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Abstract. There are a number of spectra studied in literature which do not fit
into the axiomatic theory of Żelazko. This paper is an attempt to give an axiomatic
theory for these spectra which, apart from the usual types of spectra, like one-sided,
approximate point or essential spectra, include also the local spectra, the Browder
spectrum and various versions of the Apostol spectrum (studied under various names,
e.g. regular, semi-regular or essentially semi-regular).

I. Basic properties of regularities

The axiomatic theory of spectrum was introduced by W. Żelazko [21], see also
S lodkowski and Żelazko [17]. He gave a classification of various types of spectra defined
for commuting n-tuples of elements of a Banach algebra. The most important notion
is that of subspectrum.

All algebras in this paper are complex and unital. Denote by Inv(A) the set of all
invertible elements in a Banach algebra A and by σ(a) = {λ ∈ C, a− λ /∈ Inv(A)} the
ordinary spectrum of an element a ∈ A. The spectral radius of a ∈ A will be denoted
by r(a).

Definition 1.1. Let A be a Banach algebra. A subspectrum σ̃ in A is a mapping which
assigns to every n-tuple (a1, . . . , an) of mutually commuting elements of A a non-empty
compact subset σ̃(a1, . . . , an) ⊂ Cn such that
(1) σ̃(a1, . . . , an) ⊂ σ(a1)× · · · × σ(an),
(2) σ̃(p(a1, . . . , an)) = p(σ̃(a1, . . . , an)) for every commuting a1, . . . , an ∈ A and every

polynomial mapping p = (p1, . . . , pm) : Cn → Cm.

This notion has proved to be quite useful since it includes for example the left
(right) spectrum, the left (right) approximate point spectrum, the Harte (= the union
of the left and right) spectrum, the Taylor spectrum and various essential spectra.

However, there are also many examples of spectrum, usually defined only for single
elements of A, which are not covered by the axiomatic theory of Żelazko. The aim of
this paper is to give an axiomatic description of such spectra.

Instead of describing a spectrum, it is possible to describe equivalently the set of
regular elements.

Definition 1.2. Let A be a Banach algebra. A non-empty subset R of A is called a
regularity if
(1) if a ∈ A and n ∈ N then a ∈ A ⇔ an ∈ A,
(2) if a, b, c, d are mutually commuting elements of A and ac + bd = 1A, then

ab ∈ R ⇔ a ∈ R and b ∈ R.

1



Proposition 1.3. Let R be a regularity in a Banach algebra A.
(1) If a, b ∈ A, ab = ba and a ∈ Inv(A) then

ab ∈ R ⇔ a ∈ R and b ∈ R.

(2) Inv(A) ⊂ R.

Proof. (1) We have a · a−1 + b · 0 = 1A, so that it is possible to apply property (2)
of Definition 1.2.

(2) Let b ∈ R. By (1) for a = 1A we have 1A ∈ R.
Let c ∈ Inv(A). Then c · c−1 = 1A ∈ R, so that c ∈ R by (1).

A regularity R ⊂ A defines a mapping σ̃R from A into subsets of C by

σ̃R(a) = {λ ∈ C : a− λ /∈ R} (a ∈ A).

This mapping will be called the spectrum corresponding to the regularity R. When no
confusion can arise we will write simply σ̃(a).

Remarks:
(1) In general σ̃R(a) is neither closed nor non-empty. Proposition 1.3, (2) implies that

σ̃(a) is bounded, σ̃R(a) ⊂ σ(a).
(2) If ab = ba, b ∈ Inv(A) then a ∈ R ⇔ ab ∈ R. In particular, if a ∈ R and λ is a

non-zero complex number then λa ∈ R.
(3) Consider the following property

(P1) ab ∈ R ⇔ a ∈ R and b ∈ R for all commuting elements a, b ∈ A.

Clearly a non-empty subset R of A satisfying (P1) is a regularity.
(4) Let σ̃ be a subspectrum. It is an easy observation (see [12]) that the set R defined

by R = {a ∈ A : 0 /∈ σ̃(a)} is a regularity.
(5) Let (Rα)α be a family of regularities. Then R = ∩αRα is a regularity. The

corresponding spectra satisfy

σ̃R(a) =
⋃
α

σ̃Rα(a).

Examples:
Let A be a Banach algebra. The following subsets of A are regularities:

(1) R1 = A; the corresponding spectrum is empty for every a ∈ A.
(2) R2 = Inv(A); this gives the ordinary spectrum σ(a).
(3) Let R3(R4) be the set of all left (right) invertible elements of A. Then the corre-

sponding spectrum is the left (right) spectrum in A.
(4) Let R5(R6) be the set of all elements of A which are not the left (right) topological

divisors of zero. The corresponding spectrum is the left (right) approximate point
spectrum.
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In the algebra L(X) of all bounded operators in a Banach space X we have:
(5) R5 is the set of all operators bounded below, R6 is the set of all surjective operators.

The corresponding spectra in this case are usually called the approximate point
and the defect spectrum.

(6) Let R7 be the set of all Fredholm operators in X. This regularity gives the essential
spectrum.

(7) Let R8(R9) be the set of all upper (lower) semi-Fredholm operators in X. The
corresponding spectra are called upper (lower) semi-Fredholm or sometimes left
(right) essential approximate point spectrum.

All the sets defined above satisfy (P1) so they are regularities. However, all these
examples are rather trivial since it is well-known that the corresponding spectra can be
extended to commuting n-tuples of elements so that they become a subspectrum.

Further, more interesting examples of regularities will be given later.
Every spectrum defined by a regularity satisfies the spectral mapping theorem:

Theorem 1.4. Let R be a regularity in a Banach algebra A and let σ̃ be the corre-
sponding spectrum. Then

σ̃(f(a)) = f(σ̃(a))

for every a ∈ A and every function f analytic on a neighbourhood of σ(a) which is
non-constant on each component of its domain of definition.

Proof. It is sufficient to show

0 /∈ σ̃(f(a)) ⇔ 0 /∈ f(σ̃(a)). (1)

Since f has only a finite number of zeros λ1, . . . , λn in σ(a), it can be written as
f(z) = (z−λ1)k1 · · · (z−λn)kn ·g(z), where g is a function analytic on a neighbourhood
of σ(a) and g(z) 6= 0 for z ∈ σ(a). Then f(a) = (a− λ1)k1 · · · (a−λn)kn · g(a) and g(a)
is invertible by the spectral mapping theorem for the ordinary spectrum.

