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SUMMARY

The most virulent form of malaria is caused by
waves of replication of blood stages of the
protozoan pathogen Plasmodium falciparum.
The parasite divides within an intraerythrocytic
parasitophorous vacuole until rupture of the
vacuole and host-cell membranes releases
merozoites that invade fresh erythrocytes to re-
peat the cycle. Despite the importance of mero-
zoite egress for disease progression, none of
the molecular factors involved are known. We
report that, just prior to egress, an essential
serine protease called PfSUB1 is discharged
from previously unrecognized parasite organ-
elles (termed exonemes) into the parasitopho-
rous vacuole space. There, PfSUB1 mediates
the proteolytic maturation of at least two essen-
tial members of another enzyme family called
SERA. Pharmacological blockade of PfSUB1
inhibits egress and ablates the invasive capac-
ity of released merozoites. Our findings reveal
the presence in the malarial parasitophorous
vacuole of a regulated, PfSUB1-mediated pro-
teolytic processing event required for release
of viable parasites from the host erythrocyte.

INTRODUCTION

Malaria is caused by protozoan parasites of the genus

Plasmodium. The parasite life-cycle is divided between

a vertebrate host and a mosquito vector. Clinical manifes-

tations of malaria are caused by the asexual blood stage

life cycle. The parasite invades erythrocytes to form a

ring which undergoes mitotic replication within a parasi-

tophorous vacuole (PV) to become a schizont. This even-
1072 Cell 131, 1072–1083, December 14, 2007 ª2007 Elsevie
tually ruptures in a process known as egress, releasing

invasive merozoites which invade fresh erythrocytes to re-

peat the cycle. The molecular events leading to egress are

obscure, but studies using broad-spectrum protease in-

hibitors have strongly implicated parasite protease activity

(Delplace et al., 1988; Gelhaus et al., 2005; Salmon et al.,

2001; Soni et al., 2005; Wickham et al., 2003). Particular

interest has focused on members of the serine-rich anti-

gen (SERA) family of malarial papain-like proteins. Disrup-

tion of the SERA8 gene prevents release of sporozoites

from oocysts in the insect vector (Aly and Matuschewski,

2005). Also, antibodies against the most abundant blood-

stage family member, SERA5, interfere with merozoite

egress (Pang et al., 1999), and both SERA5 and SERA6

appear indispensable for blood-stage parasite growth

(Miller et al., 2002; McCoubrie et al., 2007). However direct

evidence for a role for these or any other known malarial

proteases in egress of blood-stage merozoites is lacking,

and the cellular mechanisms that govern this essential,

highly regulated event are unknown.

The genome of P. falciparum, the species causing the

most virulent form of malaria, encodes three subtilisin-

like serine proteases (subtilases). Of these, PfSUB3 is

not essential in asexual blood stages (R.O., unpublished

data), while PfSUB2 was recently identified as the ‘shed-

dase’ responsible for the release of merozoite surface

proteins during erythrocyte invasion (Harris et al., 2005).

The third P. falciparum subtilase, PfSUB1, is maximally

expressed in the final stages of schizont maturation

(Blackman et al., 1998). Production of recombinant PfSUB1

has enabled studies of its substrate specificity and the

development of a simple activity assay (Blackman et al.,

2002; Withers-Martinez et al., 2002). Homology modeling

of PfSUB1 has highlighted distinctive structural features

as well as similarities to bacterial subtilisins (Withers-

Martinez et al., 2002), raising the possibility that PfSUB1

may be a target for the development of selective protease

inhibitor-based antimalarial drugs. However, the function

of PfSUB1 has remained elusive.
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Here, we show that that the pfsub1 gene is refractory to

disruption in blood stages, indicating that it performs an

essential task. We demonstrate that PfSUB1 is stored in

a set of parasite organelles that are distinct from those

involved in invasion. Using a high-throughput screen, we

isolated a selective inhibitor of PfSUB1 and used it in

‘‘chemical knockdown’’ studies. Our results provide the

first insights into the role of PfSUB1 and reveal a hitherto

unsuspected regulatory pathway in which discharge of

PfSUB1 into the PV in the final stages of schizont matura-

tion triggers a series of proteolytic events that culminate in

egress of invasive merozoites.

RESULTS

PfSUB1 Is Indispensable in the Asexual
Blood-Stage Cycle
To investigate the function of PfSUB1, we first determined

whether it is required for blood-stage growth. Parasites

were transfected with a construct designed to disrupt

the pfsub1 gene by double homologous recombination

(Duraisingh et al., 2002). This did not integrate, as deter-

mined by Southern blot analysis, but was maintained in

episomal form for up to five drug cycles (data not shown).

In contrast, in parallel experiments this approach was

successfully used to disrupt the pfsub3 gene (R.O., un-

published data). We next attempted to modify the pfsub1

gene by fusion of its 30 end to green fluorescent protein

(GFP) using a single-crossover homologous recombina-

tion strategy (Harris et al., 2005). Again, repeated transfec-

tions resulted only in long-term maintenance of episomes

(data not shown).

These results suggested either that modifications of the

pfsub1 gene that interfere with its function are deleterious,

or that the locus is inaccessible to homologous recombi-

nation. To test both possibilities, we attempted to more

subtly modify the gene. Parasites were independently

transfected with four related constructs, each designed

to integrate into the genomic pfsub1 locus by single-cross-

over homologous recombination with the result of recon-

stituting a complete open reading frame (ORF) while simul-

taneously introducing a C-terminal triple haemagglutinin

(HA) epitope tag (Figure S1 in the Supplemental Data avail-

able online). Constructs pPfSUB1HA3 and pPfSUB1HA3-

UTtrun contained targeting sequence comprising the

extreme 30 943 bp of the authentic pfsub1 ORF. Constructs

pPfSUB1chiHA3 and pPfSUB1chiHA3 mut contained

a shorter targeting fragment of the authentic pfsub1

gene, fused in frame to synthetic ‘‘recodonised’’ sequence

encoding the C-terminal part of PfSUB1. The synthetic

gene shares low identity at the nucleotide level with the

authentic pfsub1 sequence, so these two constructs

were expected to crossover only upstream of the catalytic

Ser codon (Ser608), with the predicted result of creating

a chimeric modified pfsub1 locus; in the case of pPfSUB1-

chiHA3 this would encode wild-type, catalytically active

PfSUB1, whereas in the case of pPfSUB1chiHA3 mut the

chimeric gene product would possess an Ala substitution
Cell
of Ser608, and so would lack proteolytic activity (Fig-

ure S1A). PfSUB1 coding sequences in constructs

pPfSUB1HA3, pPfSUB1chiHA3 and pPfSUB1chiHA3

mut were flanked by the 848 bp-long 30 UTR of the P. ber-

ghei dihydrofolate reductase (dhfr) gene to ensure correct

transcription termination and polyadenylation of the

modified gene, whereas pPfSUB1HA3-UTtrun contained

instead a severely truncated form of the same 30 UTR.

