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a b s t r a c t

Amathematical program with vanishing constraints (MPVC) is a constrained optimization
problem arising in certain engineering applications. The feasible set has a complicated
structure so that the most familiar constraint qualifications are usually violated. This,
in turn, implies that standard penalty functions are typically non-exact for MPVCs. We
therefore develop a newMPVC-tailored penalty function which is shown to be exact under
reasonable assumptions. This new penalty function can then be used to derive (or recover)
suitable optimality conditions for MPVCs.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

We consider a constrained optimization problem of the form

min f (x)
s.t. Hi(x) ≥ 0 ∀i = 1, . . . , l,

Gi(x)Hi(x) ≤ 0 ∀i = 1, . . . , l
(1)

that we call a Mathematical Program with Vanishing Constraints, or MPVC for short, where all functions f ,Hi,Gi : Rn → R
are assumed to be continuously differentiable.
More generally, an MPVC is a mathematical program of the form
min f (x)
s.t. gi(x) ≤ 0 ∀i = 1, . . . ,m,

hj(x) = 0 ∀j = 1, . . . , p,
Hi(x) ≥ 0 ∀i = 1, . . . , l,
Gi(x)Hi(x) ≤ 0 ∀i = 1, . . . , l

with some additional functions gi, hj : Rn → Rwhich represent some standard equality and inequality constraints. In order
to keep our notation as simple as possible, we skip these standard constraints from this program and consider, from the
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very beginning, the formulation (1) where only the difficult constraints are kept. Generalizations of our subsequent results
to the more general setting are straightforward.
MPVCs are closely related to the class of mathematical programs with equilibrium (or complementarity) constraints,

MPECs for short; see [1,2] for more details. In fact, it was already pointed out in [3] that it is possible to reformulate an
MPVC as an MPEC so that the entire machinery from MPECs can, in principle, be applied to MPVCs. However, as noted
in [3], the MPEC arising from MPVCs looses many desirable properties like, for example, uniqueness of solutions. Another
reformulation of an MPVC as an MPEC was motivated by a comment of a referee and uses a continuously differentiable
function δ : R→ R such that

δ(t)
{
> 0, if t > 0,
= 0, if t ≤ 0.

For example, one may take δ(t) := max2{0, t}. Then it is easy to see that

b ≥ 0, ab ≤ 0⇐⇒ b ≥ 0, δ(a) ≥ 0, bδ(a) = 0,

hence the MPVC constraints can be rewritten as

Hi(x) ≥ 0, G̃i(x) := δ
(
Gi(x)

)
≥ 0, Hi(x)G̃i(x) = 0 ∀i = 1, . . . , l

which is the typical setting of an MPEC. While this reformulation is certainly interesting, it has some disadvantages at least
froma theoretical point of view. In particular,manyMPEC-constraint qualifications are violated since∇G̃i(x∗) = 0whenever
x∗ is feasible for the original MPVC such that Gi(x∗) < 0. Moreover, the nonlinearity of δ can prevent a direct verification of
the calmness of the respective perturbation map, provided the functions Gi,Hi are affine (cf. program (20) in Section 4). All
these properties (constraint qualifications, calmness), however, will play an essential role in this paper.
This, in particular, motivates to consider the MPVC as an optimization problem for itself. In fact, there have already been

published a couple of papers onMPVCs which investigate applicational, theoretical and numerical aspects: In [3], the first in
the field ofMPVCs, it is shown that this class of problems can be used as a unified framework for several problems from truss
topology optimization. The papers [4–6] are mainly concerned with constraint qualifications and optimality conditions for
MPVCs. Some numerical approaches are investigated in [7,8], where the first one is based on smoothing and regularization
ideas and the latter employs a pure relaxation method. In [8] there is also presented some stability analysis, whereas [7]
provides broad numerical results.
In this paper, however, we are interested in exact penalty results for MPVCs. To this end, we first recall some basic

definitions and preliminary results in Section 2. We then state an exact penalty result in Section 3 within the framework of
a rather general mathematical program. This result is then specialized to the MPVC-setting in Section 4, where we derive
an MPVC-tailored penalty function and show that this new penalty function is exact under suitable assumptions. This exact
penalty result is then used in Section 5 in order to give an alternative proof for the existence of suitable multipliers such
that certain optimality conditions (called M-stationarity) hold at a local minimum of the MPVC. Section 6 then considers
the exactness of the classical l1-penalty function for MPVC; however, the conditions which guarantee exactness of the new
penalty function considered in Section 4 are not sufficient for the exactness of the l1-penalty function. We close with some
final remarks in Section 7.
Notation:R denotes the set of real numbers,R+ := [0,+∞) is the set of nonnegative real numbers, andR− := (−∞, 0]

are the nonpositive numbers. In addition to that we put R̄ := R ∪ {+∞,−∞}. Given a (n index) set I , we write P (I) for
the set of all partitions of I into two disjoint subsets of I , i.e. (β1, β2) ∈ P (I) if and only if β1 ∪ β2 = I and β1 ∩ β2 = ∅.
For a given set S ⊆ Rn, we denote its convex hull by conv(S). Moreover, for a nonempty closed (not necessarily convex) set
S ∈ Rn, the distance function dS : Rn → R is given by

dS(x) := inf
s∈S
‖x− s‖,

where ‖·‖ denotes an arbitrary lp-norm inRn for p ∈ [1,∞]. Given a sequence {xk}k∈N ⊂ Rn and a (not necessarily continu-
ous) function f : Rn → R, we write xk→

f
x if and only if xk → x and f (xk)→ f (x). We further use the notationΦ : Rn ⇒ Rn

for a multifunction or set-valuedmap, i.e.,Φ(x) is a subset ofRn. Its graph is defined as gphΦ := {(x, y) | y ∈ Φ(x)}. Finally,
consider a mathematical program of the form

min f (x) s.t. x ∈ X (2)

for a given function f : Rn → R and a nonempty and closed feasible set X ⊆ Rn. Any function of the form

