution has been demonstrated by propagating a population of RNA enzymes in a
microfluidic device. The RNA population was challenged to catalyze the ligation of an oligonucleotide substrate under
conditions of progressively lower substrate concentrations. A microchip-based serial dilution circuit automated an
exponential growth phase followed by a 10-fold dilution, which was repeated for 500 log-growth iterations. Evolution
was observed in real time as the population adapted and achieved progressively faster growth rates over time. The
final evolved enzyme contained a set of 11 mutations that conferred a 90-fold improvement in substrate utilization,
coinciding with the applied selective pressure. This system reduces evolution to a microfluidic algorithm, allowing the
experimenter to observe and manipulate adaptation.
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Introduction

The scientific community will soon celebrate the 200th
anniversary of the birth of Charles Darwin and the 150th
anniversary of the publication of his seminal work On the
Origin of Species by Means of Natural Selection [1]. The principles
of Darwinian evolution are fundamental to understanding
biological organization at the level of populations of
organisms and for explaining the development of biological
genomes and macromolecular function. Darwinian evolution
also has become a chemical tool for discovering and
optimizing functional macromolecules in the test tube (for
recent reviews, see [2–5]). Laboratory evolution is greatly
accelerated compared with natural evolution but requires
substantial manipulation by the experimenter, which is
imprecise, time consuming, and usually performed in an ad
hoc manner.

Many laboratory procedures have been miniaturized using
microfluidic technology, which reduces cost and increases
precision over manual methods [6]. In the present study, a
system is described that relies on computer control and
microfluidic chip technology to automate the directed
evolution of functional molecules, a process that is subject
to precisely defined parameters. A population of billions of
RNA enzymes with RNA ligase activity was made to evolve
continuously, with real-time monitoring of the population
size and fitness. Whenever the population size reached a
predetermined threshold, chip-based operations were exe-
cuted to isolate a fraction of the population and mix it with a
fresh supply of reagents. These steps repeated automatically
as the population adapted to the imposed selection con-
straints within a period of several hours.

The RNA enzyme that was chosen for this study is a
descendant of the class I RNA ligase, first described by Bartel
and Szostak [7]. It is one of only two RNA enzymes that have
been made to undergo continuous in vitro evolution [8,9], a
process in which all of the components necessary for
evolution are contained within a common reaction vessel.
The enzyme is challenged to ligate a promoter-containing
oligonucleotide substrate to itself by catalyzing nucleophilic
attack of the 39-hydroxyl of the substrate on the 59-
triphosphate of the enzyme. The reaction mixture also
contains two polymerase enzymes (reverse transcriptase and

T7 RNA polymerase) that amplify any RNA molecules that
have acquired the promoter sequence as a consequence of
RNA-catalyzed ligation. Multiple copies of progeny RNA are
generated, which then can enter another cycle of reaction
and selective amplification. In a population of variant RNA
enzymes, those that react most efficiently grow to dominate
the population in the competition for limited chemical
resources. A serial transfer or serial dilution protocol is used
to refresh periodically the supply of reagents, allowing the
evolution process to continue indefinitely.

Results

The chip-based evolution system consists of a microfluidic
device mounted on a temperature-controlled stage and
monitored by an inverted confocal fluorescence microscope
(Figure 1A and 1B). A laptop computer controls the actuation
of valves on the chip and the acquisition and processing of
fluorescence data indicate the concentration of RNA enzymes
within the microfluidic circuit. The circuit consists of a
mixing loop (1 cm diameter, 400 nl volume), with three in-
line valves for mixing and two bus valves that control the
input of fresh reagents and the output of spent reaction
materials (Figure 1C). This device can perform serial dilutions
in a rapid and precise manner [10]. Each iteration of events
on the chip entails an incubation step with slow mixing, an
isolation step in which one-tenth of the reaction mixture is
retained in part of the circuit while fresh reaction materials
are drawn into the remainder of the circuit, and a rapid
mixing step in which the isolated aliquot is combined with the
fresh reagents (Figure 1D). The reaction mixture contains
thiazole orange, which intercalates into nucleic acids and
upon laser excitation gives a characteristic fluorescent signal.
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When the fluorescence reaches a predetermined threshold,
correlating with a 10-fold increase in the concentration of
RNA, the computer initiates an automated 10-fold dilution.