Truncation of 30 UTR sequences in several eukaryotes

including Plasmodium can reduce gene expression, so

integration of this plasmid was predicted to downregulate

or ablate PfSUB1 expression. After two drug cycles,

PCR analysis indicated integration of pPfSUB1HA3 and

pPfSUB1chiHA3 into the parasite genome (Figure S1B).

In contrast, no integration of the other two constructs

could be detected, suggesting that integration was detri-

mental to parasite growth. Since the chimeric constructs

were intended solely to test the requirement for catalyti-

cally active PfSUB1, work with the pPfSUB1chiHA3-trans-

fected line was not progressed further. The pPfSUB1HA3-

transfected parasite line (called 3D7SUB1HA3) was

cloned by limiting dilution. Analysis of two clones, C10

and F7, confirmed that the input plasmid had integrated

through the expectedsingle-crossoverhomologous recom-

bination event, placing the HA3 tag at the 30 end of the

pfsub1 gene (Figures S1C and S1D). Western blot con-

firmed expression of epitope-tagged PfSUB1 (Figure S2A).

Neither clone displayed any defect in growth rate com-

pared to the parental 3D7 line (data not shown), indicating

that neither fusion to the HA3 tag nor replacement of the

pfsub1 30 UTR with the full-length P. berghei dhfr 30 UTR

affected parasite growth.

These results prove that the pfsub1 locus is accessible

to homologous recombination. Collectively, our ability to

epitope-tag the pfsub1 gene together with our inability to

disrupt it, fuse it to GFP, substitute its catalytic Ser codon,

or replace its 30 UTR with a truncated 30 UTR, strongly sug-

gests that PfSUB1 activity is essential for maintenance of

the asexual erythrocytic life cycle of the parasite.

PfSUB1 Is Discharged from a Parasite Organelle
around the Point of Schizont Rupture
Previous studies suggested that PfSUB1 accumulates in

subcellular organelles that are distinct from micronemes

and rhoptries (secretory organelles at the apical end of

the merozoite involved in invasion) but that resemble

a third class of secretory vesicles called dense granules

(Blackman et al., 1998). We exploited the epitope-tagged

PfSUB1 (PfSUB1HA3) expressed by the 3D7SUB1HA3

clones to re-examine this localization. Double immunoflu-

orescence analysis (IFA) confirmed that PfSUB1HA3

resides in a set of organelles that are neither rhoptries

nor micronemes. Unexpectedly, PfSUB1HA3 also did not

colocalize with the dense granule marker, RESA (Figure

1A). Identical results were obtained using a specific rab-

bit antiserum to detect PfSUB1; importantly, the signal

obtained with this colocalized with the anti-HA signal in

the 3D7SUB1HA3 clones, validating the rabbit antibodies
131, 1072–1083, December 14, 2007 ª2007 Elsevier Inc. 1073



(Figure S2B). Dual-labeling immunoelectron microscopy

(Figures 1B–1G and S3) confirmed the presence of

PfSUB1 and RESA in different organelles. Although these

shared the electron-dense character typical of dense

granules, the PfSUB1-containing structures appeared

less numerous than the RESA-containing organelles and

were typically larger and elongate (mean dimensions

Figure 1. PfSUB1 Accumulation Does Not Overlap with

Known Organelles

(A) Schizonts of 3D7SUB1HA3 clone C10 dual-labeled with the anti-HA

mAb 3F10 (aHA; green) plus mAb 61.3 (aRhopH2; rhoptries, Ling et al.,

2003), mAb 4G2 (aPfAMA1; micronemes, Harris et al., 2005), or mAb

28/2 (aRESA; dense granules, Aikawa et al., 1990). Nuclei were stained

with DAPI (blue). Merged images (no DAPI) show that PfSUB1 localizes

with none of the other markers. The scale bar represents 5 mm. Identi-

cal results were obtained with 3D7SUB1HA3 clone F7 or by using

mAbs specific for RAP2 or EBA-175 as markers for rhoptries and

micronemes respectively (data not shown). Note that mAb 3F10 is

unreactive with parental 3D7 P. falciparum in IFA (Harris et al., 2005).

(B–G) Immunoelectron microscopic localization of PfSUB1 in P. falci-

parum schizonts. (B and C) Labeling of an elongate organelle, arrowed

in (B) and at higher magnification in (C), by anti-PfSUB1 antibodies

labeled with 10 nm immunogold. (D and E) Two more examples of

PfSUB1 positive organelles are shown, also labeled with 10 nm immu-

nogold. These are less elongate than in (B) and (C), reflecting some var-

iation in organelle shape; however, they are typically ellipsoidal, in con-

trast with the rounded dense granules. (F and G) Staining for RESA with

mAb 28/2 and 5 nm immunogold. In (F), an unlabeled microneme is

also shown for size comparison. In (G) double staining for PfSUB1

and RESA with different sizes of immunogold shows that the two

proteins are in different organelles.
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from a sample of 10 was 101 3 60 nm, in contrast to the

more spheroidal RESA-containing dense granules with

mean dimensions of 72 3 63 nm).