P(x;α) := f (x)+ αp(x)

with a (penalty) parameter α > 0 will be called a penalty function of (2) provided that p(x) ≥ 0 for all x ∈ Rn and p(x) = 0
if and only if x ∈ X . We say that this penalty function is exact at a local minimum x∗ of (2) if there exists a finite penalty
parameter ᾱ > 0 such that x∗ is also a local minimum of the penalty function P(x;α) for all α ≥ ᾱ.
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2. Preliminaries

Let X denote the feasible set of (1), and let x∗ ∈ X be an arbitrary feasible point. Then we define the index sets

I+ :=
{
i | Hi(x∗) > 0

}
,

I0 :=
{
i | Hi(x∗) = 0

}
.

(3)

Furthermore, we decompose the index set I+ into the following subsets:

I+0 :=
{
i | Hi(x∗) > 0,Gi(x∗) = 0

}
,

I+− :=
{
i | Hi(x∗) > 0,Gi(x∗) < 0

}
.

(4)

Similarly, we partition the set I0 in the following way:

I0+ :=
{
i | Hi(x∗) = 0,Gi(x∗) > 0

}
,

I00 :=
{
i | Hi(x∗) = 0,Gi(x∗) = 0

}
,

I0− :=
{
i | Hi(x∗) = 0,Gi(x∗) < 0

}
.

(5)

Note that the first subscript indicates the sign of Hi(x∗), whereas the second subscript stands for the sign of Gi(x∗).
By means of these index sets, we are now in a position to state the twomost prominent stationarity concepts for MPVCs.

Definition 2.1. Let x∗ be feasible for (1).

(a) Then x∗ is calledM-stationary if there exist multipliers (ηG, ηH) such that

0 = ∇f (x∗)+
l∑
i=1

ηGi ∇Gi(x
∗)−

l∑
i=1

ηHi ∇Hi(x
∗) (6)

and

ηGi = 0 (i ∈ I+− ∪ I0− ∪ I0+), ηGi ≥ 0 (i ∈ I00 ∪ I+0),

ηHi = 0 (i ∈ I+), ηHi ≥ 0 (i ∈ I0−),
ηGi η

H
i = 0 (i ∈ I00).

(7)

(b) The point x∗ is called strongly stationary if it isM-stationary and, in addition,

ηGi = 0, ηHi ≥ 0 (i ∈ I00). (8)

Apparently, strong stationarity implies M-stationarity and both concepts coincide as soon as the critical index set I00 is
empty.Moreover, in [3], strong stationaritywas shown to be equivalent to the standardKarush–Kuhn–Tucker conditions of (1)
and hence, strong stationarity is a first order optimality condition in the presence of standard constraint qualifications, like
theGuignard constraint qualification (GCQ) or theMangasarian–Fromovitz constraint qualification (MFCQ); see [9], for example.
In turn, according to [5], M-stationarity even holds under some weaker and more specific assumptions like the MPVC-GCQ
or the MPVC-MFCQ, which occur in Section 4.
The notion of the polar cone of a set is needed to establish several normal cones which will be employed in particular in

Section 3.

Definition 2.2. Let C ⊆ Rn be a nonempty set. Then

C◦ := {v ∈ Rn | vTd ≤ 0 ∀d ∈ C}

is the polar cone of C.

The prominent tangent cone is a standard tool in optimization and variational analysis. For a closed set ∅ 6= C ⊆ Rn and
x∗ ∈ C , it is defined by

TC (x∗) :=
{
d ∈ Rn

∣∣ ∃{xk} ⊆ C, tk ↓ 0 : xk → x∗ and
xk − x∗

tk
→ d

}
.

An important device for our analysis is the so-called limiting normal cone.

Definition 2.3. Let C ⊆ Rn be a nonempty, closed set. Then

(a) the Fréchet normal cone to C at a ∈ C is defined by N̂(a, C) := (TC (a))◦, i.e., the Fréchet normal cone is the polar of the
tangent cone.
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(b) the limiting normal cone to C at a ∈ C is defined by

N(a, C) :=
{
lim
k→∞

wk
∣∣∣∣ ∃{ak} ⊆ C : ak → a, wk ∈ N̂(ak, C) ∀k ∈ N

}
. (9)

The Fréchet normal cone is sometimes also called the regular normal cone, most notably in [10], whereas the limiting normal
cone comes with a number of different names, including normal cone, basic normal cone, andMordukhovich normal cone due
to the many contributions of Mordukhovich in this area, see, in particular, [11,12] for an extensive treatment and many
applications of this cone. In the case of a convex set C , both the Fréchet normal cone and the limiting normal cone coincide
with the standard normal cone from convex analysis; cf. [13].
Closely linked are the notions of the Fréchet and the limiting subdifferential, which may also be found in [10]. Note that

we write lsc as an abbreviation of lower semicontinuous.

Definition 2.4. Let f : Rn → R̄ be lsc and f (x) finite.

(a) The set

∂F f (x) :=
{
s ∈ Rn

∣∣ lim inf
y→x

f (y)− f (x)− sT (y− x)
‖y− x‖

≥ 0
}

is called the Fréchet subdifferential of f at x.
(b) The set

∂ f (x) :=
{
lim
k→∞

sk
∣∣∣∣ ∃ xk→f x, sk ∈ ∂F f (xk)

}
is called the limiting subdifferential of f at x.