Continuous evolution on the chip was initiated with
randomized variants of the ‘‘B16–19’’ form of the class I
ligase RNA enzyme [11]. Like other forms of the class I ligase,
this enzyme has an impressive catalytic rate of 20 6 2 min�1,
but a somewhat poor Michaelis constant (Km) of 35 6 8 lM
(measured in the presence of 10 mM MgCl2 and 50 mM KCl at
pH 7.5 and 37 8C). Random mutations were introduced
throughout the molecule at a frequency of ;0.7% per
nucleotide position using a mutagenic PCR procedure [12],
followed by in vitro transcription. A starting population of 2
3 109 variants was introduced to the chip and challenged to
catalyze RNA ligation under conditions of progressively
reduced substrate concentrations. This selection pressure
was expected to favor individuals with an improved Km. At
the outset, the substrate concentration was 1 lM, causing the
starting B16–19 enzyme to operate with an observed rate of
only 0.6 min�1. Any individuals with an improved Km would
operate at a faster rate, and therefore would undergo more
rapid amplification and grow to dominate the population. As
the evolving population adapted to the reduced substrate
concentration, the concentration was reduced further,
eventually reaching just 0.05 lM.

The course of evolution was monitored continuously based
on fluorescence, tracking the time needed to achieve 10-fold
overall amplification of the RNA population (Figure 2). The
log-linear growth rate of the starting population during the
first 40 min was used to set the fluorescence threshold for the
circuit, before executing the first 10-fold dilution. One
hundred iterations of log-growth and dilution were executed
in the presence of 1 lM substrate. The instantaneous fitness
of the population was reflected by the interval between
successive dilutions, which decreased monotonically over the
first 100 log-growth iterations.

Materials collected from iterations 95–100 were pooled,

subjected to mutagenic PCR, and reintroduced to the chip,
but now the substrate concentration was reduced to 0.5 lM.
This resulted in a temporary decrease in fitness (increased
dilution interval), but the population quickly adapted,
achieving 10-fold growth every 10 min by iteration 198. At
that point, and at iterations 280, 363, and 428, materials again
were collected, mutagenized, and returned to the chip. The
substrate concentration was reduced to 0.3 lM at iteration
280, to 0.1 lM at iteration 363, and finally to 0.05 lM at
iteration 428.
After 500 iterations of log-growth and dilution (70 h on the

chip), the evolution process was deemed complete. Individ-
uals were cloned from the population at iterations 198 and
500 and sequenced. At iteration 500, all of the sequenced
clones contained 11 mutations, which could be divided into
four subgroups (M1, M2, M3, and M4) based on their
relationship to the known secondary structure of the class I
ligase (Figure 3). The M1 mutations occur immediately on the
39 side of the ligation junction, replacing the pppA�U pair by
a pppG�C pair. These mutations restore the pppGpG
transcription initiation sequence that is preferred by T7
RNA polymerase [13], while maintaining Watson-Crick
pairing of the 59-terminal guanosine. The M2 mutation is a
C insertion that appears to extend the template region of the
enzyme so that it binds six additional nucleotides in the
upstream portion of the substrate. The M3 mutations (one
transition, one transversion, and one insertion) all occur
within a hairpin loop that is thought to lie in close proximity
to the template region, based on modeling of the three-
dimensional structure of the class I ligase [14]. The M4
mutations change a U�A pair to a G�C pair within a stem
adjacent to the ligation junction.
A representative clone that contained all 11 conserved

