On topologizable algebras

V. MÜLLER, PRAGUE

Let A be a linear associative algebra. By [3] it is always possible to define a topology on A which makes of A a locally convex algebra with separately continuous multiplication (i.e. $x_{\alpha}, x, y \in A, x_{\alpha} \to x$ implies $x_{\alpha}y \to xy, yx_{\alpha} \to yx$).

On the other hand (cf. [3]) in general it is not possible to introduce a topology on A which makes of A a locally convex algebra with jointly continuous multiplication (i.e. $x_{\alpha} \to x, y_{\beta} \to y \Rightarrow x_{\alpha}y_{\beta} \to xy$). The aim of this note is to exhibit two examples which continue these investigations.

In the first example we construct a commutative algebra which admits no topology. This gives a negative answer to the question raised in [2]. In the second example we construct a topological algebra which admits no locally convex topology.

All algebras in this paper will be complex (this condition, however, is not essential).

We say that an algebra A is topologizable (topologizable as a locally convex algebra) if there exists a topology on A which makes of A a topological (locally convex) algebra with jointly continuous multiplication.

It is easy to see that an algebra A is topologizable if and only if there exists a system \mathcal{V} of subset of A (zero-neighbourhoods in A) satisfying

(1)
$$\bigcap_{V \in \mathcal{V}} V = \{0\}$$

(2) $\lambda V \subset V$ for every $v \in \mathcal{V}$ and complex number $\lambda, |\lambda| \leq 1$

- (3) each $V \in \mathcal{V}$ is absorbent
- (4) for every $V \in \mathcal{V}$ there exists $W \in \mathcal{V}$ such that $W + W \subset V$
- (5) for every $W \in \mathcal{V}$ there exists $W \in \mathcal{V}$ such that $W \cdot W \subset V$.

For basic properties of topological algebras see e.g. [1].

THEOREM 1. There exists a commutative algebra which is not topologizable.

PROOF. Denote by N the set of all positive integers and by \mathcal{F} the set of all sequences $f = \{f_j\}_{j=1}^{\infty}$ of positive integers. Consider the linear space A of all formal linear combinations of elements $c, x_i \ (i \in N)$ and $a_f \ (f \in \mathcal{F})$. We define the multiplication in A by

$$cz = zc = 0 \qquad \text{for every } z \in A,$$

$$x_i x_j = 0 \qquad (i, j \in N),$$

$$a_f a_{f'} = 0 \qquad (f, f' \in \mathcal{F}),$$

$$x_n a_f = a_f x_n = f_n \cdot c \qquad (n \in N, f \in \mathcal{F}).$$

Clearly these relations define uniquely a multiplication on A which makes of A a commutative algebra (for the associative law note that the product of any three of the basis elements is equal to zero).

We prove that A is not topologizable. Suppose on the contrary that there exists a system \mathcal{V} of zero-neighbourhoods in A satisfying (1) - (5). Let $V, W \in \mathcal{V}$ satisfy $c \notin V$ and $W \cdot W \subset V$. For $n = 1, 2, \cdots$ choose $s_n > 0$ such that $x_n \in s_n \cdot W$. Let $f = \{f_n\}_{n=1}^{\infty}$ be a sequence of positive integers f_n with $f_n > n \cdot s_n$. Then $a_f \in r \cdot W$ for some r > 0. We have

$$c = \frac{1}{f_n}(x_n \cdot a_f) = \frac{r \cdot s_n}{f_n} \left(\frac{x_n}{s_n} \cdot \frac{a_f}{r}\right) \in \frac{rs_n}{f_n} \cdot W \cdot W \subset \frac{rs_n}{f_n} V.$$

Since $c \notin V$ we have

$$\frac{rs_n}{f_n} > 1 \quad \text{ and } r > \frac{f_n}{s_n} > n \qquad (n \in N)$$

a contradiction.

Remark. Let x be a linear space of infinite dimension and let $\mathcal{L}(X)$ be the algebra of all linear mappings acting in X. By [3], $\mathcal{L}(X)$ can not be topologized as a locally convex algebra. Using analogous method as in example 1 it is possible to show that $\mathcal{L}(X)$ is not topologizable. In fact even the algebra of all finite-dimensional operators in X is not topologizable.

THEOREM 2. There exists a commutative topological algebra which is not topologizable as a locally convex algebra.

PROOF. Let K be an uncountable set. Denote by \mathcal{D} the set of all functions $d: N \times K \to N$. For $d \in \mathcal{D}, n \in N$ and $k \in K$ we shall write shortly d_{nk} instead of d(n,k).

Clearly for every $d \in \mathcal{D}$ and $n \in N$ there exists a subset $K_{d,n} \subset K$ and a positive integer d_n such that $cardK_{d,n} = d_n$ and $d_{nk} = d_n$ for every $k \in K_{dn}$. Let A be the linear space of all (finite) linear combinations of elements c, x_{nk} $(n \in N, k \in K), a_d$ $(d \in \mathcal{D})$ and y_{dnk} $(d \in \mathcal{D}, n \in N, k \in K_{dn} \subset K)$.