A characteristic of dense granules in apicomplexan

parasites is that they are discharged predominantly fol-

lowing host cell invasion. Thus, RESA is released from

merozoites soon after invasion and translocates to the

erythrocyte cytoskeleton (Aikawa et al., 1990; Culvenor

et al., 1991). A number of rhoptry proteins are also present

in the newly-invaded host cell, including RAP2 (Baldi et al.,

2000). As expected, IFA of newly-invaded ring stage par-

asites of the 3D7SUB1HA3 clones confirmed the pres-

ence of RESA at the host erythrocyte membrane; how-

ever, PfSUB1HA3 was not detected (Figure 2A), despite

the fact that the IFA signals for both proteins were of sim-

ilar intensity in schizonts. Western blot confirmed this;

whereas both RAP2 and RESA (Figures 2B and 2C) were

readily detected in ring-stage extracts, no PfSUB1HA3

signal was evident. In contrast, culture supernatants

sampled following schizont rupture contained a strong

PfSUB1HA3 signal (Figure 2C), suggesting that PfSUB1

is quantitatively released into culture media at schizont

rupture.

The intraerythrocytic malaria parasite undergoes nu-

clear division as a syncytium, until cytokinesis (‘‘segmen-

tation’’) and budding of individual merozoites in the final

stages of schizogony. To establish more precisely the

point at which PfSUB1 release takes place, we examined

highly mature, segmented 3D7SUB1HA3 schizonts by

IFA. This revealed that late in schizogony the PfSUB1HA3

IFA signal became less dot-like, more diffuse and largely

located to the periphery of intracellular merozoites. Dual

labeling with an antibody to the merozoite plasma mem-

brane marker MSP1 supported this, suggesting that near

the end of schizogony PfSUB1 can translocate from its

previous organellar location into the PV (Figure 2D). Addi-

tionally, where bursting schizonts were visible, the free

merozoites were surrounded by a ‘‘cloud’’ of anti-HA

signal, suggesting that at the point of egress PfSUB1

discharge had already begun (Figure 2E).

Our results show that PfSUB1 defines a set of subcellu-

lar vesicles that are distinct from the three previously

described types of Plasmodium secretory organelle. The

fact that PfSUB1 is released from these vesicles, which

we term ‘‘exonemes,’’ just prior to schizont rupture sug-

gested that the role of PfSUB1 is related not to invasion,

but to some pre-invasion proteolytic event.

A Selective Inhibitor of PfSUB1 Interferes
with Schizont Rupture and Merozoite Invasion
and Blocks Proteolytic Maturation of SERA5
We previously described an assay for PfSUB1 activity

using a fluorogenic peptide substrate (Blackman et al.,

2002). To identify small molecule inhibitors of PfSUB1 suit-

able for investigation of its function, we adapted this assay

to an automated, 384-well microplate format and used it

to screen over 170,000 low molecular weight compounds

from a number of commercial and proprietary sources
Inc.



Figure 2. PfSUB1 Is Discharged Prior to

Erythrocyte Invasion

(A) Ring stages of 3D7SUB1HA3 clone C10

dual-labeled with mAb 28/2 (aRESA; red) or

mAb 1E1 (aMSP119; red) plus mAb 3F10 (aHA;

green). Whereas RESA and MSP119 are detect-

able at the infected erythrocyte membrane and

parasite plasma membrane, respectively, no

PfSUB1HA3 signal is evident.

(B) Western blot of schizont and ring-stage

extracts of parental 3D7 and 3D7SUB1HA3

clones C10 and F7 probed with mAb 3F10

(aHA) or a mixture of anti-RAP2 mAb H5 and

a mouse anti-PfAMA1 serum (aAMA1 plus

aRAP2). Molecular masses of species de-

tected (in kDa) are shown on the left. The epi-

tope-tagged mature form of PfSUB1HA3

(�50 kDa) is detected only in 3D7SUB1HA3

schizonts. The 83 kDa and 66 kDa forms of

PfAMA1 are present in schizont extracts but

not in rings as expected, since these are shed

at invasion (Howell et al., 2001). RAP2 is pres-

ent in both schizonts and rings.

(C) Western blots of schizont extracts (schi),

equivalent amounts of culture supernatant fol-

lowing schizont rupture and erythrocyte inva-

sion (sup), and ring-stage extracts (ring) of

3D7SUB1HA3 clone C10 probed with mAb

3F10 (aHA) or mAb 28/2 (aRESA). PfSUB1HA3

is quantitatively released in a soluble form prior

to invasion, in contrast to RESA (�155 kDa),

where a fraction is secreted in truncated form

into the supernatant and the bulk is carried

into rings. Controls are uninfected red blood

cell extracts (urbc) and culture supernatant

from uninfected cells (rbc sup). Bands marked

with asterisks in the aRESA rbc sup track are

the result of cross-reactivity with abundant

red cell-derived proteins.

(D) Segmented schizonts of 3D7SUB1HA3

clone C10 dual-labeled with mAb 3F10 (aHA;

green) and mAb 1E1 (aMSP119; red). Merged

images (no DAPI) show partial colocalization

of PfSUB1HA3 and MSP1.

(E) A ‘‘cloud’’ of PfSUB1HA3 around a bursting

schizont of 3D7SUB1HA3 clone C10 dual-la-

beled with mAb 3F10 (aHA; green) and mAb

61.3 (aRhopH2). The right-hand panel shows

the merged image. The scale bar represents

5 mm.
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Figure 3. A Selective PfSUB1 Inhibitor Inhibits Schizont Rupture and Merozoite Invasion

(A) Molecular structure of compound MRT12113.

(B) Typical IC50 determination for inhibition of rPfSUB1 activity in vitro by MRT12113. Duplicate rate values were determined at each compound con-

centration tested. Multiple such experiments yielded an IC50 of 0.3 ± 0.1 mM. Inset, typical progress curve showing the effect of addition of 0.3 mM

MRT12113 (point of addition arrowed) on the rate of pepF1-6R cleavage by rPfSUB1.

(C) Giemsa-stained samples showing the effect of 125 mM MRT12113 (bottom panels) or solvent (DMSO) alone (top panels) on schizont rupture and

erythrocyte invasion.