mutations, as well as three mutations near the 39 end, was
examined with regard to its catalytic properties. It exhibited a
kcat of 21 6 0.8 min�1, which is nearly identical to that of the
starting enzyme, and a Km of 0.4 6 0.05 lM, which
corresponds to a 90-fold improvement (Figure 4A). The fact
that only Km improved reflects the selective pressure that had
been placed on the population. The starting B16–19 form of
the enzyme was evolved to operate in the presence of 5 lM
substrate [8,11], and this concentration was reduced by 100-
fold during the course of 500 logs of on-chip evolution. Thus,
the improvement in Km closely parallels the degree of
selective pressure that was applied.
To assess the individual contribution of the M1–M4

mutations, each was added to the starting enzyme and each
was removed from the final evolved enzyme. The observed
reaction rate in the presence of 0.1 lM substrate was
determined for each construct (Figure 4B). Adding the M1
or M2 mutations to the starting enzyme caused a 9-fold
increase in the observed rate, whereas adding the M3
mutations caused a 24-fold increase. Surprisingly, adding
the M4 mutations caused a 2-fold decrease. Reverting the M1,
M2, or M4 mutations within the evolved enzyme caused a 2-
to 3-fold decrease in the observed rate, while reverting the
M3 mutations caused a 10-fold decrease. Thus the M1, M2,
and M3 mutations appear to exhibit independent effects,
whereas the M4 mutation only confers selective advantage on
the background of the other mutations. Clearly, the M3
mutations are the most significant. When they are added to
the starting enzyme, there is no change in kcat and there is a
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Author Summary

The principles of Darwinian evolution are fundamental to under-
standing biological organization and have been applied to the
development of functional molecules in the test tube. Laboratory
evolution is greatly accelerated compared with natural evolution,
but it usually requires substantial manipulation by the experimenter.
Here we describe a system that relies on computer control and
microfluidic chip technology to automate the directed evolution of
functional molecules, subject to precisely defined parameters. We
used a population of billions of RNA enzymes with RNA-joining
activity, which were challenged to react in the presence of
progressively lower concentrations of substrate. The enzymes that
did react were amplified to produce progeny, which were
challenged similarly. Whenever the population size reached a
predetermined threshold, chip-based operations were executed to
isolate a fraction of the population and mix it with fresh reagents.
These steps were repeated automatically for 500 iterations of 10-fold
exponential growth followed by 10-fold dilution. We observed
evolution in real time as the population adapted to the imposed
selection constraints and achieved progressively faster growth rates
over time. Our microfluidic system allows us to perform Darwinian
evolution experiments in much the same way that one would
execute a computer program.



10-fold improvement in Km. Conversely, when the M3
mutations are removed from the evolved enzyme, there is
no change in kcat and there is a 10-fold worsening of Km

(Figure S1).
Returning to iteration 198, when the population had only

been challenged to adapt to 0.5 lM substrate, none of 20
cloned sequences contained the M4 mutations. However, all
of the cloned sequences contained the M1 and M2 mutations.
The M3 mutations were beginning to appear at that time,
with all 20 clones containing the G insertion (Figure 3), but
only eight containing the A!C transversion and only two
containing the G!A transition. The insertion and trans-
version mutations are intriguing because they result in the
sequence 59-GACCCAG-39 (mutations underlined), which is
identical to the sequence 59-GACCCAG-39 (M2 mutation
underlined) that occurs within the extended template region
of the enzyme. It is possible that one or both of these regions
engages in pairing interactions with the substrate.

Site-directed mutagenesis studies were carried out on the

final evolved enzyme to examine potential enzyme–substrate
interactions enabled by the M2 and M3 mutations. An
alternative substrate was prepared, leaving unchanged the
eight nucleotides that are complementary to the original
template region of the enzyme, but changing the six
nucleotides that are complementary to the extended tem-
plate region (Figure 3). No activity was observed with this
substrate. Activity was largely restored, however, by introduc-
ing compensatory mutations within the enzyme that reestab-
lished Watson-Crick complementarity with the substrate
(Figure S2). An enzyme containing these six mutations could
not react with the original substrate, also consistent with the
requirement for complementarity in this region. Interest-
ingly, the region of the M3 mutations could compensate for a
partial mismatch within the extended template region. If just
four of the six nucleotides in the extended template region
were mutated, activity was retained so long as the M3 region
was left unchanged. If the M3 region also was mutated, then
there was no detectable activity (Figure S2). Thus the region