Thus (1) is equivalent to

f(a) ∈ R ⇔ a− λi ∈ R (i = 1, . . . , n). (2)

Since g(a) is invertible then, by the second of the previous remarks and by property (1)
of Definition 1.2, this is equivalent to

(a− λ1)k1 · · · (a− λn)kn ∈ R ⇔ (a− λi)
ki ∈ R (i = 1, . . . , n). (3)

Since for all relatively prime polynomials p, q there exist polynomials p1, q1 such that
pp1 + qq1 = 1, i.e. p(a)p1(a) + q(a)q1(a) = 1A, we can apply property (2) of the
definition inductively to get (3). This proves the theorem.

We shall see later that the assumption that f is non-constant on each component
is really necessary. However, in many cases this can be left out. We give a simple
criterion (in the most interesting case of the algebra L(X)) which is usually easy to
verify.
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Let R be a regularity in L(X) and let X = X1 ⊕X2. Denote R1 = {T1 ∈ L(X1) :
T1 ⊕ I ∈ R} and R2 = {T2 ∈ L(X2) : I ⊕ T2 ∈ R}. If Xi 6= {0} then Ri is a regularity
in L(Xi) (i = 1, 2). Indeed, to see condition (2) of Definition 1.2 (e.g. for R1), note
that if A1C1 + B1D1 = IX1 for some commuting A1, B1, C1, D1,∈ L(X1) then

(A1 ⊕ I)(C1 ⊕ 1
2
I) + (B1 ⊕ I)(D1 ⊕ 1

2
I) = IX .

If T1 ∈ L(X1) and T2 ∈ L(X2) then

T1 ⊕ T2 ∈ R ⇔ T1 ∈ R1 and T2 ∈ R2.

Indeed, this follows from the observation that

(T1 ⊕ I)(0⊕ I) + (I ⊕ T2)(I ⊕ 0) = IX .

Denote by σ̃i the spectrum corresponding to Ri (i = 1, 2).

Theorem 1.5. Let X be a Banach space, let R be a regularity in L(X) and let σ̃ be the
corresponding spectrum. Suppose that for all pairs of complementary subspaces X1, X2,
X = X1 ⊕X2 such that R1 = {S1 ∈ L(X1) : S1 ⊕ I ∈ R} 6= L(X1) the corresponding
specrum σ̃1(T1) = {λ : (T1 − λ)⊕ I /∈ R} is non-empty for every T1 ∈ L(X1).

Then σ̃(f(T )) = f(σ̃(T )) for every T ∈ L(X) and every function f analytic on a
neighbourhood of σ(T ).

Proof. It is sufficient to show that

0 /∈ σ̃(f(T )) ⇔ 0 /∈ f(σ̃(T )).

Let U1, U2 be open subsets of the domain of definition of f such that U1 ∪ U2 ⊃ σ(T ),
f |U1 is identically 0 and f2 = f |U2 can be written as f2(z) = p(z)g(z) where p is a
polynomial and g has no zeros in U2 ∩ σ(T ). Let X1, X2 be the spectral subspaces
corresponding to U1 and U2, i.e. X = X1 ⊕ X2, T = T1 ⊕ T2 where Ti = T |Xi and
σ(Ti) ⊂ Ui (i = 1, 2).

Let R1 ⊂ L(X1) and R2 ⊂ L(X2) be the regularities defined above and let σ̃1, σ̃2

be the corresponding spectra. Clearly σ̃(T ) = σ̃1(T1) ∪ σ̃2(T2).
The following statements are equivalent:
0 /∈ σ̃(f(T )),
f(T ) ∈ R,
0 ∈ R1 and f2(T2) ∈ R2,
R1 = L(X1) and p(T2) ∈ R2,
σ̃1(T1) = ∅ and 0 /∈ p(σ̃2(T2)),
0 /∈ f(σ̃1(T1) ∪ σ̃2(T2)),
0 /∈ f(σ̃(T )).

We are going to study now the continuity properties of spectra. Let R be a reg-
ularity in a Banach algebra A and let σ̃ be the corresponding spectrum. We consider
the following properties of R (or σ̃):
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(P2) ”Upper semi-continuity of σ̃”
If an, a ∈ A, an → a, λn ∈ σ̃(an) and λn → λ then λ ∈ σ̃(a).

(P3) ”Upper semi-continuity on commuting elements”
If an, a ∈ A, an → a, ana = aan for every n, λn ∈ σ̃(an) and λn → λ then
λ ∈ σ̃(a).

(P4) ”Continuity on commuting elements”
If an, a ∈ A, an → a and ana = aan for every n then λ ∈ σ̃(a) if and only if there
exists a sequence λn ∈ σ̃(an) such that λn → λ.

Clearly either (P2) or (P4) implies (P3). If σ̃ satisfies (P3) then, by considering a
constant sequence an = a, we have that σ̃(a) is closed for every a ∈ A.

Proposition 1.6. Let R be a regularity in a Banach algebra A, let σ̃ be the corre-
sponding spectrum. The following conditions are equivalent:
(1) (P2),
(2) σ̃(a) is closed for every a ∈ A and the function a 7→ σ̃(a) is upper semi-continuous,
(3) R is an open subset of A.

Proof. Clearly any condition implies that σ̃(a) is closed for each a ∈ A. The equiva-
lence 1 ⇔ 2 is well-known (see [2], p.25).

3 ⇒ 1; Let an, a ∈ A, an → a, λn ∈ σ̃(an) and λn → λ. Then an − λn /∈ R. Since
A−R is closed, we conclude a− λ /∈ R, λ ∈ σ̃(a).

1 ⇒ 3: We prove that A− R is closed. Let an ∈ A − R, an → a. Then 0 ∈ σ̃(an) for
each n. From (1) we conclude 0 ∈ σ̃(a), a ∈ A−R.

Proposition 1.7. Let R be a regularity in a Banach algebra A and let σ̃ be the
corresponding spectrum. The following conditions are equivalent:
(1) (P3),
(2) σ̃(a) is closed for every a ∈ A, and for every a ∈ A and a neighbourhood U of σ̃(a),

there exists ε > 0 such that σ̃(a + u) ⊂ U whenever u ∈ A, au = ua and ‖u‖ < ε.
(3) If a ∈ R then there exists ε > 0 such that u ∈ A, ua = au and ‖u‖ < ε implies

a + u ∈ R.

