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The notion of regularity in a Banach algebra was introduced and studied in [KM]
and [MM]. A non-empty subset R of a unital Banach algebra A is called a regularity if
it satisfies the following two conditions:
(i) if a ∈ A and n ∈ N, then a ∈ R ⇔ an ∈ R,

(ii) if a, b, c, d are mutually commuting elements of A satisfying ac + bd = 1A then
ab ∈ R ⇔ a, b ∈ R.
The axioms of regularities are weak enough so that there are plenty of examples

that appear naturally in Banach algebras and operator theory. On the other hand they
are strong enough so that they have interesting consequences, especially the spectral
mapping theorem for the corresponding spectrum σR(a) = {λ ∈ C : a− λ /∈ R}.

In fact the axioms (i) and (ii) of regularities can be divided in two halves, each of
them implying a one-way spectral mapping theorem.

The aim of this paper is to study systematically semiregularities defined in this
way. There are many natural examples of such classes that satisfy only one half of the
axioms of regularities. The corresponding spectra include the exponential spectrum, the
Weyl spectrum, T -Weyl spectrum, Kato essential spectrum, various essential spectra
etc.

All Banach algebras considered in this paper are complex and unital.

Lower semiregularities

Definition 1. Let R be a non-empty subset of a Banach algebra A. Then R is called
a lower semiregularity if
(i) a ∈ A, n ∈ N, an ∈ R ⇒ a ∈ R,

(ii) if a, b, c, d are mutually commuting elements of A satisfying ac + bd = 1A and
ab ∈ R then a, b ∈ R.

For a lower semiregularity R define the corresponding spectrum σR by σR(a) =
{λ ∈ C : a− λ /∈ R}.

Clearly the intersection R =
⋂

α Rα of any system of lower semiregularities is again
a lower semiregularity. The corresponding spectra satisfy σR(a) =

⋃
α σRα(a) for all

a ∈ A.
Denote by Inv (A) the set of all invertible elements of a Banach algebra A.

Lemma 2. Let R ⊂ A be a lower semiregularity. Then:
(i) 1A ∈ R;

(ii) Inv (A) ⊂ R;
(iii) if a ∈ R, b ∈ Inv (A) and ab = ba then ab ∈ R;
(iv) σR(a) ⊂ σ(a);
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(v) (translation property) σR(a + λ) = λ + σR(a).

Proof. (i) Let b ∈ R. We have 1 · 1 + b · 0 = 1 and 1 · b = b ∈ R. Thus 1 ∈ R.

(ii) Let a ∈ Inv (A). Then a · a−1 + a−1 · 0 = 1 and a · a−1 = 1 ∈ R. Hence a ∈ R.

(iii) We have (ab) · 0 + b−1 · b = 1 and (ab) · b−1 = a ∈ R so that ab ∈ R.

The remaining statements are clear.

Remark 3. Suppose that R ⊂ A is a non-empty subset satisfying

a, b ∈ A, ab = ba, ab ∈ R ⇒ a, b ∈ R. (1)

Then clearly R is a lower semiregularity.

Theorem 4. Let R ⊂ A be a lower semiregularity and a ∈ A. Then

f(σR(a)) ⊂ σR(f(a))

for each locally non-constant function f analytic on a neighbourhood of σ(a).

Proof. Suppose on the contrary that λ ∈ f(σR(a)) \ σR(f(a)). Since the function
f(z)− λ has only a finite number of zeros α1, . . . , αn in σ(a), we can write

f(z)− λ = (z − α1)k1 . . . (z − αn)kng(z),

for some ki ≥ 1 and a function g analytic on a neighbourhood of σ(a) such that
g(z) 6= 0 (z ∈ σ(a)). Thus

f(a)− λ = (a− α1)k1 . . . (a− αn)kng(a),

where f(a)−λ ∈ R and g(a) ∈ Inv (A). By Lemma 2 (iii), (a−α1)k1 · · · (a−αn)kn ∈ R.
Let i ∈ {1, . . . , n}. For certain polynomials p, q we have

(z − αi)
ki · p(z) +

(∏

j 6=i

(z − αj)kj

)
· q(z) = 1.

The corresponding identity for z replaced by a gives (a− αi)ki ∈ R. Thus a− αi ∈ R
and αi /∈ σR(a) (i = 1, . . . , n). Hence λ /∈ f(σR(a)), a contradiction.