(D and E) Dose-response curves of MRT12113-mediated inhibition of schizont rupture and erythrocyte invasion. Dotted lines indicate the calculated

ED50 value for egress of 180 ± 26 mM (D) and for invasion of 25 ± 7 mM (E). Data points are shown as mean ± SEM (error bars).
(see Supplemental Data for details of the screen). This re-

sulted in identification of a potent PfSUB1 inhibitor called

MRT12113 (Figure 3A). Secondary assays confirmed that

MRT12113 was a fast-acting inhibitor of PfSUB1 with an

IC50 of 0.3 mM (Figure 3B). In contrast, at concentrations

of up to 50 mM MRT12113 displayed no inhibition of any

other protease tested, including the related bacterial sub-

tilisins BPN’ and Carlsberg, the mammalian serine prote-

ases trypsin, chymotrypsin, and elastase, the cysteine

protease papain, human caspase-3, the P. falciparum

cysteine protease falcipain 2, the P. falciparum aspartic

protease plasmepsin II, and the P. falciparum sheddase

PfSUB2 (data not shown; see Supplemental Experimental
1076 Cell 131, 1072–1083, December 14, 2007 ª2007 Elsevier
Procedures for protocols). These data indicated that

MRT12113 is a highly selective inhibitor of PfSUB1. Con-

sistent with this, MRT12113 showed no toxicity against

mammalian COS-7 cells or against an organism related

to the malaria parasite, the ciliate Tetrahymena thermo-

phila, even when present in cultures for extended periods

(up to 7 days) at a concentration of 125 mM (data not

shown). On the basis of its high selectivity for PfSUB1,

MRT12113 was deemed suitable for studies of PfSUB1

function in the parasite.

Addition of MRT12113 to synchronous P. falciparum

cultures at up to 250 mM had no effect on intracellular par-

asite growth over the majority of the erythrocytic life cycle
Inc.



Figure 4. Inhibition of PfSUB1 Activity Prevents Proteolytic

Processing of SERA5

(A) Supernatants from schizonts incubated for 12 hr in Albumax-free

medium supplemented with no additions (control), 125 mM MRT12113

or 1% (v/v) DMSO only, analyzed by SDS PAGE and Coomassie blue

staining. A �120 kDa and a�50 kDa species, which were respectively

increased or decreased in relative abundance in the presence of

MRT12113, were identified by tryptic peptide mapping as SERA5 P126

and P50.

(B) Proteolytic processing of SERA5. Amino acid sequences flanking

two known cleavage sites (Debrabant et al., 1992) are named sites 1

and 2. A third is called site 3, previously described (Li et al., 2002b) and

mapped in this study. The secretory signal sequence is shaded and the

papain-like central domain is indicated, as are the putative catalytic

Ser, His, and Asn residues and the location of the mAb 24C6.1F1
Cell
(data not shown). However at the end of the cycle partial

inhibition of schizont rupture was observed and invasion

by those merozoites that were released was reduced, as

evidenced by an accumulation of unruptured schizonts,

a decrease in ring formation and the presence of numer-

ous free extracellular merozoites (Figure 3C). These dual

effects of MRT12113 were dose-dependent, with an ED50

against schizont rupture of �180 mM (Figure 3D), and

a much lower ED50 against invasion of�25 mM (Figure 3E).

To dissect the mechanistic basis of these effects, schiz-

onts were cultured in the presence of high concentrations

of MRT12113 and culture supernatants analyzed by

SDS PAGE. MRT12113 produced an overall decrease in

protein content compared to control supernatants, due

to the inhibition of schizont rupture. However, close exam-

ination of the gels revealed changes in the relative abun-

dance of two prominent species; a �120 kDa protein,

levels of which were increased, and a �50 kDa protein,

which almost disappeared in the presence of MRT12113

(Figure 4A). Tryptic peptide mapping (Tables S1 and S2)

identified both polypeptides as being derived from the

P. falciparum protein SERA5.

SERA5 is an abundant, soluble protein of the P. falcipa-

rum PV. Expressed as a precursor of �126 kDa (SERA5

P126), it undergoes extensive proteolytic processing

(Figure 4B) (Debrabant et al., 1992, 1988, 1985; Li et al.,

2002a). SERA5 P126 is initially converted to a �47 kDa

N-terminal and an �73 kDa C-terminal fragment (P47

and P73). P73 is further cleaved to produce P56, which

derives from the central region of the precursor, plus

P18. P47 can also undergo further cleavage, although

this only occurs in some allelic forms of SERA5 (Li et al.,

2002b). P56 is finally truncated at its C terminus to produce

P50. Importantly, P50 is abundant in culture supernatants

following schizont rupture, but processed forms of SERA5

are not prominent in schizonts, suggesting that processing

occurs rapidly just prior to or at the point of egress. Previ-

ous studies have indicated that a parasite serine protease

plus at least one other enzyme are involved in SERA5 pro-

cessing, but their identities are unknown (Debrabant and

Delplace, 1989; Li et al., 2002a). Interest has focused on

SERA5 for a number of reasons, including the presence

of a papain-like central domain containing a Ser residue

in place of the putative catalytic Cys. SERA5 therefore

resembles a protease, and indeed a recombinant form of

SERA5 displays chymotrypsin-like activity (Hodder et al.,

epitope. Arrows indicate the direction of processing. The site at which

P56 is cleaved to convert it to P50 is unknown.

(C) Mature schizonts were cultured for 12 hr in Albumax-free medium in

the presence of no additions (control), DMSO alone, or 100 mM

MRT12113, then parasite extracts and culture supernatants were

analyzed by Western blot with mAb 24C6.1F1. SERA5 P126 and its

processed forms are indicated. The small amounts of unprocessed

SERA5 P126 released into supernatants of MRT12113-treated schiz-

onts probably derive from physical breakage of the fragile schizonts

during manipulation or egress from parasites in which SERA5 process-

ing was only partially blocked.
131, 1072–1083, December 14, 2007 ª2007 Elsevier Inc. 1077



2003). Attempts to disrupt the SERA5 gene have been

unsuccessful, suggesting it is important for blood-stage

growth (Miller et al., 2002; McCoubrie et al., 2007).