3. A generalized mathematical program

In this section, we consider a general mathematical program of the form

min f (x) s.t. F(x) ∈ Λ, (10)

with locally Lipschitz functions f : Rn → R, F : Rn → Rm and a nonempty closed set Λ ⊆ Rm. This type of problem was
already fruitfully employed in the MPEC-field in [14] (MPEC=mathematical programs with equilibrium constraints).
As soon as one tries to investigate exact penalty results for a class of optimization problems, the very closely linked

concept of calmness of the respective problem, cf. [15–17], arises naturally for reasons explained below.
In order to define calmness for our general optimization problem (10), consider the associated family of perturbed

problems

min f (x) s.t. F(x)+ p ∈ Λ, (Π(p))

for someparameter p ∈ Rm. Note that, obviously, it holds that (10) andΠ(0) are the sameproblems. The following definition
of calmness is due to Burke; see [15, Def. 1.1].

Definition 3.1. Let x∗ be feasible for Π(0). Then the problem is called calm at x∗ if there exist constants ᾱ > 0 and ε > 0
such that for all (x, p) ∈ Rn × Rm satisfying x ∈ Bε(x∗) and F(x)+ p ∈ Λ, one has

f (x)+ ᾱ‖p‖ ≥ f (x∗).

In this context ᾱ and ε are called the modulus and the radius of calmness for Π(0) at x∗. Note that the original definition
by Clarke; see [17, Def. 6.4.1], also involves that p ∈ Bε(0). Actually, these definitions coincide as soon as the function F is
continuous, as was coined in [15, Prop. 2.1], which is in particular fulfilled in our setup.
When Clarke established the notion of calmness as a tool for sensitivity analysis of parametrized optimization problems,

he already was aware of its close connection to the concept of exact penalization. He showed that calmness is a sufficient
condition for exact penalization. The full relation, however, is due to Burke see [15, Th. 1.1], and restated in the following
result.

Proposition 3.2. Let x∗ be feasible for Π(0). ThenΠ(0) is calm at x∗ with modulus ᾱ and radius ε if and only if x∗ is a minimum
of

P(x;α) := f (x)+ αdΛ(F(x)) (11)

over Bε(x∗) for all α ≥ ᾱ.

Proof. See [15, Th. 1.1]. �
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In the course of rising popularity of the calculus of multifunctions and their applications to optimization problems, another
calmness concept has been established and successfully employed in the context of mathematical programming. The
following definition of calmness of a multifunction can be found, e.g., in [10].

Definition 3.3. Let Φ : Rp ⇒ Rq be a multifunction with a closed graph and (u, v) ∈ gphΦ . Then we say that Φ is calm at
(u, v) if there exist neighbourhoods U of u, V of v and a modulus L ≥ 0 such that

Φ(u′) ∩ V ⊆ Φ(u)+ L‖u− u′‖B ∀u′ ∈ U . (12)

The application to ourmathematical programming setup from (10) andΠ(p) follows by virtue of the followingmultifunction
M : Rm ⇒ Rn, often named perturbation map, which is defined by

M(p) := {x ∈ Rn | F(x)+ p ∈ Λ}. (13)
By means of the perturbation map, the feasible set ofΠ(p) is then given byM(p), in particular, one has F−1(Λ) = M(0).
Part of the gain from the notion of calmness of multifunctions for optimization is revealed by the following two results.

In the first result, we see that calmness of the perturbation map at a particular point is in fact equivalent to the existence of
local error bounds; see [18].

Proposition 3.4. Let x∗ ∈ M(0) be feasible for (10). Then the following statements are equivalent.
(1) M is calm at (0, x∗).
(2) There exists a neighbourhood U of x∗ and a constant ρ > 0 such that

dF−1(Λ)(x) ≤ ρdΛ(F(x)) ∀x ∈ U . (14)

Proof. See [19, Corollary 1]. �

The second result shows that, roughly speaking, calmness of the perturbationmap (Definition 3.3) yields calmness of the
unperturbed problemΠ(0) (Definition 3.1).

Proposition 3.5. Let x∗ ∈ M(0) be a local minimizer of (10) such that M is calm at (0, x∗). ThenΠ(0) is calm at x∗.
Proof. By assumption,M is calm at (0, x∗) and hence, due to Proposition 3.4, there exist constants ε̃, ρ > 0 such that

dF−1(Λ)(x) ≤ ρdΛ(F(x)) ∀x ∈ Bε̃(x
∗).

Now, choose ε̂ ∈ (0, ε̃] such that f attains a minimum over Bε̂(x∗) ∩ F−1(Λ) at x∗. Then put ε := ε̂
2 and choose x ∈ Bε(x

∗)
arbitrarily. Moreover, let

x0 ∈ ProjF−1(Λ)(x).

In particular, this implies x0 ∈ Bε̂(x∗). Together, one obtains

f (x∗) ≤ f (x0)
≤ f (x)+ L‖x− x0‖
= f (x)+ LdF−1(Λ)(x)

≤ f (x)+ ρLdΛ(F(x)), (15)

where L > 0 denotes the local Lipschitz constant of f around x∗. If, now, we put ᾱ := ρL and note that, for p ∈ Rm, we have
dΛ(F(x)) ≤ ‖p‖whenever F(x)+ p ∈ Λ, we apparently get the desired calmness ofΠ(0). �

An immediate consequence is the following corollary.

Corollary 3.6. Let x∗ ∈ M(0) be such that M is calm at (0, x∗). Then the penalty function from (11) is exact at x∗.
Proof. The proof follows immediately from Propositions 3.5 and 3.2. �

In the rest of this section, we will provide sufficient conditions for the calmness of the multifunction M at (0, x∗) for some
x∗ ∈ M(0). Thus, we automatically obtain sufficient conditions for the function P(x;α) = f (x) + αdΛ(F(x)) to be exact at
x∗. From now on we will assume the functions f and F to be continuously differentiable. Then we can define the following
generalization of the Mangasarian–Fromovitz constraint qualification; see [14].