Corollary 5. Let R ⊂ A be a lower semiregularity and 0 /∈ R. Then p(σR(a)) ⊂
σR(p(a)) for all polynomials p.

Proof. It is sufficient to verify the inclusion for the constant polynomials p(z) ≡ λ. In
this case we have p(σR(a)) ⊂ {λ} and σR(p(a)) = σR(λ · 1A) = {λ}.

Theorem 6. Let R ⊂ A be a lower semiregularity satisfying the following condition:
if c = c2 ∈ R, a ∈ A and ac = ca then c + (1 − c)a ∈ R . Then f(σR(a)) ⊂ σR(f(a))
for all a ∈ A and f analytic on a neighbourhood of σ(a).

2



Proof. Let U be the domain of definition of f . Suppose on the contrary that λ ∈
f(σR(a)) \σR(f(a)). Let U1 be the union of all components of U where f is identically
equal to λ, and U2 = U \ U1. Let h be defined by

h(z) =

{
0 (z ∈ U1),
1 (z ∈ U2).

Then we can write

f(z)− λ = h(z)(z − α1)k1 · · · (z − αn)kn · g(z)

where α1, . . . , αn ∈ σ(a) ∩ U2, g is analytic on U and g(z) 6= 0 (z ∈ σ(a)). Set q(z) =
(z−α1)k1 · · · (z−αn)kn . Thus f(a)−λ = h(a)q(a)g(a) = h(a)q(a)

(
1−h(a)+g(a)h(a)

)
,

where 1− h(a) + g(a)h(a) ∈ Inv (A). We have f(a)− λ ∈ R and so, by Lemma 2 (iii),
h(a)g(a) ∈ R.

Consider the function r defined by

r(z) =

{
q(z)−1 (z ∈ U1),
0 (z ∈ U2).

Then q(z)(1 − h(z)) · r(z) + h(z) · 1 = 1 and q(a)h(a) ∈ R and so q(a) ∈ R, h(a) ∈ R.
As in Theorem 4, q(a) ∈ R implies a− αi ∈ R (i = 1, . . . , n) and so αi /∈ σR(a).

Since λ ∈ f(σR(a)), there is β ∈ U1 ∩ σR(a). Further h(a) is an idempotent in R
and, by the assumption, we have (a − β)(1 − h(a)) + h(a) ∈ R. Further (1 − h(a)) +
(a− β)h(a) ∈ Inv (A) and so

a− β =
(
(a− β)(1− h(a)) + h(a)

) · ((1− h(a)) + (a− β)h(a)
) ∈ R.

This contradicts to the fact that β ∈ σR(a).

Remark 7. In particular the condition of the previous theorem is satisfied if the unit
element is the unique idempotent in R.

Another typical application is when A is the algebra of all bounded operators on a
Banach space, all idempotents in R are projections onto subspaces of finite codimension
and R is invariant under finite rank perturbations (for example Fredholm operators,
upper (lower) semi-Fredholm operators etc.).

Theorem 8. Let R ⊂ A be a lower semiregularity. The following conditions are
equivalent:
(i) R is open;

(ii) σR(a) is closed for each a ∈ A and the set-valued function a 7→ σR(a) is upper
semicontinuous.

Proof. Straightforward.

Remark 9. Let R ⊂ A be a lower semiregularity. Then the spectrum σR can be
extended to n-tuples of commuting elements of A in such a way that

pσR(a1, . . . , an) ⊂ σR(p(a1, . . . , an))
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for all commuting n-tuples a1, . . . , an ∈ A and all non-constant polynomials p in n
variables, see [MW]. Indeed, define

σR(a1, . . . , an) = {(λ1, . . . , λn) ∈ Cn : p(a1 − λ1, . . . , an − λn) /∈ R for all p}.

The extension is not unique; other (trivial) extension is σR(a1, . . . , an) = ∅ when-
ever n ≥ 2.

The first extension is the maximal among all extensions satisfying the one-way
spectral mapping property (clearly the trivial extension is minimal).

We show now some examples of lower semiregularities. Of course every regularity
(for examples see [KM] and [MM]) is also a lower semiregularity. Therefore we restrict
here only to examples of lower semiregularities that are not regularities.

