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Abstract. We study the invertibility of Banach algebras elements in their

extensions, and invertible extensions of Banach and Hilbert space oper-

ators with prescribed growth conditions for the norm of inverses. As

applications, the solutions of two open problems are obtained. In the

first one we give a characterization of E(T)-subscalar operators in terms

of growth conditions. In the second one we show that operators satis-

fying a Beurling-type growth condition possess Bishop’s property (β).
Other applications are also given.

1. Introduction

1A. Preamble. A bounded linear operator can be made ’nicer’ by an ex-

tension or a dilation to a larger space. One example, [SNF], is the cel-

ebrated Sz.-Nagy dilation theorem (every Hilbert space contraction has a

unitary dilation), or its extension variant (every Hilbert space contraction

has a coisometric extension). A Banach space example is a result due to

R.G. Douglas, [Do], stating that a Banach space isometry has an extension

to a surjective isometry. Douglas’ construction is hilbertian, in the sense

that if the given operator acts on a Hilbert space, then its extension, a

unitary operator, acts also on a Hilbert space. In the framework of Banach

algebras, a classical result of R.F. Arens, [Ar], states that if an element u of

a commutative unital Banach algebra A is not a topological divisor of zero,

then u is invertible in a commutative unital Banach algebra containing A.
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Other such examples, related to the topic of the present paper, can be found

in [St, Re1, Mü, Re2, Re3, BP, BY].

1B. Motivation. The aim of this paper is to study the invertibility of Ba-

nach algebras elements in their extensions, and invertible extensions of Ba-

nach or Hilbert space operators with prescribed growth conditions for the

norm of inverses. We obtain, among other things, generalizations of the

above mentioned results of Douglas and Arens.

Our investigations were also motivated by two open problems, which will

be solved positively in this paper. The first one is due to K.B. Laursen

and M.M. Neumann [LN, Problem 6.1.15] and M. Didas [Di] and asks for a

characterization in terms of growth conditions of E(T)-subscalar operators,

i.e., of operators which are similar to restrictions of E(T)-scalar operators

to closed invariant subspaces.

The second open problem asks [MMN1] if operators T ∈ B(X) satisfying

the Beurling-type condition

(1.1)
∞∑

n=1

log max(‖T n‖,m(T n)−1)

n2
< ∞

possess Bishop’s property (β) ; see (1.2) for the definition of the minimum

modulus m(T n) and Section 4 for the definition of property (β).

1C. Organization of the paper. Our first result in the second section is a

refinement of the Arens construction. We consider the invertibility of an

element u of a Banach algebra A in an extension of A with prescribed

growth conditions for ‖u−k‖, k ≥ 1. We then consider extensions of Banach

space operators. We use a method due to one of the authors [Mü] to pass

from the Banach algebra case to the case of B(X).

In Section 3 we use an idea of Batty and Yeates [BY] to show that, given

a real number p ≥ 1 and T ∈ B(X), there is an isomorphic embedding

π : X 7→ Y and an invertible operator S ∈ B(Y ) with prescribed growth

conditions for ‖S−k‖, k ≥ 1, such that T is similar to the restriction of S

to π(X). Moreover, the space Y may be obtained from X as a quotient of

a subspace of an ultraproduct of spaces of the form Lp(X) (i.e., a SQp(X)-

space). In particular, if p = 2 and X is a Hilbert space, then so is Y .
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In the last section we consider several applications. A characterization

for E(T)-subscalar operators is given in Theorem 4.1. The question from

[MMN1] concerning operators satisfying the Beurling-type condition (1.1) is

positively answered in Theorem 4.5. We then consider operators satisfying

some exponential growth conditions. Other applications concerning opera-

tors with countable spectrum and Hilbert space contractions with spectrum

a Carleson set are given.

1D. Notation and terminology. We recall now some known facts and in-

troduce some notation. All other undefined terms are classical or will be

defined in Section 4.

Banach algebras. All Banach algebras are considered to be complex and

with unit. Let u be an element of a Banach algebra A. We write

dA(u) = inf{‖ux‖ : x ∈ A, ‖x‖ = 1}.
If no confusion can arise then we omit the upper index and write simply

d(u) instead of dA(u).

Let A,B be commutative Banach algebras. We say that B is an extension

of A if there exists an isometrical unit preserving homomorphism ρ : A →
B. If we identify A with the image ρ(A) we can consider A as a closed

subalgebra of B and write simply A ⊂ B.