Definition 3.7. Let x∗ be feasible for (10). We say that the generalized Mangasarian–Fromovitz constraint qualification
(GMFCQ) holds at x∗ if the following implication holds:

F ′(x∗)Tλ = 0
λ ∈ NΛ(F(x∗))

}
H⇒ λ = 0. (16)

Note that, ifΛ = Rm
−
, (16) reduces to standard MFCQ.



Author's personal copy

T. Hoheisel et al. / Nonlinear Analysis 72 (2010) 2514–2526 2519

The notion of GMFCQ leads to the following result.

Proposition 3.8. Let x∗ ∈ M(0) be feasible for (10) such that GMFCQ is satisfied. Then the perturbationmapM is calm at (0, x∗).

Proof. See the proof of [14, Corollary 2.4]. �

The following corollary follows immediately.

Corollary 3.9. Let x∗ ∈ M(0) be feasible for (10) such that GMFCQ is satisfied. Then the penalty function from (11) is exact at x∗.

4. Deriving an exact penalty function for MPVCs

In order to derive an exact penalty function for the MPVC (1), we are guided by the results from Section 3, in particular
Corollary 3.9. The path that we follow starts with a reformulation of the MPVC in the fashion of (10). Afterwards we will
provide sufficient conditions for the GMFCQ to hold for the rewritten MPVC, which eventually provides an exact penalty
function. Note, however, that the questionwhether GMFCQholds or not, substantially depends on the chosen representation
of the feasible set.
For the sake of reformulating the MPVC, consider the characteristic set

C := {(a, b) ∈ R2 | b ≥ 0, ab ≤ 0}, (17)

and put

ΛVC :=
l
"
i=1
C . (18)

Furthermore, define the map F : Rn → R2l by

FVC (x) := (FVCi (x))i=1,...,l :=
(
Gi(x)
Hi(x)

)
i=1,...,l

. (19)

By means of these definitions, we are able to write the MPVC (1) as the following program

min f (x) s.t. FVC (x) ∈ ΛVC . (20)

The perturbation map for (20) is consequently given by

MVC (p) := {x ∈ Rn | FVC (x)+ p ∈ ΛVC }.

In order to find conditions to yield GMFCQ for (20), we need the following auxiliary result, which is concerned with
calculating the limiting normal cone of the characteristic set C from (17).

Lemma 4.1. Let (a, b) ∈ C. Then it holds that

NC ((a, b)) =


{0} × {0} if b > 0, a < 0,
R+ × {0} if b > 0, a = 0,
{0} × R− if b = 0, a < 0,
{0} × R if b = 0, a > 0,
{(u, v) | u ≥ 0, uv = 0} if a = b = 0.

(21)

Proof. See the proof of [5, Lemma 3.2]. �

With the aid of the above Lemma, we are now able to prove a first sufficiency result for GMFCQ in the MPVC setup.

Theorem 4.2. Let x∗ ∈ M(0) be feasible for (1) and assume that for all (β1, β2) ∈ P (I00) the following two conditions are
satisfied:

(i) There exists a vector d ∈ Rn such that

∇Gi(x∗)Td > 0 (i ∈ I+0 ∪ β2),
∇Hi(x∗)Td < 0 (i ∈ I0−),
∇Hi(x∗)Td = 0 (i ∈ I0+ ∪ β1).

(22)

(ii) The gradients ∇Hi(x∗) (i ∈ I0+ ∪ β1) are linearly independent.

Then GMFCQ holds for (20).
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Proof. Observe first that with (ai, bi)T := (FVCi (x
∗)) = (Gi(x∗),Hi(x∗))T we have

NΛVC (F
VC (x∗)) =

l
"
i=1
NC ((ai, bi)),

cf. [10, Proposition 6.41]. By means of Lemma 4.1 it follows that GMFCQ amounts to the condition

0 =
l∑
i=1

λGi ∇Gi(x
∗)+

l∑
i=1

λHi ∇Hi(x
∗)

λGi = 0 (i ∈ I+− ∪ I0+ ∪ I0−), λGi ≥ 0 (i ∈ I+0 ∪ I00),
λHi = 0 (i ∈ I+), λHi ≤ 0 (i ∈ I0−),
λGi λ

H
i = 0 (i ∈ I00),

 H⇒ λG = λH = 0.

This is equivalent to

0 =
∑

i∈I+0∪I00

λGi ∇Gi(x
∗)+

∑
i∈I0

λHi ∇Hi(x
∗)

λGi ≥ 0 (i ∈ I+0 ∪ I00),
λHi ≤ 0 (i ∈ I0−),
λGi λ

H
i = 0 (i ∈ I00),

 H⇒
λGi = 0 (i ∈ I+0 ∪ I00),

λHi = 0 (i ∈ I0).

This, eventually, is equivalent to the following condition: For all partitions (β1, β2) ∈ P (I00), the implication

0 =
∑

i∈I+0∪β2

λGi ∇Gi(x
∗)+

∑
i∈I0−∪I0+∪β1

λHi ∇Hi(x
∗)

λGi ≥ 0 (i ∈ I+0 ∪ β2),

λHi ≤ 0 (i ∈ I0−),

 H⇒
λGi = 0 (i ∈ I+0 ∪ β2)

λHi = 0 (i ∈ I0− ∪ I0+ ∪ β1)
(23)

holds. Invoking Motzkin’s theorem of the alternative, cf. [20], for example, we see that the implication (23) is, in case that
I0− ∪ I+0 ∪ β2 6= ∅, equivalent to condition (i). In turn, if I0− ∪ I+0 ∪ β2 = ∅, (23) reduces to the linear independence of the
gradients ∇Hi(x∗) (i ∈ I0+ ∪ β1), which is condition (ii). �

In the MPVC-field, the following variant of the (standard) Mangasarian–Fromovitz and linear independence constraint
qualifications have shown to be useful tools.