Our observations indicated that blockade of PfSUB1

activity with MRT12113 inhibits SERA5 processing. We

confirmed this using a SERA5-specific mAb to probe

extracts and culture supernatants from schizonts cultured

with MRT12113 (Figure 4C); the compound blocked the

small amount of SERA5 processing detectable in the par-

asite, and resulted in accumulation of SERA5 P126 in cul-

ture supernatants. These results suggested that PfSUB1

plays a role in SERA5 processing. They also implied that

PfSUB1 can access SERA5 intracellularly (presumably in

the PV) just prior to its release into culture supernatants

at egress. Furthermore, given the inhibitory effects of

MRT12113 on schizont rupture and merozoite invasion,

they suggested that SERA5 processing by PfSUB1 is

important for release of invasive merozoites.

SERA5 Is a Physiological Substrate for PfSUB1
To test directly whether SERA5 can be correctly pro-

cessed by PfSUB1, SERA5 P126 was purified from schiz-

ont extracts (Figure S4) and incubated with recombinant

PfSUB1 (rPfSUB1). This resulted in rapid conversion to

the P56 form via the P73 intermediate (Figure 5A). No con-

version to P50 occurred, consistent with previous reports

that this last step of SERA5 processing is mediated by

a distinct, leupeptin-sensitive activity (Debrabant and

Delplace, 1989; Li et al., 2002a) and that PfSUB1 is insen-

sitive to leupeptin (Withers-Martinez et al., 2002). An iden-

tical profile of processing was seen using SERA5 P126

that had been treated during purification with a cocktail

of protease inhibitors (Figure 5A). Also, processing was

completely sensitive to MRT12113 even if added after

processing had commenced (Figure 5B), demonstrating

that all the observed processing was mediated directly

by PfSUB1 and was not the result of autocatalytic matura-

tion of SERA5 triggered by the presence of PfSUB1. To es-

tablish whether the cleavage mimicked authentic SERA5

processing, we examined larger amounts of rPfSUB1-pro-

cessed SERA5 P126 by silver-staining. This allowed us to

detect all the products of cleavage (Figure 5C). N-terminal

sequencing confirmed correct cleavage at the known sites

1 and 2, and mapped a third, allele-specific processing

site (site 3) described by Li et al. (2002b) but not previously

precisely defined.

These results suggested that SERA5 is an authentic

physiological substrate for PfSUB1. By analogy with other

processing proteases we predicted that peptides based

on the SERA5 processing sites would be substrates for

PfSUB1. To explore this, peptides incorporating SERA5

processing sites 1, 2, and 3 were assessed for susceptibil-

ity to PfSUB1 cleavage. Synthetic decapeptides Ac-

TVRGDTEPIS, Ac-EIKAETEDDD and Ac-IIFGQDTAGS—

but not similar peptides with a P1 or P2 Leu substitu-

tion—were rapidly and specifically cleaved by rPfSUB1

at the expected Asp-Thr, Glu-Thr and Gln-Asp bonds

respectively (data not shown). To quantify this, two fluoro-
1078 Cell 131, 1072–1083, December 14, 2007 ª2007 Elsevie
genic derivatives were produced by labeling the site 1

and site 2-related peptides Ac-CIKAETEDDC and

Ac-CIFGQDTAGC with 6 iodoacetamidotetramethylrhod-

amine (6-IATR). These peptides, named SERAst1F-6R

and SERAst2F-6R respectively, were also cleaved only at

the expected bonds by rPfSUB1 (Figure S5A). They were

then compared in kinetic assays with pepF1-6R (6-IATR-

labeled Ac-CLVSADNIDIC), a substrate based on the

PfSUB1 autocatalytic processing site (Blackman et al.,

2002). Because of internal quenching and intermolecular

dimerization effects observed at concentrations R 5 mM

(a feature of many fluorogenic peptides) it was not possible

experimentally to determine Km values for cleavage of

these peptides (data not shown). However, at concentra-

tions well below the Km (i.e., under conditions where cleav-

age rate is proportional to substrate concentration and to

kcat/Km, a measure of substrate specificity) SERAst1F-6R

and SERAst2F-6R were hydrolyzed respectively 7.1-fold

and 2.6-fold faster than pepF1-6R (Figures 5D and S5B).

This confirms that both are much better substrates than

pepF1-6R, supporting our evidence that SERA5 is a phys-

iological substrate for PfSUB1. Our results definitively

identify PfSUB1 as the protease responsible for conver-

sion of SERA5 to P56 and its associated fragments, and

demonstrate that this does not require the participation

of any other protease.

PfSUB1 Mediates Maturation of Other
Blood-Stage SERA Family Members
Earlier work using a small panel of synthetic peptides had

indicated that PfSUB1 has a broad preference for polar or

small residues at the P1 position, an inability to cleave

after a Leu residue, and a requirement for hydrophobic

residues at P4, consistent with the predicted polar nature

of the PfSUB1 S1 substrate-binding pocket and its hydro-

phobic S4 pocket (Withers-Martinez et al., 2002). Despite

this apparent relaxed specificity, PfSUB1 is not a promis-

cuous protease and prior to the present study we had

identified only one protein—in vitro-translated PfSUB1

itself—that is cleaved by rPfSUB1 (Withers-Martinez et al.,

2002). Mapping of the SERA5 processing sites provided

further evidence for a relaxed P1 specificity (except for

Leu), a preference for Ile, Leu, or Val at P4, and a restriction

to Gly or Ala at P2. This suggested a putative consen-

sus recognition motif of Ile/Leu/Val-Xaa-Gly/Ala-Paa(not

Leu)YXaa (where Xaa is any amino acid residue and Paa

tends to be a polar residue). The sequences just down-

stream of the three SERA5 processing sites also include

at least one acidic residue. SERA5 belongs to a family

of nine genes in P. falciparum. Whereas SERA1, 2, 3, 4,

5 and 9 (‘‘serine-type’’) all have a Ser residue at the posi-

tion analogous to the canonical catalytic Cys in papain,

SERA6, 7 and 8 (‘‘cysteine-type’’) possess a Cys at this

position and form a phylogenetically distinct group (Miller

et al., 2002). In blood stage schizonts, SERA5 is particu-

larly abundant (Lasonder et al., 2002) but SERA3, 4 and

6 are also readily detectable and are located in the PV

(Aoki et al., 2002; Knapp et al., 1991; Miller et al., 2002).
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Figure 5. SERA5 Is a Physiological Substrate for PfSUB1