Proof. Analogous to Proposition 1.6.

Definition. If M, N are bounded subsets of C, we denote by δ(M, N) the Hausdorf
distance of M, N :

δ(M, N) = max
{

sup
z∈M

dist {z, N}, sup
w∈N

dist {w,M}}.

Proposition 1.8. Let R be a regularity in a Banach algebra A, let σ̃ be the corre-
sponding spectrum.
(1) Suppose that for all commuting a, u ∈ A with ‖u‖ < inf{|z| : z ∈ σ̃(a)} we have

a + u ∈ R. Then δ(σ̃(a), σ̃(b)) ≤ ‖a− b‖ for all commuting a, b ∈ A.
(2) If σ̃(a) is closed for every a ∈ A and δ(σ̃(a), σ̃(b)) ≤ ‖a − b‖ for all commuting

a, b ∈ A then σ̃ satisfies (P4).
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Proof. (1) Let a, b ∈ A, ab = ba and let λ ∈ σ̃(a). We prove dist {λ, σ̃(b)} ≤ ‖a − b‖.
This is clear if λ ∈ σ̃(b). If λ /∈ σ̃(b), then

‖a−b‖ = ‖(a−λ)−(b−λ)‖ ≥ inf{|z| : z ∈ σ̃(b−λ)} = dist {0, σ̃(b−λ)} = dist {λ, σ̃(b)}.

Thus
sup

λ∈σ̃(a)

dist {λ, σ̃(b)} ≤ ‖a− b‖

and from the symmetry δ(σ̃(a), σ̃(b)) ≤ ‖a− b‖.
(2) Let ana = aan, an → a, λn ∈ σ̃(an) and λn → λ. Then, for each n, there exists
µn ∈ σ̃(a), |µn−λn| ≤ ‖an− a‖. Clearly µn → λ, so that λ ∈ σ̃(a) since σ̃(a) is closed.
This proves the upper semi-continuity.

The lower semi-continuity is straightforward.

All regularities R1, . . . , R9 in the examples above are open, therefore they satisfy
(P2). In fact they satisfy also (P4).

Theorem 1.9. Let σ̃ be a subspectrum in a Banach algebra A. If a, u ∈ A, au = ua
and ‖u‖ < inf{|z| : z ∈ σ̃(a)} then 0 /∈ σ̃(a + u). Consequently, σ̃ (considered for single
elements of A) satisfies (P4).

Proof. Let a, u ∈ A, au = ua and ‖u‖ < inf{|z| : z ∈ σ̃(a)}. Consider σ̃ restricted
to the commutative Banach algebra A0 generated by a, u and 1A. By [21], Theorem
5.3 there exists a compact subset K of the maximal ideal space M(A0) such that
σ̃(c) = {f(c) : f ∈ K} for every c ∈ A0. In particular σ̃(a) = {f(a) : f ∈ K} and
σ̃(a + u) = {f(a + u) : f ∈ K}. For f ∈ K we have

|f(a + u)| = |f(a) + f(u)| ≥ |f(a)| − ‖u‖ ≥ inf{|z| : z ∈ σ̃(a)} − ‖u‖ > 0.

Thus 0 /∈ σ̃(a + u). By 1.8, σ̃ satisfies (P4).

Remark. Frequently, a spectrum σ̃ is defined only for single elements of A and we
would like to extend it to commutative n-tuples of A so that σ̃ becomes a subspectrum.
A necessary condition for it is (P1), see [12]. Property (P4) (or more precisely, au = ua,
‖u‖ < inf{|z| : z ∈ σ̃(a)} ⇒ 0 /∈ σ̃(a + u)) gives another necessary condition.

Yet another necessary condition is: if a, u ∈ A, au = ua and σ(u) = {0} then
σ̃(a + u) = σ̃(a).

It is an open problem to give some sufficient conditions.

The upper semi-continuity on commuting elements enables to weaken the axioms
of regularity.

Theorem 1.10. Let R be a non-empty subset of a Banach algebra A satisfying
(1) if a ∈ R and n ∈ N then an ∈ R,
(2) if a,b,c,d, are mutually commuting elements of A and ac + bd = 1A, then ab ∈

R ⇔ a ∈ R and b ∈ R,
(3) R satisfies (P3).

Then R is a regularity.
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Proof. It is sufficient to show an ∈ R ⇒ a ∈ R (n ≥ 2). By (3), an − µa =
a(an−1 − µ) ∈ R for some non-zero complex number µ. Since

(an−1 − µ) · (−µ−1) + a(µ−1an−2) = 1A,

we have a ∈ R by (2).

Theorem 1.11. Suppose R is a regularity in a Banach algebra A such that the
corresponding spectrum σ̃ satisfies max{|λ| : λ ∈ σ̃(a)} = r(a) for every a ∈ A. Then
∂σ(a) ⊂ σ̃(a) (a ∈ A).

Proof. Suppose on the contrary λ0 ∈ ∂σ(a) and there exists ε > 0 such that {z :
|λ0− z| < ε}∩ σ̃(a) = ∅. Choose λ1 ∈ C− σ(a), |λ1−λ0| < ε/2. Consider the function
f(z) = (λ1 − z)−1. Then

dist {λ1, σ̃(a)}−1 = max{|f(z)| : z ∈ σ̃(a)} = max{|z| : z ∈ σ̃(f(a))} = r(f(a))

= max{|f(z)| : z ∈ σ(a)} ≥ 1
|λ1 − λ0| > (ε/2)−1.

Thus there exists λ2 ∈ σ̃(a) with |λ2 − λ1| < ε/2, i.e. |λ2 − λ0| < ε, a contradiction.

II. Browder and Apostol spectra

Let T be an operator in a Banach space X. Denote by R(T ) and N(T ) its range
and kernel, respectively. In general N(T ) ⊂ N(T 2) ⊂ · · · and R(T ) ⊃ R(T 2) ⊃ · · ·.
Denote N∞(T ) =

⋃∞
n=0 N(Tn) and R∞(T ) =

⋂∞
n=0 R(Tn).

Denote by R0(X) the set of all operators T ∈ L(X) such that T is Fredholm and
either T is invertible or 0 is an isolated point of σ(T ).

Theorem 2.1. R0(X) is a regularity. Moreover, R0(X) is an open subset of L(X), so
that the corresponding spectrum (the Browder spectrum) satisfies (P2) (upper semi-
continuity).