Operators. In this paper X (and Y ) will denote complex Banach spaces

and H (and K) will denote Hilbert spaces. Denote by B(X) the algebra

of all bounded linear operators on the Banach space X. By an operator

we always mean a bounded linear operator. Note that for an operator

T ∈ B(X) we can express the quantity dB(X)(T ) in a more convenient way

by

(1.2) m(T ) := dB(X)(T ) = inf{‖Tx‖ : x ∈ X, ‖x‖ = 1}.
This quantity is called the minimum modulus of T ([GT]) or the lower

bound of T ([LN]).

We denote by σ(T ) and σap(T ) the spectrum and the approximate point

spectrum of a bounded linear operator T ∈ B(X), respectively. The latter

is given by

σap(T ) =
{
λ ∈ C : inf{‖(T − λ)x‖ : ‖x‖ = 1} = 0

}
.
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Note that m(T ) > 0 if and only if T ∈ B(X) is one-to-one and of closed

range. If T is a Hilbert space operator, then σap(T ) coincides with the left

spectrum and m(T ) > 0 if and only if T is left invertible.

We say that S ∈ B(Y ) is an extension of T ∈ B(X) if there is an isometry

π : X → Y such that Sπ = πT . We can also consider X as a subspace of

Y and write T = S|X .

Banach spaces of class SQp. Let p ≥ 1 be a real number. A Banach space

E is said to be a SQp-space if it is a quotient of a subspace of an Lp-space.

Let X be a Banach space. A Banach space E is said to be a SQp(X)-

space if it is (isometric to) a quotient of a subspace of an ultraproduct

of spaces of the form Lp(Ω, µ, X), for some measure spaces (Ω, µ). Since

ultraproducts of Lp-spaces are Lp-spaces, the latter definition is consistent

with the former one. Note that any Banach space is isometric to a subspace

(resp. a quotient) of an L∞-space (resp. an L1-space). Also, if H is a

Hilbert space, then each SQ2(H)-space is a Hilbert space too.

SQp(X)-spaces are characterized by a theorem of R. Hernandez [He] (for

X = C this goes back to [Kw]). See also [Pi] (and [LM, Theorem 3.2])

for a different proof using p-completely bounded maps. Namely, E is a

SQp(X)-space if and only if

‖a‖p,E ≤ ‖a‖p,X

for each n ≥ 1 and each matrix a = [aij] ∈ Mn(C). Here

‖[aij]‖p,Y = sup




(∑
i

∥∥∥
∑

j

aijyj

∥∥∥
p
)1/p


 ,

where the supremum runs over all n-tuples (y1, · · · , yn) in Y which satisfy∑ ‖yj‖p ≤ 1.

Nearness. Let p ≥ 1 and β : N → (0,∞). Let X be a subspace of Y .

Two operators T and C in B(Y ) are said to be (β, p)-near modulo X if for

every N ∈ N and for all x1, . . . , xN ∈ X we have

(1.3)

∥∥∥∥∥
N∑

n=1

(T n − Cn)xn

∥∥∥∥∥ ≤
(

N∑
n=1

β(n)p‖xn‖p

)1/p

.

For a constant weight function β(n) ≡ s and for p = 2 this definition was

introduced and studied in [Ba1, Ba2] under the name of quadratic nearness.
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Note that if p = 1, and if the operators T, C ∈ B(Y ) verify ‖T n−Cn‖ ≤
β(n) for all n ≥ 1, then (1.3) holds for every xn ∈ Y .

2. A refinement of the Arens construction

The result of R.F. Arens [Ar] implies that if A is a commutative Banach

algebra and dA(u) > 0, then there exists a commutative extension B ⊃ A
such that u is invertible in B. It follows from the Arens construction that

‖u−k‖ ≤ (
dA(u)

)−k
(k ≥ 1). The following theorem gives a necessary

and sufficient condition for having invertible extensions of Banach algebra

elements with prescribed growth conditions for the norm of inverses.

2.1. Theorem. Let u be an element of a commutative Banach algebra A. Let

(cj)
∞
j=1 be a sequence of positive numbers which is submultiplicative, i.e.,

ci+j ≤ cicj for all i, j ≥ 1. Then there is a commutative extension B ⊃ A
such that u is invertible in B and ‖u−j‖ ≤ cj (j ≥ 1) if and only if we have

‖a0‖ ≤
∞∑

j=1

cj‖aj − aj−1u‖

for every sequence (aj)
∞
j=0 in A of finite support.

Proof. Suppose that B ⊃ A is a commutative extension with all the required

properties. Let (aj)
∞
j=0 be a sequence in A such that aj = 0 for j ≥ n. Write

fj = aj − aj−1u. Then

‖a0‖A = ‖a0‖B = ‖u−nuna0‖

=

∥∥∥∥∥−u−n

(
n∑

j=1

un−jfj

)∥∥∥∥∥

=
∥∥∥

n∑
j=1

u−jfj

∥∥∥ ≤
n∑

j=1

cj‖fj‖.