(A) Western blot probed with anti-SERA5 mAb 24C6.1F1, showing a time course of incubating two different batches of purified SERA5 P126 with

rPfSUB1; batch 1 was from schizont lysate treated with a cocktail of protease inhibitors, while batch 2 was not exposed to protease inhibitors during

purification. The ‘‘start’’ sample was from batch 2 taken immediately after addition of rPfSUB1, while the ‘‘2 hr control’’ sample was batch 2 incubated

for 2 hr with control buffer only (no rPfSUB1). Identities of the processed forms of SERA5 in a sample of ESA (supernatant from normal schizonts

allowed to rupture into Albumax-free medium) are indicated. Whereas P50 is the dominant form of SERA5 in ESA, rPfSUB1-mediated processing

of SERA5 P126 resulted in conversion only to P56.

(B) Conversion to both P73 and P56 is inhibited by MRT12113 and is directly mediated by PfSUB1. Western blot probed as in (A) showing the effects

of MRT12113 on the time course of processing of purified SERA5 P126 (batch 2 as described above) by rPfSUB1. The presence of MRT12113 from

the beginning of the reaction (second track from left) prevented all processing, while addition of MRT12113 after 15 min stopped all subsequent

processing.

(C) Silver-stained gel showing a time course of SERA5 P126 digestion by rPfSUB1. Each SERA5-containing track contains �200 ng SERA5. Major

processing products are arrowed, alongside their determined N-terminal amino acid sequences; only the first five residues are shown. Sequence from

the P25n fragment matches that of the N-terminus of SERA5 P126 following secretory signal peptide removal (Debrabant et al., 1992), whereas the

P25c N-terminal sequence lies within a polymorphic region of SERA5 as predicted by Li et al. (2002b). Start and 8 hr control samples are as above. The

asterisk indicates a contaminant of the SERA5 P126 preparation, which was not modified by rPfSUB1.

(D) Progress curve experiment comparing initial hydrolysis rates by rPfSUB1 of pepF1-6R, SERAst1F-6R and SERAst2F-6R. Substrates were used at

a concentration of 0.2 mM (< < Km). The arrow indicates the point at which pronase was added to obtain the cleavage endpoint (100% hydrolysis).
Little is known about their proteolytic processing, but they

are found in schizonts in predominantly full-length form.

Given their structural similarity to SERA5 we predicted

that they undergo maturation in a similar manner. An align-

ment of the P. falciparum SERA primary sequences (Fig-

ures S6 and 6A) showed that sequences accommodated
Cell 1
by the consensus motif summarized above are evident

in a position similar to the SERA5 site 1 and site 2 process-

ing sites in all sequences except SERA8, which is upreg-

ulated in insect stages (Aly and Matuschewski, 2005).

This suggested that, in addition to SERA5, other blood

stage SERA family members might also be substrates
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Figure 6. PfSUB1 Processes Other Members of the SERA Family

(A) The top schematic represents a consensus SERA structure. Conserved cysteines (yellow bars), regions of high sequence homology across the

family (gray), and the papain-like central domain (light blue) with putative catalytic triad residues are highlighted. SERA5 cleavage sites 1 and 2 are

indicated with red arrows. Proposed processing sites for other SERA proteins are aligned below, and consensus features of the flanking sequences

are highlighted. SERA8 is excluded from the alignment because homologous sequences at either site could not be identified. Data were derived from

a multiple Clustal alignment of the predicted P. falciparum SERA protein sequences (Miller et al., 2002).

(B) Processing of purified SERA4 and SERA6 by rPfSUB1. Start and ‘‘6 hr control’’ tracks are as in Figure 5A. The remaining tracks show a time course

of digestion by rPfSUB1, comparing the products to those in ESA. The antibodies used here recognize the variable N-terminal end of SERA4 and

SERA6 (Miller et al., 2002), so the fragmentation pattern is consistent with cleavage at the two predicted sites. The anti-SERA4 antibody is highly

specific (see Figure S4), but the anti-SERA6 antibody cross-reacts with SERA4 and the abundant SERA5 (and perhaps other SERAs) probably

explaining the complexity of the ESA signal in this case.
for PfSUB1. To test this, full-length SERA4 and SERA6

were isolated from schizont extracts (Figure S4) then incu-

bated with rPfSUB1 as described above for SERA5. Both

were digested in a manner consistent with cleavage at the

predicted sites (Figure 6B). Importantly, in the case of

SERA4 the digestion products were similar to those pres-

ent in culture supernatants, suggesting that, like SERA5,

SERA4 is processed upon schizont rupture. To obtain fur-

ther evidence that processing occurred at the predicted

sites, peptides based on the predicted SERA4 and

SERA6 processing sites were incubated with rPfSUB1.

All were specifically cleaved only at the expected posi-

tions (Figure S7).

Our findings suggest that, upon its release into the PV,

PfSUB1 mediates maturation of the entire family of PV-

located SERA proteins, including representatives of both

the serine-type and cysteine-type subgroups. Collec-

tively, our results suggest that discharge of PfSUB1 into

the PV, SERA maturation, and egress of invasive merozo-

ites are regulated, consecutive, and causally related pro-

cesses that take place within a very short time-scale right

at the end of schizogony.

DISCUSSION

Regulation of the final stages of malaria parasite matura-

tion and escape from its host red blood cell is poorly

understood. Numerous reports have shown that protease
1080 Cell 131, 1072–1083, December 14, 2007 ª2007 Elsevier
activity is required but prior to this study none of the

proteases involved had been identified. We have now

shown that a parasite subtilase, PfSUB1, plays a key

role in this process.

Two major conclusions may be drawn from this work.