Definition 4.3. Let x∗ be feasible for (1). Then we say that
(a) MPVC-MFCQ is satisfied at x∗ if the gradients

∇Hi(x∗) (i ∈ I0+ ∪ I00) (24)

are linearly independent, and there exists a vector d such that

∇Hi(x∗)Td > 0 ∀i ∈ I0−,
∇Gi(x∗)Td < 0 ∀i ∈ I+0 ∪ I00,
∇Hi(x∗)Td = 0 ∀i ∈ I0+ ∪ I00.

(25)

(b) MPVC-LICQ is satisfied at x∗ if the gradients

∇Hi(x∗) (i ∈ I0) and ∇Gi(x∗) (i ∈ I00 ∪ I+0)

are linearly independent.

These constraint qualifications were formally introduced in [5].
The following result, which is an immediate consequence of Theorem 4.2, will state that MPVC-MFCQ is a sufficient

condition for calmness of the perturbation mapMVC .

Corollary 4.4. Let x∗ be feasible for (1) such that MPVC-MFCQ holds at x∗. Then MVC is calm at (0, x∗).

Proof. MPVC-MFCQ obviously implies conditions (i) and (ii) from Theorem 4.2 and hence, GMFCQ holds. Due to Proposi-
tion 3.8, GMFCQ implies calmness ofMVC at (0, x∗). �

Putting all pieces of information together, we can state a satisfactory exact penalty result for the MPVC.

Theorem 4.5. Let x∗ be feasible for (1) such that MPVC-MFCQ holds at x∗. Then the function

PVC (x, α) := f (x)+ αdΛVC (F
VC (x)) (26)

is exact at x∗.
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Our goal is now to find an explicit representation for the penalty function from (26). To this end, the following elementary
result is crucial.

Lemma 4.6. Let C be given by (17). Then for (a, b) ∈ C we have

dC (a, b) = max{0,−b,min{a, b}} =

{min{a, b}, if a, b ≥ 0,
0, if a ≤ 0, b ≥ 0,
−b, if b ≤ 0.

Note that the previous result holds for an arbitrary lp-norm to induce the distance function.

Corollary 4.7. Let x ∈ Rn. Then we have

dΛVC (F
VC (x)) = ‖

(
dC (FVCi (x))

)
i=1,...,l‖ = ‖

(
max{0,−Hi(x),min{Gi(x),Hi(x)}}

)
i=1,...,l‖.

5. An alternative proof forM-stationarity

We consider again the penalty function PVC from (26). Under certain assumptions (like MPVC-MFCQ, cf. Theorem 4.5),
this penalty function is exact, hence a local minimum of the MPVC is also a local minimizer of PVC (·, α) for some α > 0.
This implies that 0 ∈ ∂xP(x∗, α), and this condition can be used in order to derive optimality conditions for the MPVC itself.
The question now is what type of optimality condition we can expect to get from this condition. Since, on the one hand,
MPVC-MFCQ gives exactness of the penalty function PVC , but, on the other hand, is not enough in order to guarantee that
strong stationarity holds at a local minimizer x∗ of MPVC, it is not possible to derive strong stationarity from the condition
0 ∈ ∂xP(x∗, α). The best we can expect to get is therefore M-stationarity, and this is precisely the aim of this section.
Hence, suppose that x∗ is a local minimizer of PVC (·, α) for some α > 0, so that 0 ∈ ∂xP(x∗, α). In view of the definition

of PVC in (26) we are, for obvious reasons, particularly interested in the limiting subdifferential of the distance function dC
from Lemma 4.6. To this end, we define φ : R2 → R by

φ(a, b) := dC (a, b). (27)

Then the limiting subdifferential of φ at points from the set C is given in the below lemma.

Lemma 5.1. Let φ : R2 → R be defined by (27) and let (a, b) ∈ C. Then we have

∂φ(a, b) =



{(
0
0

)}
if b > 0, a < 0,

conv
{(
0
0

)
,

(
1
0

)}
if b > 0, a = 0,

conv
{(

0
−1

)
,

(
0
1

)}
if b = 0, a > 0,

conv
{(

0
−1

)
,

(
0
0

)}
if b = 0, a < 0,

conv
{(
0
1

)
,

(
0
−1

)}
∪ conv

{(
0
0

)
,

(
1
0

)}
if a = b = 0.

Proof. Due to the fact that φ(a, b) = dC (a, b) for all (a, b) ∈ R2, where dC can be induced by any lp-norm in R2, especially
by the Euclidean norm, we may invoke [10, Example 8.53], which yields that

∂φ(a, b) = N((a, b), C) ∩ B ∀(a, b) ∈ C, (28)

where B denotes the closed Euclidean unit ball inR2 around the origin. The representation of the limiting normal cone from
Lemma 4.1 together with (28) eventually gives the desired result. �

The followingmain result of this section reveals that exactness of the penalty function PVC from (11) at a local minimizer
of the MPVC yields M-stationarity as an optimality condition.

Theorem 5.2. Let x∗ be a local minimizer of the MPVC (1) such that PVC is exact at x∗. Then M-stationarity holds at x∗.

Proof. Due to the fact that PVC is exact at the local minimizer x∗ of (1), there exists a penalty parameter α > 0 such that x∗
is also a local minimizer of PVC (·, α). In particular, we thus have 0 ∈ ∂xPVC (x∗, α). Now, recall that by Corollary 4.7 we have

PVC (x, α) = f (x)+ α‖(φ(Gi(x∗),Hi(x∗)))i=1,...,l‖,
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for an arbitrary lp-norm ‖ · ‖. Due to the fact that PVC is exact for an arbitrary lp-norm if and only if it is exact when using the
l1-norm, we restrict ourselves to this case, since we may apply well-known sum rules for the limiting subdifferential then.
Thus, consider the case that

PVC (x, α) = f (x)+ α
l∑
i=1

φ(Gi(x∗),Hi(x∗)).