For the converse, set formally c0 = 1. Consider the algebra C of all power

series
∑∞

i=0 aix
i in one variable x with coefficients ai ∈ A such that

∥∥∥
∞∑
i=0

aix
i
∥∥∥ =

∞∑
i=0

‖ai‖ci < ∞.
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With the multiplication given by( ∞∑
i=0

aix
i

)
·
( ∞∑

j=0

a′jx
j

)
=

∞∑

k=0

xk

( ∑

i+j=k

aia
′
j

)
,

C is a commutative Banach algebra containing A as subalgebra of constants.

Let J be the closed ideal generated by the element 1−ux and set B = C/J .

Let ρ : A → B be the composition of the embedding A → C and the

canonical homomorphism C → B = C/J . Then

ρ(u) · (x + J) = (u + J)(x + J) = 1A + J = 1B,

and so ρ(u) is invertible in B with the inverse x+J . We have ‖(x+J)n‖B ≤
‖xn‖C = cn for all n ≥ 1.

It is sufficient to show that ρ is an isometry, i.e., that for each a ∈ A we

have ‖a‖A = ‖ρ(a)‖B.
Obviously, ‖ρ(a)‖B = infc∈C ‖a + (1− ux)c‖ ≤ ‖a‖A.

Suppose on the contrary that there is an a ∈ A such that ‖ρ(a)‖B < ‖a‖A.

Thus there are elements aj ∈ A such that

‖a‖A >
∥∥∥a + (1− ux)

∞∑
j=0

ajx
j
∥∥∥
C

= ‖a− a0‖A +
∞∑

j=1

cj · ‖aj − aj−1u‖A

≥ ‖a‖ − ‖a0‖+
∞∑

j=1

cj · ‖aj − aj−1u‖.

Thus ‖a0‖ >
∑∞

j=1 cj‖fj‖, where fj = aj−aj−1u. Moreover, we may assume

that only a finite number of elements aj are non-zero. This contradicts to

our assumption. ¤

We introduce the following definition.

2.2. Definition. Let u be an element of a Banach algebra A. Let (cj)
∞
j=1 be a

sequence of positive numbers which is submultiplicative, i.e., ci+j ≤ cicj for

all i, j ≥ 1. We say that (cj) satisfies condition (∗) for u ∈ A if there exists

an increasing sequence (kn) of integers such that 0 = k0 < k1 < k2 < · · ·
and

(∗) cj ≥
(
d(uk1)d(uk2−k1) · · · d(ukn+1−kn)

)−1

‖ukn+1−j‖
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for all n ≥ 0 and j satisfying kn < j ≤ kn+1.

2.3. Theorem. Let u be an element of a commutative Banach algebra A. Let

(cj) be a sequence of positive numbers satisfying condition (∗) for u ∈ A.

Then there is a commutative extension B ⊃ A such that u is invertible in

B and ‖u−j‖ ≤ cj (j ≥ 1).

Proof. Set formally c0 = 1. Let (aj)
∞
j=0 be a sequence in A of finite support.

Write fj = aj − aj−1u.

We verify the condition of Theorem 2.1. We have

‖a0‖ ≤ d(uk1)−1‖a0u
k1‖

≤ d(uk1)−1
(
‖a0u

k1 − a1u
k1−1‖+ · · ·+ ‖ak1−1u− ak1‖+ ‖ak1‖

)

≤ d(uk1)−1
(
‖f1‖ · ‖uk1−1‖+ ‖f2‖ · ‖uk1−2‖+ · · ·+ ‖fk1‖

)

+d(uk1)−1d(uk2−k1)−1‖ak1u
k2−k1‖

≤
k1∑

j=1

cj‖fj‖+ d(uk1)−1d(uk2−k1)−1
(∥∥ak1u

k2−k1 − ak1+1u
k2−k1−1

∥∥

+ · · ·+ ‖ak2−1u− ak2‖+ ‖ak2‖
)

≤
k2∑

j=1

cj‖fj‖+ d(uk1)−1d(uk2−k1)−1‖ak2‖ ≤ · · · ≤
∞∑

j=1

cj‖fj‖,

since only a finite number of elements aj are non-zero. ¤

Using a construction from [Mü] we obtain a similar result for extensions

of Banach space operators.