Figure 1. Microfluidic Evolution System

(A) The evolution chip is mounted on a temperature-controlled stage. Solutions containing polymerase enzymes (E) and mono- and oligonucleotide
components (S) are delivered to the chip via capillary tubing and output to a pressure-controlled collection vial (O). A microscope objective is used to
focus laser excitation (kex¼ 490 nm) on the microfluidic channel and to gather fluorescence (kem¼ 535 nm), which is detected with a confocal PMT.
Valve actuation and fluid flow are controlled by six independent vacuum lines.
(B) The microfluidic device is shown with the active circuit filled with blue dye.
(C) The serial dilution circuit consists of a mixing loop with fluid flow channels (red), fluid access reservoirs (blue), and control valves (black). Fluid flow
around the loop is controlled by three two-way valves (a, b, and c). Fluid access to the loop from the input reservoirs (RE and RS) and to the output
reservoir (RO) is controlled by bus valves (in and out). The bus valves allow access when open, and prevent access while preserving fluidic continuity
within the loop when closed.
(D) During operation of the circuit, the expanding RNA population is incubated while undergoing slow cyclic mixing until the fluorescence reaches a
pre-determined threshold. Then an aliquot of the population is isolated between valves in and out as fresh solutions of E and S are drawn into the loop
and spent materials are delivered to the collection vial. Finally, the loop is sealed by closing valves in and out, and the aliquot is mixed with the fresh
solutions by rapid serial actuation of valves a, b, and c. Open valves are indicated by filled circles; closed valves are indicated by a red X.
doi:10.1371/journal.pbio.0060085.g001
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of the M3 mutations appears to assist the extended template
region in recognizing the substrate.

Discussion

The constellation of mutations that arose over the course
of evolution could not have been anticipated, especially the
triple mutations within the M3 region that had the most
dramatic effect on Km and the paired M4 mutations that only
had benefit when combined with the other mutations. It is
not surprising that these more complex traits arose later in
the evolution process. The snapshot of the evolving pop-
ulation that was obtained at iteration 198 revealed inter-
mediate forms, with two advantageous traits (M1 and M2)
already acquired and the acquisition of a third (M3) still in
progress. If sequence analyses were carried out at more
frequent intervals during the 500 iterations of log-growth and
dilution, it would provide a more detailed picture of the ebb
and flow of genetic traits. This genetic information could be
correlated with measurements of the catalytic behavior and

growth rate for each of the cloned individuals. Methods exist
for microfluidic-based clonal isolation and amplification [15],
DNA sequencing [16], and analysis of enzyme kinetics [17],
raising the possibility that Darwinian evolution and analysis
of the evolving population could be carried out in an
integrated microfluidic format.
It is possible that further evolution on the chip, carried out

in the presence of even lower concentrations of substrate,
would lead to further improvement in Km. Ultimately,
however, this improvement would be limited by three
constraints: (1) reduced size of the evolving population when
operating at very low substrate concentrations, yet maintain-
ing conditions of substrate excess; (2) technical limitations in
fluorescence monitoring of sub-nanomolar concentrations of
RNA; and (3) intrinsic limitations on the ability of RNA to
catalyze templated RNA ligation. With regard to the latter,
the catalytic efficiency, kcat/Km, of the final evolved enzyme is
5 3 107 M�1 min�1. This is close to the rate of association of
two complementary oligonucleotides, which is ;109 M�1

min�1 under similar reaction conditions [18–20]. If the

Figure 2. Chip-Based Evolution

RNA enzymes were evolved over the course of 500 logs of selective amplification. The population was monitored in real time based on fluorescence
intensity (middle). After each log of growth, a 10-fold dilution was executed by automated microfluidic manipulation. The substrate concentration was
reduced periodically to maintain selective pressure on the evolving population (top). Before each reduction in substrate concentration, sample was
removed from the circuit, mutagenized, and reintroduced to the circuit. The interval between successive dilutions was recorded as a function of time
(bottom).
doi:10.1371/journal.pbio.0060085.g002
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catalytic rate of the RNA enzyme remained about 20 min�1,
then it would not be possible for Km to improve to better
than about 20 nM (a 20-fold improvement compared with the
present value), unless the enzyme evolved a means to bind the
substrate faster than the inherent rate of duplex formation.