We define the multiplication in A by

$$cz = zc = 0 (z \in A), y_{dnk}z = zy_{dnk} = 0 (z \in A, d \in D, n \in N, k \in K_{dn}), a_d a_{d'} = 0 (d, d' \in D), x_{nk} \cdot x_{n'k'} = 0 (n, n' \in N, k, k' \in K),$$

$$x_{nk} \cdot a_d = a_d \cdot x_{nk} = \begin{cases} d_n y_{dnk} & (d \in D, n \in N, k \in K_{dn}) \\ 0 & (k \notin K_{dn}). \end{cases}$$

Clearly A is a commutative algebra. To define the topology on A we shall need the following notations:

Let \mathcal{L} be the set of all complex valued functions $\lambda : k \mapsto \lambda_k$ defined on K with a finite support. For $\lambda \in \mathcal{L}$ and $i \in \{0, 1, 2, \ldots\}$ define

$$m_i(\lambda) = \min_{\substack{M \subset K \\ cardM=i}} \max_{j \in K-M} |\lambda_j|.$$

Clearly $\max_{j \in K} |\lambda_j| = m_0(\lambda) \ge m_1(\lambda) \ge \dots$ and $card\{j \in K, |\lambda_j| > m_i(\lambda)\} \le i$.

LEMMA 3. Let $\lambda, \mu \in \mathcal{L}$ and let $s, t \in \{0, 1, 2, \ldots\}$. Then

$$m_{s+t}(\lambda + \mu) \le m_s(\lambda) + m_t(\mu)$$

where $\lambda + \mu \in \mathcal{L}$ is defined by $(\lambda + \mu)_k = \lambda_k + \mu_k \quad (k \in K).$

PROOF. Suppose $j \in K$, $|\lambda_j + \mu_j| > m_s(\lambda) + m_t(\mu)$. Then either $|\lambda_j| > m_s(\lambda)$ or $|\mu_j| > m_t(\mu)$. Since

 $card\{j, |\lambda_j + \mu_j| > m_s(\lambda) + m_i(\mu)\} \leq card\{j, |\lambda_j| > m_s(\lambda)\} + card\{j, |\mu_j| > m_t(\lambda)\} \leq s + t,$ we conclude that $m_{s+t}(\lambda + \mu) \leq m_s(\lambda) + m_t(\mu)$.

For
$$\lambda \in \mathcal{L}$$
 define $h(\lambda) = \sum_{i=0}^{\infty} (i+1)m_i(\lambda)$.

LEMMA 4. If $\lambda, \mu \in \mathcal{L}$ then

$$h(\lambda + \mu) \le 4 [h(\lambda) + h(\mu)].$$

PROOF. We have

$$h(\lambda + \mu) = \sum_{r=0}^{\infty} (2r+1)m_{2r}(\lambda + \mu) + \sum_{r=0}^{\infty} (2r+2)m_{2r+1}(\lambda + \mu) \le \\ \le \sum_{r=0}^{\infty} (2r+1)[m_r(\lambda) + m_r(\mu)] + \sum_{r=0}^{\infty} (2r+2)[m_r(\lambda) + m_{r+1}(\mu)] \le \\ \le \sum_{r=0}^{\infty} (4r+3)[m_r(\lambda) + m_r(\mu)] \le 4[h(\lambda) + h(\mu)].$$

(continuation of the proof of Theorem 2):

Let $u \in A$, i.e. u can be expressed as

(6)
$$u = \alpha c + \sum_{n \in N} \sum_{k \in K} \beta_{nk} X_{nk} + \sum_{d \in \mathcal{D}} \gamma_d a_d + \sum_{d \in \mathcal{D}} \sum_{n \in N} \sum_{k \in K_{dn}} \delta_{dnk} y_{dnk}$$

where $\alpha, \beta_{nk}, \gamma_d, \delta_{dnk}$ are complex numbers such that only a finite number of them is non-zero. For u of form (6) define

$$f(u) = |\alpha| + \sum_{n \in N} h\left(\{\beta_{nk}\}_{k \in K}\right) + \sum_{d \in \mathcal{D}} |\gamma_d| + \sum_{d \in \mathcal{D}} \sum_{n \in N} \frac{2}{d_n + 1} h\left(\{\delta_{dnk}\}_{k \in K}\right)$$

(we put formally $\delta_{dnk} = 0$ for $k \in K - K_{dn}$).

The function $f: A \to < 0, \infty$) has the following properties:

- a) $u \in A, u \neq 0 \Rightarrow f(u) \neq 0$
- b) $f(\varepsilon u) = |\varepsilon| f(u)$ for each complex number ε and $u \in A$
- c) $f(u+u') \le 4[f(u) + f(u')]$
- d) $f(u, u') \le 8f(u)f(u')$.