2.4. Theorem. Let T be an operator acting on a Banach space X. Let (cj) be

a sequence of positive numbers satisfying condition (∗) for T ∈ B(X). Then

there exists a Banach space Y containing X as a closed subspace and an

invertible operator S ∈ B(Y ) such that S|X = T and ‖S−j‖ ≤ cj (j ≥ 1).

Moreover, we have ‖Sj‖ ≤ ‖T j‖ (j ≥ 1) and σ(S) ⊂ σ(T ).

Proof. Let A be a maximal commutative subalgebra of B(X) containing T .

Set B = A⊕X. Define the norm and multiplication in B by

‖A⊕ x‖ = ‖A‖+ ‖x‖
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and

(A⊕ x)(A′ ⊕ x′) = AA′ ⊕ (Ax′ + A′x) (A,A′ ∈ A, x, x′ ∈ X).

Then B is a commutative Banach algebra and A 7→ A ⊕ 0 (A ∈ A) is an

isometrical embedding A → B.

Let n ≥ 0. It is easy to show that

dB
(
T n ⊕ 0) = dB(X)(T n) = m(T n).

By Theorem 2.3, there exists a commutative Banach algebra C ⊃ B such

that T ⊕ 0 is invertible in C and

‖(T ⊕ 0)−j‖C ≤ cj (j ≥ 1).

Consider the operator S : C → C defined by Sc = (T ⊕ 0)c (c ∈ C). Then

S is invertible and

‖S−j‖ ≤ cj (j ≥ 1).

For x ∈ X we have

S(0⊕ x) = (T ⊕ 0)(0⊕ x) = 0⊕ Tx.

If we identify x ∈ X with 0⊕ x ∈ B ⊂ C, then T = S|X .

The relation ‖Sj‖ ≤ ‖T j‖ (j ≥ 1) is easy to verify.

Finally, we have

σB(X)(T ) = σA(T ) ⊃ σB(T ⊕ 0) ⊃ σC(T ⊕ 0) ⊃ σB(C)(S).

¤

3. Extensions to SQp(X)-spaces

In this section we study the similarity to restrictions of invertible opera-

tors acting on SQp(X)-spaces.

The proof of the following result uses an idea from [BY].

3.1. Theorem. Let (cj)
∞
j=1 be a sequence of positive numbers which is sub-

multiplicative. Let p ≥ 1 be a fixed real number, X a Banach space and

T ∈ B(X).

(1) Suppose that there exists a Banach space Y , M ≥ 1, an operator

π : X → Y such that ‖x‖ ≤ M‖π(x)‖ for all x ∈ X, and an invertible
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operator S ∈ B(Y ) such that Sπ = πT and S−1 is (c, p)-near the null

operator modulo π(X), that is
∥∥∥∥∥

n∑
j=1

S−jπ(yj)

∥∥∥∥∥ ≤
(

n∑
j=1

cp
j ‖yj‖p

)1/p

for every n ≥ 1 and all yj ∈ X. Then we have

‖x‖p ≤ Mp
(
cp
n‖x0‖p + cp

n−1‖x1‖p + · · ·+ cp
1‖xn−1‖p

)
,

whenever T nx = x0 + Tx1 + · · ·+ T n−1xn−1.

(2) Let M ≥ 1 and p ≥ 1. Suppose that the equality

T nx = x0 + Tx1 + · · ·+ T n−1xn−1 (xi ∈ X, 1 ≤ i ≤ n)

always implies

‖x‖p ≤ Mp
(
cp
n‖x0‖p + cp

n−1‖x1‖p + · · ·+ cp
1‖xn−1‖p

)
.

Then there exists a Banach space (Y, | · |) which is a SQp(X)-space, an

isomorphic embedding π : X → Y satisfying ‖x‖
M2(p−1)/p ≤ |π(x)| ≤ ‖x‖ (x ∈

X), and an invertible operator S ∈ B(Y ) such that Sπ = πT and ‖S−j‖ ≤
cj for every j ≥ 1. Moreover, S−1 is (c, p)-near the null operator modulo

π(X), ‖Sj‖ ≤ ‖T j‖ (j ≥ 1) and σ(S) ⊂ σ(T ).

Proof. (1) Suppose that T has an invertible extension S as in the state-

ment of the theorem and let π : X → Y satisfy ‖x‖ ≤ M‖π(x)‖ for all

x ∈ X and Sπ = πT . Suppose that T nx = x0 +Tx1 + · · ·+T n−1xn−1. Then

‖x‖ ≤ M‖π(x)‖ = M‖S−nSnπ(x)‖ = M‖S−nπ(T nx)‖

= M
∥∥∥S−nπ

(n−1∑

k=0

T kxk

)∥∥∥ = M
∥∥∥

n−1∑

k=0

S−(n−k)π(xk)
∥∥∥

≤ M

(
n−1∑

k=0

cp
n−k‖xk‖p

)1/p

.