The first of these is that egress involves—and may even

be triggered by—discharge of PfSUB1 from exonemes

into the PV. The notion that the malaria parasite possesses

a class of secretory organelle that functions in egress pro-

vides an intuitively appealing and conceptually simple

mechanistic model for how egress may be temporally

controlled (Figure 7). In addition, although our study does

not address the issue directly, our findings lend indirect

support to the ‘‘inside-out’’ model of schizont rupture in

which the primary event in egress is breakdown of the

PV followed by rupture of the host cell membrane (Wick-

ham et al., 2003). This is because we can now conceive

mechanisms by which release of PfSUB1 into the vacuo-

lar space could directly lead to degradation of the PV

membrane (see below); in contrast, it is difficult to rec-

oncile our observations with the alternative model of

Salmon et al. (2001) which proposes that breakdown of

the erythrocyte membrane precedes PV rupture. The

identification of other exoneme components will aid in

further dissecting exoneme function and biogenesis, so

it will be important to include PfSUB1-specific markers

in future subcellular localization studies on parasite

proteins.
Inc.



Figure 7. Model for PfSUB1-Mediated

Regulation of Schizont Rupture

(A) PfSUB1 (black) accumulates in exonemes

in daughter merozoites (light blue), while enzy-

matically inactive SERA precursor proteins

(dark blue) reside in the PV (yellow).

(B) PfSUB1 (small black granules) is dis-

charged into the PV, where it rapidly mediates

activation of SERA4, 5, 6, and other PV-resi-

dent SERA family members by proteolytic cleavage.

(C and D) The PV membrane (green) ruptures as a result of SERA activation, followed by or concurrent with rupture of the erythrocyte plasma mem-

brane (dark red). Merozoites, PfSUB1, and SERA5 fragments are released into the extracellular milieu.
The second major conclusion from our study is that

PfSUB1—directly or through its action on SERA pro-

teins—plays a dual role in both development of invasive

merozoites and their release. Most proteases are synthe-

sized as zymogens that are activated by proteolytic

cleavage. It therefore seems reasonable to predict that

PfSUB1-mediated processing of SERA4, 5 and 6 is an

activation event; indeed, the timing of SERA5 processing

has been a major factor in prompting suggestions that it

plays a role in egress, perhaps by degrading membrane

proteins of the PV leading to its destabilization. The

SERA proteins—in particular SERA5—are abundant, and

their activation by PfSUB1 would result in a rapid amplifi-

cation cascade in the PV. As a corollary, however, their

very abundance may require very efficient PfSUB1 inhibi-

tion to completely block SERA processing. This factor,

together with the requirement for MRT12113 to cross sev-

eral membranes in order to access intracellular PfSUB1,

may account for the substantial difference between the

IC50 of MRT12113 against rPfSUB1 in vitro (�0.3 mM)

and its ED50 against egress in culture (�180 mM). Our

observation that MRT12113 was much more potent in

blocking the invasive capacity of released merozoites

(ED50 �25 mM) than in preventing egress is intriguing.

One plausible explanation for this is that some or all acti-

vated SERA proteins may function not only in egress

per se but also in ‘‘priming’’ merozoites for invasion, per-

haps by binding to the merozoite surface as has been sug-

gested by Li et al. (2002b) for SERA5, or even by mediating

some of the well-described proteolytic modifications of

merozoite surface proteins that occur in the final stages

of schizogony (see Blackman, 2000 for a review). This

latter hypothesis is consistent with the observed effects

of MRT12113, since whereas partial inhibition of SERA

processing might be insufficient to prevent schizont rup-

ture, even partial inhibition of parasite surface protein mat-

uration is likely to lead to a complete block in invasion.

An alternative or additional explanation for the potent

inhibitory effects of MRT12113 on invasion is that PfSUB1

itself may mediate additional functions in the PV besides

maturation of the SERA family. The consensus PfSUB1

recognition motif identified here is strikingly similar to

known processing sites in a number of merozoite surface

proteins, raising the possibility that these too may be

substrates for PfSUB1 following its discharge into the

PV. Work is underway to establish the significance of this.
Cell
The malarial life cycle in the human host involves pas-

sage through the liver, and maturation and egress of

liver-stage merozoites share features with asexual blood

stages. Since orthologs of PfSUB1 and SERA proteins

are present in the genomes of all Plasmodium species

examined to date, our findings suggest the possibility of

a common involvement of SUB1 in blood-stage and liver-

stage egress in all malarial species. All other apicomplexan

pathogens are also intracellular parasites and several,

including Toxoplasma, possess subtilases (Kim, 2004).

Our work may shed new light on how these organisms

escape from their host cell and how this process may be

targeted in new approaches to disease control.

EXPERIMENTAL PROCEDURES

Parasite Culture, Transfection, and Growth Assays

P. falciparum clone 3D7 was cultivated in medium containing the

serum substitute Albumax using standard procedures (Blackman,

1994). For transfection, ring-stage parasites were electroporated

with plasmid DNA as described previously (Harris et al., 2005). After ini-

tial selection using 2.5 nM WR99210 (Jacobus Pharmaceuticals, New

Jersey, USA) for �4 weeks, parasites were subjected to repeated

cycles of drug selection for 3 weeks followed by removal of the drug

for 3 weeks (‘‘drug cycling’’). Clonal populations were obtained by

limiting dilution.

To assess its effects on parasite growth, MRT12113 (Molecularna-

ture, Reading, UK) was added to synchronous 3D7 cultures from stock

solutions in DMSO, and parasite growth and morphology over the

course of an entire cycle monitored by microscopic examination of

Giemsa-stained thin films. Control cultures contained similar concen-

trations (up to 1% v/v) of DMSO alone. For investigating effects on

egress and invasion specifically, synchronous cultures of schizonts

(2%–8% parasitaemia) were supplemented with MRT12113 or DMSO

only, cultured for 4–8 hr to allow schizont rupture and merozoite

invasion, then examined microscopically by counting the number of

unruptured schizonts, ring-stage parasites, and free merozoites visible

per 20,000 erythrocytes.