Invoking [10, Exercise 10.10] we hence obtain

0 ∈ ∂xPVC (x∗, α) ⊆ {∇f (x∗)} + α
l∑
i=1

∂(φ(Gi(x∗),Hi(x∗))),

and therefore, due to [21, p. 151], there exist vectors (ρi, νi) ∈ ∂φ(Gi(x∗),Hi(x∗)) for i = 1, . . . , l such that

0 = ∇f (x∗)+ α
l∑
i=1

(ρi∇Gi(x∗)+ νi∇Hi(x∗)). (29)

Now, put

ηGi := αρi, ηHi := −ανi ∀i = 1, . . . , l.

Then (29) and Lemma 5.1 imply that (x∗, ηG, ηH) is an M-stationary point of (1). �

Combining the previous result with the sufficiency condition for the exactness of PVC from Section 4, we can immediately
show that MPVC-MFCQ yields M-stationarity at a local minimizer of (1), which is already well known; cf. [5].

Corollary 5.3. Let x∗ be a local minimizer of (1) such that MPVC-MFCQ holds. Then x∗ is an M-stationary point.

Proof. The proof follows immediately from Theorems 4.5 and 5.2. �

6. Exactness of the l1-penalty function for MPVCs

The previous sections contain an MPVC-tailored penalty function that was shown to be exact under reasonable
assumptions. On the other hand, onemay view theMPVC as a standard constrained optimization problem and then consider
the corresponding well-known l1-penalty function as a natural candidate for an exact penalty function. Recall that this l1-
penalty function for (1) is given by

P(x, α) := f (x)+ αψ(x) := f (x)+ α
l∑
i=1

max{−Hi(x), 0} + α
l∑
i=1

max{Gi(x)Hi(x), 0}. (30)

Using the function

ϕ(a, b) := max{ab, 0} −min{b, 0} (31)

(which was already used in [7] as the basis of an algorithm for the numerical solution of MPVCs), we can rewrite the l1-
penalty function as

P(x, α) = f (x)+ α
l∑
i=1

ϕ(Gi(x),Hi(x)). (32)

In what follows, we are now concerned with finding sufficient conditions for the exactness of the l1-penalty function P from
(30), (32).
It is commonly known that the l1-penalty function of a nonlinear program is exact at a feasible point provided that MFCQ

holds at this point; cf. [22]. In the context ofMPVCs, however, this assumption is not reasonable, since it is too often violated;
see [3].
Moreover, opposite to the penalty function from the previous section, MPVC-MFCQ cannot be a sufficient condition for

exactness. This is due to the fact that exactness of the l1-penalty function yields KKT conditions at a local minimizer, but
MPVC-MFCQ does not necessarily guarantee this. The following example also shows that the l1-penalty function is not exact
in a number of rather standard situations.

Example 6.1. Consider the MPVC

min f (x) := −(x1 + x2)
s.t. H1(x) := x1 + x2 ≥ 0,

G1(x)H1(x) := (x1 + x2)(x1 + x2) ≤ 0.
(33)
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Clearly, x∗ := (0, 0) is a local (in fact, global) minimizer and, for instance xk := ( 1k ,
1
k ) is a sequence converging to x

∗.
However, to each penalty parameter α > 0, we can find an index kα ∈ N such that

P(xk;α) = −
2
k
+ α

4
k2
< 0 = P(x∗;α) for all k ≥ kα,

i.e., the penalty function P(x;α) is not exact. Note, however, that the perturbation map (13), associated with (33), satisfies
GMFCQ at x∗ in view of Theorem 4.2.

To derive a sufficient condition for the exactness of the l1-penalty function, we employ a new notion from variational
analysis. It is the so-called outer subdifferential introduced in [23].

Definition 6.2. Let f : Rn → R be lsc and f (x) finite. Then the set

∂>f (x) :=
{
lim
k→∞

sk | ∃ xk→
f
x, f (xk) > f (x), sk ∈ ∂ f (xk)

}
is called the outer subdifferential of f at x.

The concept of the outer subdifferential is closely linked to exact penalization. In order to present the precise relationship,
consider the optimization problem

min f (x) s.t. x ∈ C (34)
for a set C ⊆ Rn and a locally Lipschitz function f : Rn → R. Then the following result holds true.

Proposition 6.3. Let Ψ : Rn → R+ be a penalty term in the sense that Ψ (x) = 0 if and only if x ∈ C. Moreover, let x ∈ C such
that 0 6∈ ∂>Ψ (x). Then, for all α > 0 sufficiently large, the function f + αΨ is an exact penalty function for (34) at x.
Proof. The assumption that 0 6∈ ∂>Ψ (x) and the fact that the outer subdifferential is closed, yields a constant γ̄ > 0 such
that

‖s‖ ≥ γ̄ ∀s ∈ ∂>Ψ (x).

This, by [23, Theorem 2.1], yields constants c > 0 (choose for example c := γ−1 for γ ∈ (0, γ̄ )) and δ > 0 such that

dC (y) ≤ cΨ (y) ∀y ∈ Bδ(x).

This, invoking [18, Theorem 3], implies that if x is a (local) minimizer of (34), then it is also a (local) minimizer of f +αΨ for
α > 0 sufficiently large. �

Coming back to our MPVC setup, the above result tells us that a sufficient condition for the exactness of the function
P(·, ·) from (30) at a local minimizer x∗ ∈ X is the condition 0 6∈ M for a set M ⊇ ∂>ψ(x∗). Hence it is of great interest to
find some handy upper estimate of ∂>ψ(x∗). To this end, define the function

ϑ : R2l → R+, ϑ(y) :=
l∑
i=1

ϕ(yi), (35)

where y = (yi)li=1 and yi ∈ R2 for i = 1 . . . , l, and ϕ denotes the function from (31).
Then with the function FVC from (19), we have ψ = ϑ ◦ FVC . Now, what we obviously need is some kind of chain and

sum rule for the outer subdifferential. For these purposes, consider the following propositions.