Proof. Clearly T ∈ R0(X) if and only if there exists a decomposition X = X1 ⊕X2

such that TXi ⊂ Xi (i = 1, 2), dim X1 < ∞, σ(T |X1) ⊂ {0} and T |X2 is invertible.
It is easy to see that X1 = N∞(T ) and X2 = R∞(T ).

We prove that R0(X) satisfies (P1). Let T, S ∈ L(X), TS = ST . If T, S ∈ R0(X)
then TS is Fredholm and the inclusion σ(TS) ⊂ σ(T ) · σ(T ) gives easily TS ∈ R0(X).

Conversely, suppose TS ∈ R0(X). Then X = N∞(TS)⊕R∞(TS), dim N∞(TS) <
∞ and T |R∞(TS) is invertible.

Let M be the spectral subspace corresponding to all non-zero eigenvalues of the
finite dimensional operator T |N∞(TS). Then X = N∞(T ) ⊕ (R∞(TS) ⊕ M) is the
required decomposition so that T ∈ R0(X).

We show that R0(X) is open. Let T ∈ R0(X). Let δ > 0 satisfy {z : |z| <
3δ} ∩ σ(T ) ⊂ {0}. From the upper semi-continuity of the ordinary and the essential
spectra there exists ε > 0 such that ‖S‖ < ε implies that T + S is Fredholm,

σ(T + S) ⊂ {z : |z| ≤ δ} ∪ {z : |z| ≥ 2δ}
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and σe(T + S) ⊂ {z : |z| ≥ 2δ}. It follows from the properties of the essential spectrum
that either T +S is invertible or 0 is an isolated eigenvalue of T +S of finite multiplicity.
Thus T + S ∈ R0(X) for every S ∈ L(X), ‖S‖ < ε.

Remark. By [3] it is possible to extend the Browder spectrum to a subspectrum defined
on commuting n-tuples of operators. Thus R0(X) satisfies also (P4) by Theorem 1.9.

Let T be an operator from a Banach space X into a Banach space Y . We say that
T has a generalized inverse if there exists an operator S : Y → X such that TST = T .

It is well-known that T has a generalized inverse if and only if T has closed range
and both N(T ) and R(T ) are complemented subspaces of X and Y , respectively.

Let M, N be closed subspaces of a Banach space X. We write M
e⊂N if there

exists a finite dimensional subspace F ⊂ X such that M ⊂ N + F . Equivalently,
dim M/(M ∩N) < ∞.

Notation. Let X be a Banach space. Denote by
(1) R1(X) the set of all T ∈ L(X) such that R(T ) is closed and N(T ) ⊂ R∞(T ),

(2) R2(X) the set of all T ∈ L(X) such that R(T ) is closed and N(T )
e⊂R∞(T ),

(3) R3(X) the set of all T ∈ L(X) such that N(T ) ⊂ R∞(T ) and T has a generalized
inverse,

(4) R4(X) the set of all T ∈ L(X) such that N(T )
e⊂R∞(T ) and T has a generalized

inverse.

The elements of R1(X) are called semi-regular operators (see [9]), the elements of
R2(X) essentially semi-regular. Correspondingly, the elements of R3(X) and R4(X)
will be called regular and essentially regular.

The semi-regular operators in Hilbert spaces were first studied by Apostol [1] (note
that in Hilbert spaces semi-regular=regular) and further in [8], [10], [11], [12] and [15].
For essentially semi-regular operators see [12] and [13]. The regular operators were
studied in [16] (cf. also [12] and [14]). The essentially regular operators has not been
studied yet. We fill this logical gap.

We summarize now the basic properties of semi-regular and essentially semi-regular
operators:

Theorem 2.2. (see [8], [10], [11]). Let T ∈ L(X) be an operator with closed range.
The following conditions are equivalent:
(1) N(T ) ⊂ R∞(T ),
(2) N∞(T ) ⊂ R(T ),
(3) N∞(T ) ⊂ R∞(T ),
(4) the function λ 7→ R(T − λ) is continuous at λ = 0 in the gap topology,
(5) the function λ 7→ N(T − λ) is continuous at λ = 0 in the gap topology,
(6) the function λ 7→ c(T − λ) is continuous at λ = 0, where c is the Kato reduced

minimum modulus defined by c(S) = inf
{‖Sx‖ : dist {x, N(S)} = 1

}
, see [6],

(7) lim infλ→0 c(T − λ) > 0,
(8) there exist a closed subspace M of X such that TM = M and the operator T̃ :

X/M −→ X/M induced by T is bounded below. As the subspace M it is possible
to take R∞(T ).
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In fact we are going to use only conditions (1),(2),(3) and (8).

Theorem 2.3. (see [8], [12], [13]). Let T ∈ L(X) be an operator with closed range.
The following conditions are equivalent:

(1) N(T )
e⊂R∞(T ),

(2) N∞(T )
e⊂R(T ),

(3) N∞(T )
e⊂R∞(T ),

(4) there exist subspaces X0, X1 ⊂ X such that X = X0 ⊕X1, dim X0 < ∞, TX0 ⊂
X0, TX1 ⊂ X1, T |X0 is nilpotent and T |X1 is semi-regular (the Kato decomposi-
tion),

(5) there exist a closed subspace M of X such that TM = M and the operator
T̃ : X/M −→ X/M induced by T is upper semi-Fredholm

(
R(T̃ ) is closed and

dim N(T̃ ) < ∞)
. As M it is possible to take R∞(T ).

We prove that Ri(X) (i = 1, 2, 3, 4) are regularities. We shall need several lemmas.
Most of them are known but since they are usually stated in a little bit different form
and they are scattered in many papers, we give the proofs.

Lemma 2.4. (see [12], Theorem 3.5.) If A,B ∈ L(X), AB = BA, N(AB)
e⊂R∞(AB)

and R(AB) is closed then R(A) and R(B) are closed.

Proof. There exists a finite dimensional subspace F ⊂ X such that N(AB) ⊂
R(AB) + F . We prove that R(A) + F is closed. Let vj ∈ X, fj ∈ F and Avj + fj → u.
Then BAvj + Bfj → Bu and Bu ∈ R(AB) + BF since R(AB) + BF is closed. Thus
Bu = ABv + Bf for some v ∈ X and f ∈ F so that

Av + f − u ∈ N(B) ⊂ N(AB) ⊂ R(AB) + F ⊂ R(A) + F.

Hence u ∈ R(A) +F and R(A) +F is closed. By a lemma of Neubauer (see [12]), R(A)
is closed.