Let L(X) be the algebra of all bounded linear operators acting on a Banach space
X. For T ∈ L(X) and k ≥ 0 define

αk(T ) = dim N(T k+1)/N(T k),

βk(T ) = dim R(T k)/R(T k+1),

γk(T ) = dim ker
(
R(T k)/R(T k+1)

T̂−→R(T k+1)/R(T k+2)
)

= codim Im
(
N(T k+2)/N(T k+1)

T̃−→N(T k+1/N(T k)
)
,

where the operators T̂ and T̃ are induced by T , see [G].
The following properties of these numbers can be found in [MM]:

(i)
α0(T ) ≥ α1(T ) ≥ · · · ,
β0(T ) ≥ β1(T ) ≥ · · · .

(ii) γk(T ) = αk(T )−αk+1(T ) = βk(T )−βk+1(T ) whenever the differences have sense.

(iii)

αn(Tm) =
m−1∑

i=0

αmn+i(T ),

βn(Tm) =
m−1∑

i=0

βmn+i(T ),

γn(Tm) =
2m−2∑

i=0

γmn+i(T ) ·min{i + 1, 2m− 1− i} ≥
2m−2∑

i=0

γmn+i(T ).

(iv) If A,B, C, D are mutually commuting operators satisfying AC + BD = I then

max{αn(A), αn(B)} ≤ αn(AB) ≤ αn(A) + αn(B),

max{βn(A), βn(B)} ≤ βn(AB) ≤ βn(A) + βn(B),

max{γn(A), γn(B)} ≤ γn(AB) ≤ γn(A) + γn(B).

(v) if AC + BD = I then R(AnBn) is closed ⇔ R(An) and R(Bn) are closed;
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(vi) if R(Tn) is closed and γi(T ) < ∞ (i ≥ n − 1) then R(T j) is closed for every
j ≥ n− 1.

Write N∞(T ) =
⋃

i≥0 N(T i) and R∞(T ) =
⋂

i≥0 R(T i).
Fix m ≥ 0. The previous properties imply that the following subsets of L(X) are

lower semiregularities:

(1) {T ∈ L(X) : dim N(T ) ≤ m} = {T : sup αi(T ) ≤ m},
(2) {T ∈ L(X) : dim N∞(T ) ≤ m} = {T :

∑
αi(T ) ≤ m},

(3) {T ∈ L(X) : lim αi(T ) ≤ m},
(4) {T ∈ L(X) : codim R(T ) ≤ m} = {T : sup βi(T ) ≤ m},
(5) {T ∈ L(X) : codim R∞(T ) ≤ m} = {T :

∑
βi(T ) ≤ m},

(6) {T ∈ L(X) : lim βi(T ) ≤ m},
(7) {T ∈ L(X) : sup γi(T ) ≤ m},
(8) {T ∈ L(X) :

∑
γi(T ) ≤ m},

(9) {T ∈ L(X) : lim sup γi(T ) ≤ m}.
(10) {T ∈ L(X) : dim N(T ) ≤ m and R(T) is closed},
(11) {T ∈ L(X) : dim N∞(T ) ≤ m and R(T) is closed},
(12) {T ∈ L(X) : there exists n such that αn(T ) < ∞ and R(Tn+1) is closed},
(13) {T ∈ L(X) : sup γi(T ) ≤ m and R(T ) is closed},
(14) {T ∈ L(X) :

∑
γi(T ) ≤ m and R(T ) is closed},

(15) {T ∈ L(X) : there is n0 such that γn(T ) ≤ m and R(Tn) is closed (n ≥ n0)}.
Note that the range in classes (4) – (6) is closed automatically.

Denote by Φ(X), Φ+(X) and Φ−(X) the set of all Fredholm, upper semi-Fredholm
and lower semi-Fredholm operators acting on a Banach space X. It is easy to see that
these classes are even regularities. The union

(16) Φ+(X) ∪ Φ−(X)

is a lower semiregularity. Indeed, by [O2], it satisfies condition (1) of Remark 3.
The corresponding spectrum was studied by Kato [K], Oberai [O2], Gramsch and Lay
[GL], and others. It is sometimes called the Kato essential spectrum (σK). By Remark 9
the one-way spectral mapping σK(f(T )) ⊂ f(σK(T )) is satisfied for all functions ana-
lytic on a neighbourhood of σ(T ).

Upper semiregularities

Definition 10. A subset R ⊂ A is called an upper semiregularity if
(i) a ∈ R, n ∈ N ⇒ an ∈ R,

(ii) if a, b, c, d are mutually commuting elements of A satisfying ac + bd = 1A and
a, b ∈ R then ab ∈ R,

(iii) R contains a neighbourhood of the unit element 1A.