The first two properties are evident, property c) follows from Lemma 4. To prove d) suppose that $u, u' \in A$ are of form (6) (i.e. $u' = \alpha' c + \sum_n \sum_k \beta'_{nk} x_{nk} + \ldots$). Then

$$f(uu') = f\left(\sum_{d,n} \sum_{k \in K_{dn}} d_n y_{dnk} (\beta_{nk} \gamma'_d + \beta'_{nk} \gamma_d)\right) =$$

$$= \sum_{d,n} \frac{2d_n}{d_{n+1}} h\left(\{\beta_{nk} \gamma'_d + \beta'_{nk} \gamma_d\}_{k \in K_{dn}}\right) \leq$$

$$\leq 8 \sum_{d,n} \left[|\gamma'_d| h\left(\{\beta_{nk}\}_{k \in K_{dn}}\right) + |\gamma_d| h\left(\{\beta'_{nk}\}_{k \in K_{dn}}\right)\right] \leq 8f(u) f(u').$$

Let $V = \{u \in A, f(u) < 1\}$ and $\mathcal{V} = \{tV, t \in (0, \infty)\}$. Then \mathcal{V} satisfies conditions (1) - (5) so A with the topology given by \mathcal{V} is a topological algebra.

Let $M \subset A$ be the subspace generated by the elements of form $c - \frac{1}{d_n} \sum_{k \in K_{dn}} y_{dnk}$,

 $d \in \mathcal{D}, n \in N$. Clearly M is a two-sided ideal in A.

Let $u \in A$ be of form (6). If $\beta_{nk} \neq 0$ for some $n \in N$, $k \in K$ or $\gamma_d \neq 0$ for some $d \in \mathcal{D}$ then $(u + tV) \cap M = \phi$ for a suitable $\epsilon > 0$, so $u \notin \overline{M}$. Similarly, $u \notin \overline{M}$ if $\delta_{dnk} \neq \delta_{dnk'}$ for some d, n, k, k'. Finally, if $u = \alpha c - \sum_{d,n} \sum_{k \in K_{dn}} \varepsilon_{dn} y_{dnk}$ and $\alpha \neq \sum_{d,n} d_n \varepsilon_{dn}$ we have $u \notin \overline{M}$ as $f(\frac{1}{d_n} \sum_{k \in K_{dn}} y_{dnk}) = 1$ $(d \in \mathcal{D}, n \in N)$.

Hence M is a closed ideal in A and $c \notin M$. Let B = A/M and let $\pi : A \longrightarrow B$ be the canonical homomorphism. Then B is a topological algebra and $\pi(c) \neq 0$.

We prove that B is not topologizable as a locally convex algebra. Suppose on the contrary that there exists a system \mathcal{W} of convex zero-neighbourhoods in B satisfying (1) - (5). We shall need the following lemma:

LEMMA 5. For every $W \in W$ there exists $d \in D$ and $n \in N$ such that $\pi(y_{dnk}) \in W$ for every $k \in K_{dn}$.

PROOF. Let $W \in \mathcal{W}$. Suppose on the contrary that for every $d \in \mathcal{D}$ and $n \in N$ there exists $k \in K_{dn}$ with $\pi(y_{dnk}) \notin W$. Let $W' \in \mathcal{W}$ satisfy $W'W' \subset W$. For $n \in N$ and $k \in K$ choose $s_{nk} > 0$ such that $\pi(x_{nk}) \in s_{nk}W'$.

Choose $d = \{d_{nk}\}_{n \in \mathbb{N}} \in \mathcal{D}$ such that $d_{nk} > ns_{nk} \ (n \in \mathbb{N}, k \in \mathbb{K})$. Then $a_d \in rW'$ for some r > 0.

We supposed that for every $n \in N$ there exists $k \in K_{dn}$ such that $\pi(y_{dnk}) \notin W$. On the other hand we have

$$\pi(y_{dnk}) = \frac{1}{d_n} \pi(x_{nk}) \pi(a_d) \in \frac{1}{d_n} s_{nk} W' r W' \subset \frac{s_{nk} r}{d_n} W.$$

So $s_{nk}r/d_n > 1$, $r > d_n/s_{nk} > n$ for every $n \in N$ which is a contradiction.

(continuation of the proof of Theorem 2): Let $W \in \mathcal{W}$. Let $d \in \mathcal{D}$ and $n \in N$ be given by Lemma 5. Then

$$\pi(c) = \frac{1}{d_n} \sum_{k \in K_{dn}} \pi(y_{dnk})$$

and $\pi(y_{dnk}) \in W$ for every $k \in K_{dn}$. Since W is convex and $cardK_{dn} = d_n$ we have $\pi(c) \in W$ for every $W \in \mathcal{W}$, a contradiction with condition (1).

Problem: Is it possible to construct separable algebras with properties of Theorem 1 (Theorem 2)?

REFERENCES

- [1] W.Żelazko, Selected topics in topological algebras, Aarhus University Lecture Notes, Series No 31 (1971).
- [2] W.Żelazko, On certain open problems in topological algebras, Rend. Sem. Mat. Fis. Milano (in print).
- [3] W.Zelazko, Example of an algebra which is non-topologizable as a locally convex topological algebra, Proc. Amer. Math. Soc. (in print).

Institute of Mathematics ČSAV Žitná 25, 115 67 Praha 1 Czechoslovakia