The microfluidic system could be used to obtain RNA
enzymes with a variety of phenotypes, including those that
have been obtained by conventional in vitro evolution
methods. Microfluidic technology also might be used to
evolve proteins, viruses, and even cellular organisms. Bacte-
rial populations have been maintained in a microfluidic
bioreactor [21], and that system could, in principle, be used to
conduct evolution experiments. However, when evolution is
carried out at the level of molecules rather than cells, one has
ready access to the genotype and phenotype of individuals in
the population throughout the course of their evolutionary
history. Such access makes it possible to witness evolutionary
adaptation and to determine the particular genetic mutations
and corresponding phenotypic changes that are responsible
for that adaptation.

The chief advantages of chip-based evolution are its
precision and ease of operation. The runtime parameters

for evolution are established at the outset and are enforced
precisely throughout the course of an experiment. The
continuous stream of real-time data provides a high-
resolution record of an evolutionary trajectory, which can
be obtained as a function of population size, population
heterogeneity, growth conditions, and the availability of
limiting resources. Each microchip contains multiple micro-
fluidic circuits that can be addressed independently, and the
chip as a whole can be produced at nominal cost. Thus,
Darwinian evolution becomes commoditized, allowing one to
perform many evolution experiments with little more
difficulty than the execution of a computer program.

Materials and Methods

Starting pool of RNA. Plasmid DNA encoding the B16–19 form of
the class I RNA ligase [11] was PCR amplified using a primer that
converted the 39-terminal nucleotides of the enzyme to 59-ACGAG-
CAUGGAGGGACU-39, so as to bind a different cDNA primer. The
PCR product was purified by agarose gel electrophoresis, then subject
to error-prone PCR, which introduced random mutations at a
frequency of ;0.7% per nucleotide position [12]. The resulting DNA
was transcribed in vitro to generate the starting pool of RNA, which
was purified by denaturing polyacrylamide gel electrophoresis
(PAGE) and desalted on Sephadex G-25. The microfluidic circuit
was primed with a solution of 100 nM starting pool RNA, 15 mM
MgCl2, 50 mM KCl, 50 mM EPPS (pH 7.5), 4 mM DTT, 0.1% IGEPAL-
CA630 (used to reduce surface tension), and 0.1 lM fluorescein dye
(used as a tracer).

Microchip control system. A microfluidic serial dilution circuit [10]
with a carryover fraction of 0.1 was used for the on-chip continuous
evolution experiments. The microfabrication process [22] and
membrane valve technology [23] have been described previously.
The circuit design was modified by splitting the input channel into
separate inputs for the polymerase enzymes (E) and mono- and
oligonucleotide components (S), converging at the deflection
chamber for the in bus valve (Figure 1C). Fluidic and vacuum channel
features were etched into separate glass wafers to a depth of 50 lm.
The fluidic and vacuum channels had widths of 300 lm and 55 lm,
respectively. The mixing loop had a diameter of 1 cm and a volume of
400 nl. The microfluidic device was vacuum-chucked to an aluminum
stage fitted with an annular thin-film heater (5548, Minco) and K-type
thermocouple probe, controlled by a PID temperature controller
(CNi32, Omega Engineering). Data acquisition, pneumatic control,
and temperature control were handled by a laptop computer
equipped with a NI6715 data acquisition card and software written
in-house (LabVIEW, National Instruments).