The definitions of upper and lower semiregularities are only seemingly asymmetric.
In fact condition (iii) was for lower semiregularities satisfied automatically.

Clearly R is a regularity if and only if it is both lower and upper semiregularity.
Again define σR(a) = {λ ∈ C : a− λ /∈ R}. Clearly the intersection of any family

of upper semiregularities is again upper semiregularity. Also the mapping a 7→ σR(a)
is upper semicontinuous if and only if R is open.

5



Remark 11. If R ⊂ A is a semigroup then conditions (i) and (ii) of Definition 10
are satisfied. Thus a semigroup containing a neighbourhood of the unit element is an
upper semiregularity.

Lemma 12. Let R ⊂ A be an upper semiregularity, let a ∈ R ∩ Inv (A). Then there
exists ε > 0 such that {b ∈ A : ab = ba, ‖b− a‖ < ε} ⊂ R.

Proof. Let δ > 0 satisfy {c ∈ A : ‖c − 1A‖ < δ} ⊂ R. Let a ∈ R ∩ Inv (A). Set
ε = δ

‖a−1‖ . Suppose that b ∈ A, ab = ba and ‖b − a‖ < ε. Then ‖a−1b − 1‖ =

‖a−1(b− a)‖ ≤ ‖a−1‖ · ‖b− a‖ < δ and so a−1b ∈ R. Further a · a−1 + (a−1b) · 0 = 1,
hence b = a · (a−1b) ∈ R.

Lemma 13. Let R ⊂ A be an upper semiregularity, an ∈ R ∩ Inv (A) (n = 1, 2, . . .),
a ∈ Inv (A), an → a and ana = aan. Then a ∈ R.

Proof. For each n we have an ·a−1
n +(a−1

n a)·0 = 1. Further a−1
n a → 1 so that a−1

n a ∈ R
for n large enough. Thus a = an · (a−1

n a) ∈ R.

Theorem 14. Let R ⊂ A be an upper semiregularity, let a ∈ A. Let M be a component
of C \ σ(a). Then either M ⊂ σR(a) or M ∩ σR(a) = ∅.
Proof. Let L = {a− λ : λ ∈ M, a− λ ∈ R}. By Lemma 12, L is open and, by Lemma
13, it is relatively closed in M . Thus either L = ∅ or L = M .

Corollary 15. Let R ⊂ A be an upper semiregularity. Then λ · 1A ∈ R for each
nonzero complex number λ.

Proof. Consider the element a = 0. The set M = {λ ∈ C : λ 6= 0} is a component of
C \ σ(0). Further 1 ∈ R, so λ ∈ R for all λ ∈ M .

Lemma 16. Let R ⊂ A be an upper semiregularity, let a ∈ R, b ∈ R ∩ Inv (A) and
ab = ba. Then ab ∈ R.

Proof. We have a · 0 + b · b−1 = 1, so ab ∈ R.

Denote by σ̂(a) the polynomially convex hull of σ(a).

Theorem 17. Let R ⊂ A be an upper semiregularity, let a ∈ A. Then σR(a) ⊂ σ̂(a).
Further σR(a) \ σ(a) is a union of some bounded components of C \ σ(a).

Proof. For |λ| big enough we have 1− a
λ ∈ R, so a−λ = −λ(1− a

λ ) ∈ R. By Theorem
14 the unbounded component of C\σ(a) is disjoint with σR(a) and thus σR(a) ⊂ σ̂(a).

Corollary 18. σR(a) ∪ σ(a) is a compact subset of C for all a ∈ A.

Theorem 19. Let R ⊂ A be an upper semiregularity, let a ∈ A. Then σR(p(a)) ⊂
p(σR(a)) for all nonconstant polynomials p.

Moreover, if σR(a) 6= ∅ for all b ∈ A then σR(p(a)) ⊂ p(σR(a)) for all polynomials
p.
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Proof. Let p be a nonconstant polynomial. Let λ /∈ p(σR(a)). Write p(z) − λ =
β · (z − α1)k1 · · · (z − αn)kn where n ≥ 1 and β ∈ C, β 6= 0. Thus

p(a)− λ = β · (a− α1)k1 · · · (a− αn)kn .