Lemma 2.5. (see [12], Lemma 1.7.) If R(A) is closed and N(A)
e⊂R∞(A) then R(An)

is closed for every n.

Proof. Let F be a finite dimensional subspace of N(A) such that N(A) ⊂ R∞(A)+F .
We prove by induction on n that R(An) is closed. Suppose n ≥ 1 and R(An) = R(An).
Let u ∈ R(An+1), i.e. An+1vj → u (j → ∞), for some vj ∈ X. By the induction
assumption u ∈ R(An), u = Anv for some v ∈ X. Thus A(Anvj − An−1v) → 0.
Consider the operator Ã : X/N(A) −→ X induced by A. Clearly Ã is bounded below
and Ã(Anvj − An−1v + N(A)) → 0, so that Anvj − An−1v + N(A) → 0 (j → ∞) in
the quotient space X/N(A). Thus there exist vectors kj ∈ N(A) ⊂ R(An) + F such
that Anvj + kj → An−1v. Since R(An) + F is closed, we have An−1v = Ana + f for
some a ∈ X and f ∈ F ⊂ N(A). Hence u = Anv = An+1a ∈ R(An+1) and R(An+1) is
closed.

Lemma 2.6. Let A,B, C, D be mutually commuting operators in X such that AC +
BD = I. Then

9



(1) For every n there are Cn, Dn ∈ L(X) such that An, Bn, Cn, Dn are mutually
commuting and AnCn + BnDn = I.

(2) For every n, R(AnBn) = R(An) ∩ R(Bn) and N(AnBn) = N(An) + N(Bn).
Further R∞(AB) = R∞(A) ∩R∞(B) and N∞(AB) = N∞(A) + N∞(B).

(3) N∞(A) ⊂ R∞(B) and N∞(B) ⊂ R∞(A).

Proof. (1) We have

I = (AC + BD)2n−1 =
2n−1∑

i=0

(
2n− 1

i

)
AiCiB2n−1−iD2n−1−i = AnCn + BnDn

for some Cn, Dn ∈ L(X) commuting with An, Bn.

(2) Clearly R(AB) ⊂ R(A) ∩ R(B). If x ∈ R(A) ∩ R(B), x = Au = Bv for some
u, v ∈ X, then set w = Cv + Du. Then

Bw = BCv + BDu = Cx + BDu = ACu + BDu = u,

so that ABw = Au = x. Thus R(AB) = R(A) ∩R(B).
By (1) we have R(AnBn) = R(An) ∩R(Bn) for every n and

R∞(AB) =
⋂
n

R(AnBn) =
⋂
n

(R(An) ∩R(Bn)) = R∞(A) ∩R∞(B).

Similarly N(A) + N(B) ⊂ N(AB). If x ∈ N(AB), then x = ACx + BDx,
where ACx ∈ N(B) and BDx ∈ N(A). Thus N(AB) = N(A) + N(B) and, by
(1), N(AnBN ) = N(An) + N(Bn). Further

N∞(AB) =
⋃
n

N(AnBn) =
⋃
n

(N(An) + N(Bn)) = N∞(A) + N∞(B).

(3) If x ∈ N(A) then x = BDx ∈ R(B). Thus N(A) ⊂ R(B) and, by 1), N(An) ⊂
R(Bn) for every n. If m ≥ n then N(An) ⊂ N(Am) ⊂ R(Bm), so that N(An) ⊂ R∞(B)
and N∞(A) ⊂ R∞(B). The inclusion N∞(B) ⊂ R∞(A) follows from the symmetry.

Lemma 2.7. Let A,B ∈ L(X), AB = BA. If N(AB) ⊂ R∞(AB) then N(A) ⊂
R∞(A). If N(AB)

e⊂R∞(AB) then N(A)
e⊂R∞(A).

Proof. If N(AB) ⊂ R∞(AB) then

N(A) ⊂ N(AB) ⊂ R∞(AB) ⊂ R∞(A).

Similarly, if N(AB)
e⊂R∞(AB), then

N(A) ⊂ N(AB)
e⊂R∞(AB) ⊂ R∞(A).

Lemma 2.8. Let A,B, C, D be mutually commuting operators in a Banach space X,
let AC +BD = I. Then AB has a generalized inverse if and only if both A and B have
a generalized inverse.
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Proof. Suppose ASA = A and BTB = B for same S, T ∈ L(X). Then

ABTSAB = ABT (CA + BD)SAB = ABTCASAB + ABTBDSAB

=ABTCAB + ABDSAB = ABT (I −BD)B + A(I − CA)SAB

=ABTB −ABTBDB + ASAB −ACASAB

=AB −ABDB + AB −ACAB = 2AB −A(BD + CA)B = AB.

Conversely, let ABZAB = AB for some Z ∈ L(X). Then

A[C + BZ(I −AC)]A = ACA + ABZA−ABZACA = ACA + ABZA[I − CA]

=ACA + ABZABD = ACA + ABD = A

and similarly B[D + (I −DB)ZA]B = B.

Lemma 2.9. Let A,F ∈ L(X), let A have a generalized inverse and let F be a finite
dimensional operator. Then A + F has a generalized inverse.

Proof. Since R(A) is closed, we have R(A) + R(F ) is closed. Since R(A + F ) is of
finite codimension in R(A) + R(F ), we conclude that R(A + F ) is closed.

Let M be a subspace of X such that R(A) ⊕M = X. Let x1, . . . , xn be a basis
in R(F ), xi = Aui + mi where ui ∈ X,mi ∈ M (i = 1, . . . , n). Set M0 = ∨{mi, i =
1, . . . , n} and let M1 be a subspace of M with M0 ⊕M1 = M . Then

X = R(A)⊕ (M0 ⊕M1) = (R(A) + R(F ))⊕M1

since R(A) + R(F ) = R(A)⊕M0. Thus R(A) + R(F ) is complemented and R(A + F )
is of finite codimension in R(A) + R(F ). Hence R(A + F ) is complemented.

Similarly one can prove the complementarity of N(A + F ).

Lemma 2.10. Let A be an operator with closed range such that N(A)
e⊂R∞(A).

Suppose that A has a generalized inverse. Then An has a generalized inverse for
every n.

Proof. (a) Suppose first N(A) ⊂ R∞(A). Let ASA = A for some S ∈ L(X). We
prove by induction on n that AnSnAn = An for every n. Suppose AnSnAn = An.
Then

An+1Sn+1An+1 = A[AnSn(SA− I) + AnSn]An.