Computer-controlled pneumatic actuation of valves on the chip
was accomplished with a solenoid valve array (HV011, Humphrey).
PEEK capillary tubing (25 lm inner diameter, Upchurch Scientific)
was used to deliver reagents and collect samples from the device,
interfaced with fluid access reservoirs using finger-tight capillary
tubing fittings (N-123s, Upchurch Scientific). The sample collection
line was pierced through the septum of a 2-ml silanized glass
autosampler vial. An additional pneumatic control line fitted with a
24 gauge syringe was inserted through the septum and used to control
depressurization of the sample collection vial.

Diode laser excitation (490 nm, Coherent) was coupled into the
detection optical train using a dichroic long-pass mirror (505DRLP,
Omega Optical) and focused on the fluidic channel using a micro-
scope objective (403, 0.6 NA, Newport). Fluorescence emission was
collected by the same objective, spectrally filtered using a bandpass
filter (535DF60, Omega Optical) and spatially filtered with a 100-lm
pinhole prior to illuminating a PMT detector (H7827, Hamamatsu
Photonics). Fluorescence data were acquired at 0.1 Hz and processed
with a five-point averaging filter.

Microfluidic programs. Fluid handling on the chip was accom-
plished by three valve actuation programs: prime, mix, and isolate. The
prime program consists of opening valves a, b, c, in, and out, then
depressurizing the sample collection vial (Figure 1C). This draws
reagent in through the E and S sample lines, flushing the entire
circuit with reagent and depositing the waste into the collection vial.
The mix program pumps fluid around the mixing loop by serially
actuating valves a, b, and c. The wait time between valve actuations is
300 ms for slow mixing during incubation steps and 80 ms for rapid
mixing following the introduction of fresh reagents (Figure 1D). The

Figure 3. Evolution of Genotype

The diagram shows the sequence and secondary structure of the final
evolved ligase enzyme. The oligonucleotide substrate is shown in gray,
specifying those residues that bind to the template region of the RNA
enzyme. The primer binding sites at the 39 end of the enzyme and 59 end
of the substrate are indicated by open rectangles. Mutations that were
present in all sequenced clones are highlighted by black circles. Critical
mutations, designated M1, M2, M3, and M4, are indicated by boxes.
doi:10.1371/journal.pbio.0060085.g003
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isolate program consists of opening valves a, b, in, and out and
depressurizing the sample collection vial. This flushes reagent
through the outside portion of the mixing loop containing a and b,
while isolating an aliquot of material in the region containing c and
bounded by in and out. Executing isolate followed by rapid mix results
in 10-fold dilution of the carryover materials and constitutes one
iteration of the continuous evolution process.

Continuous evolution on chip. Prior to use, each new circuit was
flushed with a rinse solution containing 50 mM EPPS (pH 7.5) and
0.1% IGEPAL-CA630, executing prime for 10 s every min over a 60-
min period. During this process, the stage temperature was stabilized
at 38.5 8C to maintain 37 8C within the device (previously calibrated).
Continuous evolution was initiated on the device by immersing both
the E and S lines in the solution of starting pool RNA. The circuit was
primed until the fluorescence intensity of the fluorescein tracer had
stabilized. Then the E and S lines were immersed in the rinse solution,
and the circuit executed a 60-s isolate program to flush the input lines
and isolate an aliquot of the starting pool of RNA within the circuit.

The collection vial was repressurized, and the E line was immersed
in a solution containing 20 U/ll Superscript II reverse transcriptase
(Invitrogen), 5 U/ll T7 RNA polymerase, 0.001 U/ll yeast inorganic
pyrophosphatase (Sigma-Aldrich), 15 mM MgCl2, 50 mM KCl, 50 mM
EPPS (pH 7.5), 4 mM DTT, 0.1% IGEPAL-CA630, and 6 lM TO-PRO-
1 (Invitrogen). The S line was immersed in a separate solution
containing the oligonucleotide substrate, 5 lM cDNA primer having
the sequence 59-AGTCCCTCCATGCTCGT-39, 4 mM each NTP, 0.4
mM each dNTP, 15 mM MgCl2, 50 mM KCl, 50 mM EPPS (pH 7.5), 4
mM DTT, 0.1% IGEPAL-CA630, and 6 lM TO-PRO-1. The
oligonucleotide substrate, which was present at progressively lower
concentrations during the course of evolution, had the sequence 59-
CCGAAGCCTGGGATCAATAATACGACTCACUAUA-39 (T7 RNA
polymerase promoter sequence underlined; RNA residues in bold).
Aqueous glycerol (50%) was added to the substrate-containing
solution to match the viscosity of the polymerase-containing solution.
Both solutions were thermoelectrically cooled to preserve the activity
of the polymerase enzymes.