Proposition 6.4. Let F : Rn → Rm be continuously differentiable, let ϑ : Rm → R+ be Lipschitz, and put f := ϑ ◦ F . Moreover,
let C ⊆ Rm be closed such that

ϑ(y) = 0⇐⇒ y ∈ C .

Then, for F(x∗) ∈ C, one has

∂>f (x∗) ⊆ F ′(x∗)T∂>ϑ(F(x∗)).

Proof. By the definition of the outer subdifferential and taking into account that f (x∗) = 0, we have

∂>f (x∗) =
{
lim
k→∞

sk
∣∣∣∣ ∃xk → x∗, f (xk) > 0, sk ∈ ∂ f (xk)

}
=

{
lim
k→∞

sk
∣∣∣∣ ∃xk → x∗, F(xk) 6∈ C, sk ∈ ∂ f (xk)

}
⊆

{
lim
k→∞

sk
∣∣∣∣ ∃xk → x∗, F(xk) 6∈ C, sk ∈ F ′(xk)T∂ϑ(F(xk))

}
, (36)

where the inclusion is due to [21, p. 151].
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Now, we claim that{
lim
k→∞

sk
∣∣∣∣ ∃xk → x∗, F(xk) 6∈ C, sk ∈ F ′(xk)T∂ϑ(F(xk))

}
= F ′(x∗)T

{
lim
k→∞

ξ k
∣∣∣∣ ∃xk → x∗, F(xk) 6∈ C, ξ k ∈ ∂ϑ(F(xk))

}
. (37)

In fact, the inclusion ‘⊇’ follows immediately from the fact that, for {xk} → x∗, we have F ′(xk)→ F ′(x∗) due to the continuity
of F ′. On the other hand, the reverse inclusion is a consequence of the uniform boundedness of the limiting subdifferential
which guarantees that any sequence {bk} ⊆ ∂ϑ(xk) is bounded for {xk} → x∗.
Now, since ϑ(y) > 0 whenever y 6∈ C , we have{

lim
k→∞

ξ k
∣∣∣∣ ∃xk → x∗, F(xk) 6∈ C, ξ k ∈ ∂ϑ(F(xk))

}
⊆ ∂>ϑ(F(x∗)),

and hence the assertion follows from (36) and (37). �

Proposition 6.5. Consider a Lipschitz functionΦ : Rn → R+ and a closed set C ⊆ Rn such that

Φ(v) = 0 ⇐⇒ v ∈ C .

Define the function f : Rnl → R+ by

f (y) :=
l∑
i=1

Φ(yi),

where y = (yi)li=1 and yi ∈ Rn. Then for y∗ ∈ "li=1 C it holds that

∂>f (y∗) ⊆
l⋃
j=1

∂Φ(y∗1)× . . .× ∂
>Φ(y∗j )× · · · × ∂Φ(y

∗

l ).

Proof. Note that we have ∂>f (y∗) ⊆ ∂ f (y∗) = "lj=1 ∂Φ(y
∗

j ), where the equality is due to [10, Proposition 10.5].
Now, take ξ ∈ ∂>f (y∗). By definition, there exist sequences {yk} → y∗ such that f (yk) > 0 and ψk ∈ ∂ f (yk) for all

k ∈ N with ξ = limk→∞ ψk. Due to the fact that the index set {1, . . . , l} is finite, there exists an index j ∈ {1, . . . , l} and
a subsequence {yk}k∈K such that (without relabelling) ykj 6∈ C for all k. This proves the result, since we have ψj ∈ ∂

>Φ(y∗j )
then. �

Due to the previous two results, we can infer that for x∗ ∈ X we have (recall that ψ = ϑ ◦ FVC )

∂>ψ(x∗)
Proposition 6.4
⊆ (FVC )′(x∗)T∂>ϑ(FVC (x∗))

Proposition 6.5
⊆ (FVC )′(x∗)T

l⋃
j=1

∂ϕ(FVC1 (x
∗))× · · · × ∂>ϕ(FVCj (x

∗))× · · · ,×∂ϕ(FVCl (x
∗))

=

l⋃
j=1

{
l∑
i=1

αi∇Gi(x∗)+ βi∇Hi(x∗)

∣∣∣∣∣
(
αj

βj

)
∈ ∂>ϕ(FVCj (x

∗)),

(
αi

βi

)
∈ ∂ϕ(FVCi (x

∗)) (i 6= j)

}
. (38)

It is hence of particular interest to know the outer and the limiting subdifferentials of ϕ at points from the set C . This
information is provided by the following two lemmas.

Lemma 6.6. Consider the function ϕ : R2 → R from (31), and the set C ⊆ R2 from (17) and let (a, b) ∈ C. Then it holds that

∂>ϕ(a, b) =



∅ if b > 0, a < 0,(
b
0

)
if b > 0, a = 0,(

0
a− 1

)
if b = 0, a < 0,{(

0
a

)}
∪

{(
0
−1

)}
if b = 0, a > 0,{(

0
0

)}
∪

{(
0
−1

)}
if a = b = 0.

(39)
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Proof. In view of Definition 6.2, we are interested in the limiting subdifferential ofϕ at points (a, b) 6∈ C . For these purposes,
we claim that

∂ϕ(a, b) =



(
b
a

)
if a, b > 0,(

0
−1

)
if a > 0, b < 0,(

b
a− 1

)
if a < 0, b < 0,{(

ν

−1

)∣∣∣∣ ν ∈ [b, 0]} if a = 0, b < 0.