By the induction assumption AnSn is a projection onto R(An) and SA−I is a projection
onto N(A) ⊂ R(An). Thus

An+1Sn+1An+1 = A[(SA− I) + AnSn]An = A ·AnSnAn = An+1.

(b) The general case N(A)
e⊂R∞(A) can be reduced to (a) by the Kato decomposition

(Theorem 2.3, (4)) and the previous lemma.

Lemma 2.11. Let A ∈ R2(X) and let F ∈ L(X) be a finite dimensional operator.
Then A + F ∈ R2(X).
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Proof. See [7].

Lemma 2.12. (cf. [16]) Let T ∈ L(X) be a semi-regular operator having a generalized
inverse. Then there exists ε > 0 such that T − U has a generalized inverse for every
operator U ∈ L(X) commuting with T such that ‖U‖ < ε.

Proof. Let TST = T for some S ∈ L(X). Set ε = ‖S‖−1. Let U ∈ L(X), UT = TU
and ‖U‖ < ε.

We prove first by induction on n, that U(SU)nN(T ) ⊂ N(Tn+1) for every n. This
is clear for n = 0. Suppose U(SU)n−1N(T ) ⊂ N(Tn) ⊂ R(T ) and let z ∈ N(T ). Then,
for some v ∈ X,

Tn+1U(SU)nz = TnUTSTv = TnUTv = UTnU(SU)n−1z = 0

by the induction assumption. Since I − ST is a projection onto N(T ), we have

U(SU)n(I − ST )X ⊂ N(Tn+1) ⊂ R(T ) (n ≥ 0),

so that
(I − TS)U(SU)n(I − ST ) = 0 (n ≥ 0).

Then

(T − U)S(I − US)−1(T − U) = (T − U)S
∞∑

i=0

(US)i(T − U)

=TST − UST − TSU + TSUST

+
∞∑

i=0

(TS(US)i+2T − US(US)i+1T − TS(US)i+1U + US(US)iU)

=T − UST − TSU + TSUST +
∞∑

i=0

(I − TS)(US)i+1U(I − ST )

=T − U + (I − TS)U(I − ST ) +
∞∑

i=0

(I − TS)U(SU)i+1(I − ST ) = T − U.

Theorem 2.13. The sets Ri(X) (i = 1, 2, 3, 4) are regularities satisfying (P3) (upper
semi-continuity on commuting elements).

Proof. It is easy to see that Inv(L(X)) ⊂ Ri(X) (i = 1, 2, 3, 4).
The implication T ∈ Ri(X) ⇒ Tn ∈ Ri(X) (i = 1, 2, 3, 4) follows from Lemmas

2.5 and 2.10 and the trivial fact that R∞(Tn) = R∞(T ) and N∞(Tn) = N∞(T ).
Suppose that A,B,C, D are commuting operators satisfying AC + BD = I. The

implication AB ∈ Ri(X) ⇒ A,B ∈ Ri(X) (i = 1, 2, 3, 4) follows from Lemmas 2.4,
2.7 and 2.8. The opposite implication follows from Lemmas 2.6, (2) and (3) and 2.8.

By Theorem 1.10 it remains to show (P3).
Let T ∈ R1(X). By condition (8) of Theorem 2.2, R∞(T ) is closed, TR∞(T ) =

R∞(T ) and the induced operator T̃ : X/R∞(T ) −→ X/R∞(T ) is bounded below. If U
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is an operator commuting with T such that ‖U‖ is small enough, then (T +U)R∞(T ) =
R∞(T ) and the induced operator ˜T + U : X/R∞(T ) −→ X/R∞(T ) is bounded below.
Thus T + U ∈ R1(X) by condition (8) of Theorem 2.2. Hence R1(X) satisfies (P3).

Condition (P3) for R3(X) follows from Lemma 2.8.
Let T ∈ R2(X) and let X = X1 ⊕X2 be the Kato decomposition: dim X1 < ∞,

T =

(
T1 O
O T2

)

in this decomposition and T2 = T |X2 is semi-regular (i.e. T2 ∈ R1(X2)). If U ∈
L(X), UT = TU and

U =

(
U11 U12

U21 U22

)

is the decomposition X = X1 ⊕X2 then T2U22 = U22T2 and ‖U22‖ ≤ c · ‖U‖ for some
positive constant c depending only on the decomposition X = X1 ⊕X2.

If ‖U‖ is small enough, then T2 + U22 is semi-regular and T + U ∈ R2(X) by
Lemma 2.11. Hence R2(X) satisfies (P3).

Property (P3) for R4(X) can be proved analogously using Lemmas 2.9, 2.12.

Corollary 2.14. (see [10], [11], [12], [13], [15], [16]) Let T ∈ L(X), let f be a function
analytic on a neighbourhood of σ(T ).Then

σ̃i(f(T )) = f(σ̃i(T )) (i = 1, 2, 3, 4),

where σ̃i is the spectrum corresponding to the regularity Ri(X), (i = 1, 2, 3, 4).

Proof. If X = X1 ⊕X2 is a decomposition of X, T1 ∈ L(X1) and T2 ∈ L(X2) then

T1 ⊕ T2 ∈ Ri(X) ⇔ T1 ∈ Ri(X1) and T2 ∈ Ri(X2) (i = 1, 2, 3, 4).

Since σ̃3(T1) ⊃ σ̃1(T1) ⊃ ∂σ(T1) we have for i = 1, 3

σ̃i(T1) 6= ∅ ⇔ X1 6= {0}.

Since σ̃4(T1) ⊃ σ̃2(T1) ⊃ ∂σe(T1), for i = 2, 4 we have similarly

σ̃i(T1) 6= ∅ ⇔ dim X1 = ∞.

The spectral mapping theorems now follow from Theorem 1.5.

The spectra σ̃1 and σ̃2 are not only upper semi-continuous on commuting elements,
they are also continuous.

Theorem 2.15. The regularities R1(X) and R2(X) satisfy (P4).

Proof. (a) Let T ∈ R1(X). Denote ε = inf{|z| : T − z 6∈ R1(X)} and M = R∞(T ).
Since R∞(T − λ) = M for |λ| < ε, we have (T − λ)M = M and the induced operator
˜T − λ : X/M −→ X/M is bounded below.
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If UT = TU and ‖U‖ < ε, then UM ⊂ M and (T + U)M = M by Theorem 1.9.
for the defect spectrum. Similarly the induced operator ˜T + U : X/M −→ X/M is
bounded below. Thus T + U ∈ R1(X).