The collection vial was again depressurized to draw a 1:1 mixture
of the substrate- and polymerase-containing solutions, which primed
the input lines and filled the circuit in the region containing a and b
and bounded by in and out. The circuit then was directed to execute
rapid mix for 40 s, followed by slow mix during the incubation phase of
the evolution procedure. The slow cyclic mixing prevented photo-
bleaching of the fluorescent dye. The intercalating dye TO-PRO-1
was chosen for its superior enhanced fluorescence quantum yield
upon binding double-stranded nucleic acids [24]. The background
fluorescence prior to RNA amplification was typically ;10 kCPS. The
time required for 10-fold growth of the starting RNA enzyme in the
presence of 1 lM substrate was determined to be 40 min. This
established the incubation time for the first round and set the
threshold for dilution at 30 kCPS. Subsequently, whenever the

detector registered 30 kCPS, the circuit was directed to execute the
steps of isolate, delivery of fresh reagents with rapid mix, and
incubation with slow mix.

The population of RNA enzymes underwent continuous evolution
on the chip until the time between successive log dilutions either
decreased below 2 min or exhibited no further improvement.
Materials from the last five iterations were collected in a fresh vial
that contained 50 ll of 0.1 N NaOH. This mixture was incubated at 95
8C for 10 min to hydrolyze the RNA components, and the remaining
DNA then was amplified by both standard PCR (as a control) and
error-prone PCR. The primers for PCR amplification had the
sequence 59-AGTCCCTCCATGCTCGT-39 and 59-CCGAAGCCTGG-
GATCAATAA-39. The sample collected after iteration 198 was
mutagenized at a frequency of ;10% per nucleotide position using
a hypermutagenic PCR protocol [25]. Samples collected after
iterations 280, 363, and 428 were mutagenized using standard
error-prone PCR [12]. The PCR products were transcribed, and the
resulting RNAs were purified by PAGE, desalted, and resuspended in
a solution containing 15 mM MgCl2, 50 mM KCl, 50 mM EPPS (pH
7.5), 4 mM DTT, 0.1% IGEPAL-CA630, and 0.1 lM fluorescein, which
was used to start the next set of iterations on the chip. The
concentration of RNA in the start solution was 100 nM following
iterations 198 and 280, 20 nM following iteration 363, and 10 nM
following iteration 428, thereby maintaining the substrate in excess of
the RNA enzyme throughout the evolution process.

Analysis of individual RNA enzymes. The PCR products obtained
following iterations 198 and 500 were cloned and sequenced. An
individual corresponding to the consensus sequence of 10 clones that
were sequenced after iteration 500 was PCR amplified, transcribed in
the presence of [a-32P]ATP, purified by PAGE, and desalted. Its
catalytic activity was measured in the presence of 10 mM MgCl2, 50
mM KCl, and 50 mM EPPS (pH 7.5) at 37 8C, determining the
observed rate constant in the presence of 10 nM enzyme and varying
concentrations of substrate. Reactions were initiated by adding equal
volumes of enzyme and substrate solutions, each containing all of the
other reaction components and pre-equilibrated at 37 8C. Aliquots
were taken at various times and quenched by the addition of 15 mM
EDTA. For very short reaction times (,5 s), the reaction was carried
out in a quench-flow apparatus (KinTek), using separate syringes to
deliver the enzyme, substrate, and quench solutions.