By the assumption αi /∈ σR(a) (i = 1, . . . , n). Thus a−αi ∈ R and (a−αi)ki ∈ R. As
in Theorem 4 we have (z−α1)k1 · · · (z−αn)kn ∈ R and p(a)−λ ∈ R, i.e., λ /∈ σR(p(a)).
Thus σR(p(a)) ⊂ p(σR(a)) for all non-constant polynomials.

Suppose that σR(b) 6= ∅ for all b ∈ A. Let p(z) ≡ λ be a constant polynomial.
Then

σR(p(a)) = σR(λ · 1A) ⊂ {λ} = p(σR(a)).

Theorem 20. Let R ⊂ A be an upper semiregularity. Suppose that R satisfies the
condition

b ∈ R ∩ Inv (A) ⇒ b−1 ∈ R. (2)

Then σR(f(a)) ⊂ f(σR(a)) for all a ∈ A and all locally non-constant functions f
analytic on a neighbourhood of σ(a) ∪ σR(a).

Further σR(f(a)) ⊂ f(σR(a)∪σ(a)) for all functions f analytic on a neighbourhood
of σR(a) ∪ σ(a).

Proof. Suppose first that f is locally non-constant and suppose on the contrary
that there is λ ∈ σR(f(a)) \ f(σR(a)). Then f(a) − λ = q(a)g(a) where q(a) =
(z − α1)k1 · · · (a − αn)kn and g is a function analytic and non-zero on a neighbour-
hood of σ(a) ∪ σR(a). By the assumption f(a)− λ /∈ R and αi /∈ σR(a), i.e., a− αi ∈
R (i = 1, . . . , n). As in Theorem 4 we obtain that q(a) ∈ R. Further there are a com-
pact neighbourhood V of σ(a) ∪ σR(a) and rational functions pn(z)

qn(z) with poles outside

V such that pn(z)
qn(z) → g(z) uniformly on V . We can assume that the polynomials pn, qn

are non-constant and pn(z) 6= 0 on σ(a) ∪ σR(a).
By Theorem 19 this means that pn(a) ∈ R, qn(a) ∈ R. By the assumption

qn(a)−1 ∈ R. Thus pn(a)qn(a)−1 ∈ R and, by Lemma 13, g(a) = lim pn(a)qn(a)−1 ∈ R.
Since q(a) ∈ R and g(a) ∈ R ∩ Inv (A), we have f(a)− λ ∈ R, a contradiction.

Suppose now that f is analytic on a neighbourhood of σ(a) ∪ σR(a) and λ ∈
σR(f(a)) \ f(σ(a) ∪ σR(a)). Let U be the domain of definition of f , U = U1 ∪ U2

where U1, U2 are disjoint open sets, f |U1 ≡ λ and f is not identically equal to λ on any
nonempty open subset of U2. By the assumption (σR(a) ∪ σ(a)) ∩ U1 = ∅, so U2 is an
open neighbourhood of σ(a) ∪ σR(a). The proof proceeds as in the first part.

In many cases the inclusion σR(f(a)) ⊂ f(σR(a)) is true for all analytic functions.
By Theorem 20 this is true if R satisfies (2) and R ⊂ Inv (A), i.e., σR(a) ⊃ σ(a) for all
a.

More generally, one can show that σR(f(a)) ⊂ f(σR(a)) for all f if R satisfies (2)
and each component of σ(a) meats σR(a).

Another typical situation is described in the following theorem.

Theorem 21. Let R ⊂ L(X) be an upper semiregularity satisfying (2) such that
(i) if T ∈ R and F ∈ L(X) is a finite rank operator commuting with T , then T +F ∈ R,
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(ii) if T ∈ L(X), U1, U2 are disjoint open sets, σ(T ) ⊂ U1 ∪ U2 and σR(T ) ⊂ U2, then
the spectral projection of T corresponding to U1 is of finite rank.
Then σR(f(T ) ⊂ f(σR(T )) for all T ∈ L(X) and f analytic on a neighbourhood

of σ(T ) ∪ σR(T ).

Proof. Let f is analytic on a neighbourhood of σ(a) ∪ σR(a) and suppose that there
is λ ∈ σR(f(a)) \ f(σR(a)). Let U1, U2 be disjoint open sets, f |U1 ≡ λ and f is
not identically equal to λ on any nonempty open subset of U2. By the assumption
σR(a) ∩ U1 = ∅, so σR(T ) ⊂ U2. Let h be defined by

h(z) =

{
0 (z ∈ U1),
1 (z ∈ U2).