(b) For R2(X) the proof can be done analogously by using condition (5) of Theorem
2.3.

Problem. We do not know whether the regularities R3(X) and R4(X) satisfy (P4).

Remark. The regularities Ri(X) (i = 1, 2, 3, 4) satisfy neither (P1) nor (P2), see
[12], Examples 2.2 and 2.5.

III. Local spectra

Further examples of regularities provide the local spectra.

Notation. Let x be a vector in a Banach space X. Denote by Rx(X) the set of
all operators T ∈ L(X) for which there exists a neighbourhood U ⊂ C of 0 and an
analytic vector-valued function f : U −→ X such that (T − z)f(z) = x (z ∈ U).

If f(z) =
∑∞

i=0 xi+1z
i is the Taylor expansion of f in a neighbourhood of 0 then

(T − z)f(z) = Tx1 +
∑∞

i=1 zi(Txi+1 − xi) so that Txi+1 = xi (i = 1, 2, . . .) and
Tx1 = x. Thus T ∈ Rx(X) if and only if there exist vectors x1, x2, . . . ∈ X such that
Txi = xi−1 (i = 1, 2, . . .), where x0 = x and supi≥1 ‖xi‖1/i < ∞.

We start with the following lemma.

Lemma 3.1. Let A,B, C, D be mutually commuting operators in a Banach space
X such that AC + BD = I, let xi, yi ∈ X (i = 0, 1, . . .) satisfy Axi = xi−1, Byi =
yi−1 (i = 1, 2, . . .), x0 = y0 and supi≥1 ‖xi‖1/i < ∞, supi≥1 ‖yi‖1/i < ∞. Then there
exist vectors zij ∈ X (i, j = 0, 1, . . .) such that zi,0 = xi, z0,j = yj (i, j = 0, 1, . . .),
Azij = zi−1,j (i ≥ 1), Bzij = zi,j−1 (j ≥ 1) and supi+j≥1 ‖zij‖1/i+j < ∞.

In particular ABzi,i = zi−1,i−1 (i ≥ 1).

Proof. Set zi,0 = xi, z0,j = yj and define zij inductively by zij = Czi−1,j +
Dzi,j−1 (i, j ≥ 1). Then

Azij =ACzi−1,j + ADzi,j−1 = zi−1,j −BDzi−1,j + ADzi,j−1

=zi−1,j −Dzi−1,j−1 + Dzi−1,j−1 = zi−1,j

and

Bzij = BCzi−1,j + BDzi,j−1 = zi,j−1 −ACzi,j−1 + BCzi−1,j = zi,j−1

for all i, j ≥ 1. Further, if k is a positive constant satisfying ‖xi‖ ≤ ki, ‖yi‖ ≤
ki (i = 1, 2, . . .), then it is easy to show by induction that ‖zij‖ ≤ max{k, ‖C‖ +
‖D‖}i+j (i, j = 0, 1, . . .).

Theorem 3.2. Let x be a vector in a Banach space X. Then Rx(X) is a regularity
satisfying (P3).
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Proof. If T ∈ L(X) is invertible then set xi = T−ix (i = 0, 1, . . .). Clearly
T ∈ Rx(X).

Suppose T ∈ Rx(X) and let n be positive integer. Let xi ∈ X satisfy Txi =
xi−1 (i = 1, 2, . . .) and supi≥1 ‖xi‖1/i < ∞. Set yi = xni (i = 0, 1, . . .). Then
Tnyi = Tnxni = xn(i−1) = yi−1 (i = 1, 2, . . .) and

sup
i≥1

‖yi‖1/i = [sup
i≥1

‖yi‖1/ni]n < [sup
i≥1

‖xi‖1/i]n < ∞.

Thus Tn ∈ Rx(X).
Let A,B, C,D be mutually commuting operators with AC + BD = I. The impli-

cation A,B ∈ Rx(X) ⇒ AB ∈ Rx(X) follows from the previous lemma.
Let AB = BA ∈ Rx(X). Let xi ∈ X satisfy ABxi = xi−1 (i = 1, 2, . . .) with

x0 = x and let supi≥1 ‖xi‖1/i < ∞. Set yi = Bixi Then Ayi = ABixi = Bi−1xi−1 =
yi−1 (i = 1, 2, . . .) and supi≥1 ‖yi‖1/i ≤ ‖B‖ · supi≥1 ‖xi‖1/i < ∞. Thus A ∈ Rx(X)
and similarly B ∈ Rx(X). In particular Tn ∈ Rx(X) implies T ∈ Rx(X) so that Rx(X)
is a regularity.

To prove property (P3), let T ∈ Rx(X), let xi ∈ X satisfy Txi = xi−1 (i =
1, 2, . . .), x0 = x and supi≥1 ‖xi‖1/i = k < ∞. Let U ∈ L(X), UT = TU and ‖U‖ <

k−1. Set g(λ) =
∑∞

i=0(U + λ)ixi+1. This series is convergent for |λ| < k−1 − ‖U‖ and
we have

(T − U − λ)g(λ) = Tx1 +
∞∑

i=1

(U + λ)iTxi+1 −
∞∑

i=0

(U + λ)i+1xi+1 = Tx1 = x.

Thus T − U ∈ Rx(X).

Denote by γx the spectrum corresponding to the regularity Rx(X).

Remark. The standard notation is γT (x) and this local spectrum has been studied
intensively, see e.g. [4], [5], [18], [19], [20]. For our approach, however, the notation
γx(T ) is much more appropriate.

Corollary 3.3. (see e.g. [18]) Let x be a vector in a Banach space X, let T ∈ L(X).
Then

γx(f(T )) = f(γx(T ))

for every function f analytic on a neighbourhood of σ(T ) which is non-constant on
every component of its domain of definition.

Remarks.
(1) The assumption that f is non-constant on each component is really necessary, since

γx(T ) might be empty, cf. [19].
(2) Rx(X) does not satisfy (P2). To see this consider a 2-dimensional space X with a

basis e1, e2, x = e1,

T =

(
1 0
0 0

)
.
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Then T ∈ Rx(X) and (
1 0
ε 0

)
6∈ Rx(X)

for every ε > 0.
(3) We do not know whether Rx(X) satisfies (P4).