The reaction products were separated by PAGE and quantitated
using a PharosFX molecular imager (Bio-Rad). Biphasic kinetics were
observed at all substrate concentrations. The overall maximum extent
of the reaction was determined empirically by measuring the fraction
reacted at 2- and 3-h time points. The data were fit to the equation: F(t)
¼Fmax – A1e

–k1t – A2e
–k2t, where Fmax is the maximum extent, A1 and k1

are the amplitude and rate of the initial fast phase, and A2 and k2 are
the amplitude and rate of the subsequent slow phase, respectively. The
amplitude of the fast phase typically was 0.6–0.7 and the overall
maximum extent typically was 0.9. A saturation plot was constructed

Figure 4. Evolution of Phenotype

Catalytic activity was measured for the starting (open circles) and final evolved (filled circles) enzymes.
(A) The observed rate constant, kobs, was determined for various concentrations of substrate and fit to the Michaelis-Menten equation.
(B) Values for kobs were obtained in the presence of 0.1 lM substrate for variants of the starting enzyme that contained each of the four critical
mutations (left) and for variants of the evolved enzyme that lacked each of these mutations (right).
doi:10.1371/journal.pbio.0060085.g004
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by plotting k1 as a function of substrate concentration, and these data
were fit to the Michaelis-Menten equation to determine kcat and Km.

Variants of the starting and final evolved enzymes that contained
different combinations of the four critical mutations were prepared
by PCR amplification, using appropriate primers to introduce the
desired mutations. The PCR products were transcribed in the
presence of [a-32P]ATP, purified by PAGE, and desalted. The
maximum extent of reaction and observed rate constant were
determined in the presence of 0.1 lM substrate for each variant. In
addition, a variant of the starting enzyme that contained the M3
mutations and a variant of the evolved enzyme that lacked the M3
mutations were subject to formal kinetic analysis, as described above.

Supporting Information

Figure S1. Influence of Mutations on Catalytic Activity

Catalytic activity of the starting enzyme with the M3 mutations added
(open circles) and of the final evolved enzyme with the M3 mutations
removed (filled circles). The observed rate constant, kobs, was
determined for various concentrations of substrate and fit to the
Michaelis-Menten equation. The starting enzyme with M3 mutations
added exhibited a kcat of 24.8 6 1.4 min�1 and Km of 2.4 6 0.5 lM.
The evolved enzyme with M3 mutations removed exhibited a kcat of
24.0 6 0.8 min�1 and Km of 3.9 6 0.4 lM.

Found at doi:10.1371/journal.pbio.0060085.sg001 (244 KB PDF).

Figure S2. Site-Directed Mutagenesis Studies

Site-directed mutagenesis was carried out to analyze regions of the
final evolved enzyme and the oligonucleotide substrate that appear to
interact. The sequence of these regions prior to mutagenesis is shown
in blue, and the mutations that were introduced are shown in red.
Changes to the substrate alone are indicated at the left, changes to
the extended template region of the enzyme and corresponding

portion of the substrate are indicated at the bottom, and changes to
the region of the M3 mutations are indicated at the right. Values for
kobs were obtained in the presence of 0.1 lM substrate, and are shown
below the corresponding sequence modifications. The unmodified
construct exhibited a kobs of 4 min�1. The rate was unchanged when
the 14-nucleotide bulged region of the substrate (shown in gray) was
replaced by 14 random-sequence nucleotides or when the primer
binding site at the 59 end of the substrate was deleted (constructs not
shown). The observed rate was 8 min�1 when the 14 bulged
nucleotides were replaced by TTTT, but there was no detectable
activity (indicated by a dash) when the bulged nucleotides were
deleted entirely. A four-nucleotide change to the extended template
region of the enzyme resulted in a kobs of 0.3 min�1, but there was no
detectable activity if the corresponding nucleotides in the region of
the M3 mutations also were mutated.

Found at doi:10.1371/journal.pbio.0060085.sg002 (748 KB PDF).
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