(40)

The first three cases of this formula are easily seen due to the fact that ϕ is smooth in a neighbourhood of (a, b) and thus,
one has ∂ϕ(a, b) = {∇ϕ(a, b)}. The case a = 0, b < 0 can be verified as follows: The function ϕ is regular in the sense
of [17, Def. 2.3.4], as was already noted in [7, Lem. 3.3]. Therefore, the limiting subdifferential of this function coincides with
the Clarke subdifferential, for which the corresponding formulas are also given in [7, Lem. 3.3].
We are now in a position to prove the formula for the outer subdifferential. For these purposes, consider the five relevant

cases separately and recall that ϕ(a, b) > 0 if and only if (a, b) 6∈ C .

(i) b > 0, a < 0: In this case, there exists no sequence (ak, bk)→ (a, b)with (ak, bk) 6∈ C and so ∂>ϕ(a, b) = ∅.
(ii) b > 0, a = 0: For a sequence (ak, bk) → (a, b) with (ak, bk) 6∈ C one has ak, bk > 0. Hence it follows that if
sk ∈ ∂ϕ(ak, bk), we see from (40) that sk =

(
bk
ak

)
and hence limk→∞ sk =

(
b
0

)
.

(iii) b = 0, a < 0: If (ak, bk)→ (a, b) and (ak, bk) 6∈ C , there remains the case ak, bk < 0. Hence, we have sk =
(
bk
ak−1

)
for

sk ∈ ∂ϕ(ak, bk). This yields limk→∞ sk =
(
0
a−1

)
.

(iv) b = 0, a > 0: Here, if (ak, bk) → (a, b) and (ak, bk) 6∈ C , we have ak, bk > 0 or ak > 0, bk < 0 and hence
sk ∈

{(
bk
ak

)
,
(
0
−1

)}
which implies limk→∞ sk ∈

{(
0
a

)
,
(
0
−1

)}
.

(v) a = b = 0: In this case, for a sequence (ak, bk) → (a, b) there may occur all cases of (ak, bk) ∈ R2 \ C . Hence if sk ∈
∂ϕ(ak, bk) one has sk ∈

{(
bk
ak

)
,
(
0
−1

)
,
(
bk
ak−1

)
,
(
νk
−1

)}
for νk ∈ [bk, 0]. Hence one obtains limk→∞ sk ∈

{(
0
−1

)
,
(
0
0

)}
.

Altogether, this completes the proof. �

Lemma 6.7. Consider the function ϕ : R2 → R from (31), the set C ⊆ R2 from (17), and let (a, b) ∈ C. Then we have

∂ϕ(a, b) =



{(
0
0

)}
if b > 0, a < 0,

conv
{(
b
0

)
,

(
0
0

)}
if b > 0, a = 0,

conv
{(
0
a

)
,

(
0
−1

)}
if b = 0, a > 0,

conv
{(
0
0

)
,

(
0
a− 1

)}
if b = 0, a < 0,

conv
{(
0
0

)
,

(
0
−1

)}
if a = b = 0.

Proof. Similar to the proof of the previous result, we recall an observation from [7] that themappingϕ is regular in the sense
of Clarke, hence the limiting subdifferential is identical with the generalized gradient by Clarke, for which the corresponding
representations can be found in [7]. �

At least, the foregoing results allow us to state some kind of sufficient condition for exactness of the l1-penalty function.

Corollary 6.8. Let x∗ be feasible for (1) such that I00 = ∅ and MPVC-LICQ holds at x∗. Then the penalty function from (30) is
exact at x∗.

Proof. Due to Proposition 6.3, it suffices to show that, under the above assumptions, we have 0 6∈ ∂>ψ(x∗). For these
purposes, suppose that 0 ∈ ∂>ψ(x∗), then by (38) there exists j ∈ {1, . . . , l} such that

0 =
l∑
i=1

αi∇Gi(x∗)+ βi∇Hi(x∗),
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where

(αi, βi)
T
∈ ∂ϕ(FVCi (x

∗)) (i 6= j), (αj, βj)
T
∈ ∂>ϕ(FVCj (x

∗)).

Due to the MPVC-LICQ assumption and Lemma 6.7, we obtain (αi, βi) = (0, 0) for all i = 1, . . . , l. In particular, we have
(αj, βj) = (0, 0)which contradicts the fact that (αj, βj)T ∈ ∂>ϕ(FVCj (x

∗)) as we have j 6∈ I00; cf. Lemma 6.6. �

It is currently not known whether the previous result holds without the assumption I00 = ∅. The current technique of
proof does not allow us to verify this statement since the outer subdifferential of ϕ for indices i ∈ I00 contains the zero
vector, whereas all other outer subdifferentials are either empty or consist of nonzero elements; cf. Lemma 6.7. In order
to avoid this problem, one needs a smaller estimate for the outer subdifferential of ψ than the one derived in (38). This,
however, is a nontrivial task, because it requires a more refined analysis of the configuration of Im(F) andΛ (in the notation
of (10)). In any case, we know that MPVC-MFCQ cannot be a sufficient condition for the l1-penalty function to be exact (see
the corresponding discussion at the beginning of this section), in contrast to the more specialized (MPVC-tailored) penalty
function considered in Section 4.

7. Final remarks

This paper gives exact penalty results for mathematical programs with vanishing constraints (MPVCs). In particular, it
shows exactness for a new, MPVC-tailored penalty function under suitable conditions which, on the other hand, do not
guarantee exactness of the well-known l1 (or lp with p ∈ [1,∞]) penalty function. In fact, it is currently an open question
underwhich assumptions the l1-penalty function is exact in theMPVC-context if we do notwant to assume that the bi-active
index set I00 is empty at a local minimum.
We believe that our new penalty function can be used not only as a theoretical tool (like the derivation of optimality

conditions, as shown in this paper), but also from a practical point of view, especially for the globalization of suitable (locally
convergent) algorithms.
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