By (ii), I − h(a) is a finite rank projection. We can write

f(z)− λ = h(z)(z − α1)k1 · · · (z − αn)kng(z)

for some α1, . . . , αn ∈ σ(a) ∩ U2, g analytic on U1 ∪ U2 and g(z) 6= 0 (z ∈ σ(a)). Set
q(z) = (z − α1)k1 · · · (z − αn)kn .

We have αi /∈ σR(T ), so T − αi ∈ R and, as in Theorem 4, q(a) ∈ R.
Further f(T ) − λ = h(T )q(T )g(T ) ∈ R and by assumption (i), q(T )g(T ) ∈ R. As

in Theorem 20 we can get g(T ) ∈ R ∩ Inv (L(X)) and so q(T ) ∈ R, a contradiction.

Examples.
(1) Let R be the principal component of Inv (A). Then R is an open semigroup and

so an upper semiregularity. The corresponding spectrum is the exponential spectrum
σexp of Harte [H1]. By Theorems 17 and 20, σ(a) ⊂ σexp(a) ⊂ σ̂(a) and fσexp(a) ⊂
σexp(f(a)) for each function f analytic on a neighbourhood of σexp(a).

(2) Let R = {T ∈ Φ(X) : ind T = 0}. Again R is an open semigroup and thus an
upper semiregularity. The corresponding spectrum is the Weyl spectrum (sometimes
also called Schechter spectrum) σW (T ) = {λ ∈ C : T −λ /∈ Φ(X) or ind T 6= 0}, see [S],
[O1]. It is well-known that σW (T ) =

⋂
σ(T + K) where the intersection is taken over

the set of all compact operators K. By Theorem 21 we have σW (f(T )) ⊂ f(σW (T ))
for each function f analytic on a neighbourhood of σ(T ).

(3) More generally, let J be a closed two-sided ideal in a Banach algebra A and
R = {a ∈ A : (a+J)∩Inv (A) 6= ∅}. It is easy to check that R is a semigroup containing
Inv (A) and so an upper semiregularity. The corresponding spectrum was studied in
[H2]

(4) Let A = L(X) and m ≥ 0. Clearly the following sets are upper semiregularities:
{T ∈ Φ(X) : ind T ≥ m},
{T ∈ Φ(X) : ind T ≤ −m},
{T ∈ Φ(X) : ind T ∈ mZ},
{T ∈ Φ+(X) : ind T ≥ m},
{T ∈ Φ−(X) : ind T ≤ −m},
{T ∈ Φ+(X) : ind T ≤ −m},
{T ∈ Φ−(X) : ind T ≥ m}.
In particular, for m = 0, the last two classes are
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Φ−+(X) = {T ∈ Φ+(X) : ind T ≤ 0} and
Φ+
−(X) = {T ∈ Φ−(X) : ind T ≥ 0}.

These classes and the corresponding spectra were studied by Rakočević [R1], [R2]
and Zemánek [Z2].

The corresponding spectra were called the essential approximate point spectrum
and the essential defect spectrum and denoted by σea and σed, respectively.

They satisfy
σea(T ) =

⋂
{σπ(T + K) : K compact},

σed(T ) =
⋂
{σδ(T + K) : K compact}

(where σπ and σδ denote the approximate point spectrum and defect spectrum, re-
spectively), and the one-way spectral mapping theorem for all analytic functions, cf.
Theorem 21.

Note that similar classes
B+(X) = {T ∈ Φ+(X) : ascent (T ) < ∞} and
B−(X) = {T ∈ Φ−(X) : descent (T ) < ∞},
and the corresponding spectra σB+ and σB− (called Browder essential approximate

point spectrum and Browder essential defect spectrum e.g. in [R1] and [Z2], and upper
(lower) semi-Browder spectra in [H3], [KMR]) exhibit much nicer properties. Not only
are these classes regularities but it is possible to extend the spectra σB+ and σB− to all
commuting n-tuples of operators such that the multivariable spectral mapping property
is satisfied, see [KMR].

Further, for single operators,

σB+(T ) =
⋂
{σπ(T + K) : K compact, TK = KT},

σB−(T ) =
⋂
{σδ(T + K) : K compact, TK = KT}.
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[Z2] J. Zemánek, Approximation of the Weyl spectrum, Proc. R. Ir. Acad. 87A (1987),
177–180.

Institute of Mathematics AV ČR
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