Consider now the subset R(X) ⊂ L(X) defined by: T 6∈ R(X) if and only if there
exists a function f : U −→ X analytic in a neighbourhood U of 0 such that f is not
identically equal to 0 and (T − z)f(z) = 0 (z ∈ U).

As before it is easy to see that T 6∈ R(X) if and only if there exist vectors xi ∈
X (i = 1, 2, . . .) not all of them equal to 0 such that Txi = xi−1 (i = 1, 2, . . .), where
x0 = 0 and supi≥1 ‖xi‖1/i < ∞. We can assume that x1 6= 0.

Theorem 3.4. R(X) is a regularity.

Proof. If T ∈ L(X) is an invertible operator and xi ∈ X (i = 1, 2, . . .) satisfy
Txi = xi−1 (i = 1, 2, . . .) where x0 = 0, then T ixi = 0, so that xi = 0 for every i.
Hence T ∈ R(X) and R(X) is non-empty.

Let A, B ∈ L(X), AB = BA 6∈ R(X). We prove that either A 6∈ R(X) or B 6∈
R(X). Let xi ∈ X satisfy ABxi = xi−1 (i = 1, 2, . . .), where x0 = 0, x1 6= 0 and
supi≥1 ‖xi‖1/i < ∞. Set ui = Bixi (i = 0, 1, . . .). Then u0 = 0, Aui = ui−1 (i =
1, 2, . . .) and supi≥1 ‖ui‖1/i < ∞. If u1 6= 0 then A 6∈ R(X).

Suppose on the contrary u1 = Bx1 = 0. Set v0 = 0, vi = Ai−1xi (i = 1, 2, . . .).
Then Bvi = vi−1 (i = 1, 2, . . .), supi≥1 ‖vi‖1/i < ∞ and v1 = x1 6= 0. Thus B 6∈ R(X).
Hence A,B ∈ R(X), AB = BA implies AB ∈ R(X).

In particular A ∈ R(X) ⇒ An ∈ R(X) (n = 1, 2, . . .).
Let A 6∈ R(X) and let xi ∈ X satisfy the required conditions. Then yi = xni satisfy

all the required conditions for An , so that An 6∈ R(X). Hence A ∈ R(X) ⇔ An ∈ R(X).
Suppose that A,B, C,D are mutually commuting operators satisfying AC +BD =

I and A /∈ R(X). Let xi ∈ X satisfy Axi = xi−1 (i = 1, 2, . . .), x0 = 0, not all of
xi’s are equal to 0 and supi≥1 ‖xi‖1/i < ∞. Set yi = 0 (i = 0, 1, . . .). By Lemma
3.1 there are zi ∈ X not all of them equal to 0 such that ABzi = zi−1, z0 = 0 and
supi≥1 ‖zi‖1/i < ∞. Thus AB 6∈ R(X), so that AB ∈ R(X) ⇒ A,B ∈ R(X).

Denote by σ̃ the spectrum corresponding to the regularity R(X). In general σ̃(T )
is not closed (on contrary, it is always open) , so that R(X) can not satisfy (P2), (P3)
or (P4). Neither R(X) satisfies (P1). To see this, let X be a separable Hilbert space,
A = 0 and let B be a backward shift. It is easy to see that 0 = AB ∈ R(X) and
B 6∈ R(X).

The closure of σ̃(T ) is usually denoted by ST and called the analytic residuum of
T .

Corollary 3.5. (see [18]) Let T ∈ L(X) and let f be a function analytic on a neigh-
bourhood of σ(T ) which is non-constant on each component of its domain of definition.
Then

σ̃(f(T )) = f(σ̃(T )) and Sf(T ) = f(ST ).
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Proposition 3.6. Let T ∈ L(X), x ∈ X,x 6= 0. Then σ̃(T ) ∪ γx(T ) 6= ∅.
Proof. Suppose on the contrary that σ̃(T ) ∪ γx(T ) = ∅. Then for every z ∈ C
there exists a neighbourhood Uz of z and an analytic function fz : Uz −→ X such
that (T − λ)fz(λ) = x (λ ∈ Uz). Since σ̃(T ) = ∅, functions fz and fw coincide on
Uz ∩ Uw (z, w ∈ C), so that in fact we have an entire function f : C −→ X such
that (T − λ)f(λ) = x (λ ∈ C). For |λ| > r(T ) we have f(λ) = (T − λ)−1x, so that
limλ→∞ |f(λ)| = 0. By the Liouville theorem f = 0, so that x = 0, a contradiction.

The closure of σ̃(T ) ∪ γx(T ) will be denoted by σx(T ). (the standard notation is
again rather σT (x) instead of σx(T ); this set is also called the local spectrum).

Theorem 3.7. Let T ∈ L(X), x ∈ X, x 6= 0 and let f be a function analytic on a
neighbourhood of σ(T ). Then

σ̃(f(T )) ∪ γx(f(T )) = f(σ̃(T )) ∪ f(γx(T )) and σx(f(T )) = f(σx(T )).

Proof. Let X = X1⊕X2 be a decomposition of X, let x = x1⊕x2 be the corresponding
decomposition of x, let T1 ∈ L(X1) and T2 ∈ L(X2). It is easy to see that

T1 ⊕ T2 ∈ Rx(X) ⇔ T1 ∈ Rx1(X1) and T2 ∈ Rx2(X2)

and
T1 ⊕ T2 ∈ R(X) ⇔ T1 ∈ R(X1) and T2 ∈ R(X2).

The previous theorem together with Theorem 1.5 completes the proof.

References.

[1] C. Apostol, The reduced minimum modulus, Michigan Math. J. 32 (1985), 279–
294.

[2] F. F. Bonsal, J. Duncan, Complete normed algebras, Springer-Verlag, Berlin, 1973.

[3] R. E. Curto, A. T. Dash, Browder spectral systems, Proc. Amer. Math. Soc. 103
(1988), 407–413.

[4] N. Dunford, Survey of the theory of spectral operators, Bull. Amer. Math. Soc.
64 (1958), 217–274.

[5] J. D. Gray, Local analytic extensions of the resolvent, Pacific. J. Math. 27 (1968),
305–324.

[6] T. Kato, Perturbation theory for linear operators, Springer-Verlag, Berlin, 1966.

[7] V. Kordula, The essential Apostol spectrum and finite dimensional perturbations,
to appear.

[8] V. Kordula, V. Müller, The distance from the Apostol spectrum, to appear.

17
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