Parasite Culture Supernatant Analysis and Tryptic

Peptide Mapping

To obtain preparations of parasite proteins released upon schizont

rupture, referred to as excretory/secretory antigens (ESA), mature

3D7 schizonts were allowed to rupture for 4 hr in Albumax-free

medium. Clarified supernatants were concentrated by ultrafiltration.

To examine the effects of MRT12113 on release of parasite pro-

teins, similar cultures in Albumax-free medium supplemented with

MRT12113, DMSO only, or no additions were incubated for �12 hr.

Culture supernatants were concentrated as above, subjected to SDS

PAGE and stained with Coomassie blue. Bands of interest were
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analyzed by tryptic peptide fingerprinting (see Supplemental Experi-

mental Procedures).

Antibodies and Indirect Immunofluorescence Assay

A rabbit anti-PfSUB1 serum has been described previously (Withers-

Martinez et al., 2002). Rabbit antibodies to SERA4 and SERA6 were

kind gifts of Brendan Crabb (WEHI, Melbourne, Australia). The

SERA5-specific mAb 24C6.1F1 (Delplace et al., 1985), which recog-

nizes an epitope within the P50 processing product, was a gift from

Jean-François Dubremetz (University Montpellier 2, France). The

RESA-specific mAb 28/2 (Anders et al., 1987) was a gift of Robin An-

ders (LaTrobe University, Victoria, Australia). Acetone-fixed thin films

of the P. falciparum 3D7SUB1HA3 clones C10 and F7 were incubated

with a 1:500 dilution of the anti-HA mAb 3F10 (Roche), then with bioti-

nylated goat anti-rat IgG (Chemicon) diluted 1:500, followed by FITC

streptavidin (Vector Laboratories) diluted 1:500. For dual labeling,

samples were additionally probed with mAb 4G2 (anti-PfAMA1),

mAb 61.3 (anti-RhopH2), or mAb 1E1 (anti-MSP119; Harris et al.,

2005) conjugated directly to Alexa Fluor 594 (Molecular Probes), or

rabbit anti-PfSUB1, mAb 28/2 (anti-RESA), mAb H5 (anti-RAP2; Harris

et al., 2005) or mouse anti-EBA-175 region VI (O’Donnell et al., 2006)

followed by Alexa Fluor 594-conjugated anti-mouse IgG or anti-rabbit

IgG (Molecular Probes) diluted 1:500. Slides were stained with DAPI

and mounted in Citifluor (Citifluor Ltd., Canterbury, UK). Images were

collected using AxioVision 3.1 software on an Axioplan 2 Imaging

system (Zeiss) using a Plan-APOCHROMAT 1003/1.4 oil immersion

objective, and annotated using Adobe PhotoShop.

Immunoelectron Microscopy

Schizonts were fixed on ice in 0.075% (v/v) glutaraldehyde and 2% (w/

v) paraformaldehyde in RPMI 1640 (pH 7.2), then washed in ice-cold

RPMI, dehydrated through a progressively low temperature ethanol

series, infiltrated with LR White resin (Agar Scientific, UK) and polymer-

ized by ultraviolet light. Sections mounted on 400 mesh nickel grids

without a supporting film were incubated with rabbit anti-PfSUB1 (di-

luted 1:50) followed by Protein A conjugated to 10 nm gold particles di-

luted 1:70 in PBS 1% (w/v) BSA (PBS/BSA). Sections were then turned

over and stained on the other side with the anti-RESA mAb 28/2 asci-

tes diluted 1:50 in PBS/BSA followed by goat anti-mouse antibody

conjugated to 5 nm gold particles, diluted 1:50 in PBS/BSA. Control

samples were treated with irrelevant primary antibodies. Sections

were counter-stained for 4 min with 2% (w/v) aqueous uranyl acetate.

Images were captured digitally with a Hitachi 7600 electron micro-

scope.

Purification and Processing of SERA5 P126,

SERA4, and SERA6

Purification of full-length SERA proteins from schizont extracts is

described in Supplemental Experimental Procedures. Purified proteins

in 25 mM HEPES, 12 mM CaCl2 (pH 6.5) were supplemented with pu-

rified rPfSUB1 (Withers-Martinez et al., 2002) at an estimated protea-

se:substrate molar ratio of 1:100, or control buffer (20 mM Tris-HCl,

150 mM NaCl, 50% v/v glycerol, [pH 8.2]). After incubation at 37�C

for the required time, the reaction was stopped by boiling in SDS sam-

ple buffer. Samples were subjected to SDS PAGE and either analyzed

by Western blot or stained. For N-terminal amino acid sequencing,

samples were transferred to polyvinylidene difluoride membrane and

Edman degradation performed at the Protein and Nucleic Acid Chem-

istry Facility (University of Cambridge, UK).

IC50 Determinations and Evaluation of SERA-Derived

Peptide Substrates

IC50 values for MRT12113 inhibition of rPfSUB1 were determined using

a previously-described assay (Harris et al., 2005) in which hydrolysis of

pepF1-6R in the presence of compound was continuously monitored

using a Cary Eclipse fluorescence spectrophotometer (Varian) equip-

ped with a microplate reader.
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Peptides based on SERA processing sites were synthesized by

standard Fmoc chemistry. Analysis of intact and rPfSUB1-digested

peptides by RP-HPLC and electrospray mass spectrometry was as

described previously (Withers-Martinez et al., 2002). Cysteine-con-

taining derivatives were labeled with 6-IATR, purified and quantified

as described previously (Blackman et al., 2002). Kinetic assays com-

paring hydrolysis of SERAst1F-6R and SERAst2F-6R with pepF1-6R

were as described (Blackman et al., 2002; Withers-Martinez et al.,

2002). Briefly, solutions of substrate (0.1–2.0 mM) were supplemented

with rPfSUB1 and the increase in fluorescence intensity measured until

a steady state initial rate was determined. Pronase was then added

to obtain complete substrate hydrolysis, and fluorescence values

converted to moles of substrate hydrolyzed using the known starting

substrate concentration.

Supplemental Data

Supplemental Data include Supplemental Experimental Procedures,

seven figures, two tables, and Supplemental References and can be

found with this article online at http://www.cell.com/cgi/content/full/

131/6/1072/DC1/.
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