(2) Suppose now that

‖x‖p ≤ Mp
(
cp
n‖x0‖p + cp

n−1‖x1‖p + · · ·+ cp
1‖xn−1‖p

)
,

whenever T nx = x0 + Tx1 + · · ·+ T n−1xn−1. For x0 = T nx we get

‖T nx‖ ≥ 1

Mcn

‖x‖.
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In particular, each operator T n is injective.

The equivalence relation. Let X0 = X × Z. We define an equivalence

relation on X0 by (x, t) ∼ (y, s) if there exists m ∈ N such that s + m ∈ N,

t + m ∈ N and T s+mx = T t+my.

Let X1 = X0/ ∼ be the space of equivalence classes. We denote the

equivalence class containing (x, t) by [x, t]. Each equivalence class contains

a member (x, t) with t ∈ N.

The operations. The operations

[x, t] + [y, s] = [T sx + T ty, s + t], s, t ∈ N, x, y ∈ X,

α[x, t] = [αx, t], t ∈ N, α ∈ C
endow X1 with a structure of vector space.

The norm. Set c0 = 1. We define the norm on X1 as follows. For

[x, t] ∈ X1, set

|[x, t]|p = inf

{
n∑

i=0

‖xi‖pcp
i : n ∈ N,

n∑
i=0

[xi, i] = [x, t]

}
.

We note that the existence of a decomposition [x, t] =
∑n

i=0[xi, i] with t ≥ n

is equivalent to

x =
n∑

i=0

T t−ixi.

It is easy to see that | · | is well-defined and |λ[x, t]| = |λ||[x, t]| (λ ∈ C).

Let [x, t] and [y, s] be two elements of X1 decomposed by [x, t] =
∑

i[xi, i]

and [y, s] =
∑

i[yi, i]. Then [x, t] + [y, s] =
∑

i[xi + yi, i]. By the triangular

inequality in `p, we have

|[x, t] + [y, s]| ≤ (
∑

i

‖xi + yi‖pcp
i )

1/p ≤ (
∑

i

(‖xi‖+ ‖yi‖)pcp
i )

1/p

≤ (
∑

i

‖xi‖pcp
i )

1/p + (
∑

i

‖yi‖pcp
i )

1/p.

Taking the infimum on the right hand side over all decompositions of [x, t]

and [y, s] we get |[x, t] + [y, s]| ≤ |[x, t]|+ |[y, s]|.
We show that | · | is a norm. Let x ∈ X and t ≥ 0. Consider a decompo-

sition

[x, t] =
n∑

i=0

[xi, i]
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with xi ∈ X. Then

[x, t] =
n∑

i=0

[xi, i] =
n∑

i=0

[T n−ixi, n] =

[
n∑

i=0

T n−ixi, n

]
.

Hence

T n(x− T tx0) = T t

(
n∑

i=1

T n−ixi

)
=

n∑
i=1

T n−i(T txi).

By hypothesis, we have

‖x− T tx0‖p ≤ Mp

(
n∑

i=1

cp
i ‖T txi‖p

)
.

Since
1

2p−1
‖x‖p − ‖T tx0‖p ≤ ‖x− T tx0‖p,

we get

1

2p−1
‖x‖p ≤ Mp

n∑
i=0

cp
i ‖T txi‖p ≤ Mp‖T t‖p

n∑
i=0

cp
i ‖xi‖p.

Since this is true for all such decompositions, we obtain

|[x, t]| ≥ 1

2(p−1)/pM‖T t‖‖x‖.

In particular, |[x, t]| 6= 0 whenever x 6= 0.

The isomorphic embedding π. The space X embeds isomorphically into

X1. The imbedding is given by π : x → [x, 0] and the trivial decomposition

[x, 0] = [x, 0] gives |π(x)| ≤ ‖x‖. The previous paragraph, for t = 0, shows

that

|π(x)| ≥ 1

M2(p−1)/p
‖x‖.

The operator S. Define S on X1 by S[x, s] = [x, s − 1], x ∈ X, s ∈ Z.

Clearly the definition of S is correct, S is a linear map and Sπ = πT .

The inequality ∣∣Sj[x, t]
∣∣ ≤ ‖T j‖ · |[x, t]|

can be proved exactly as in [BY]. Thus ‖Sj‖ ≤ ‖T j‖ for all j ≥ 0.

We show now that |S−s[x, t]| ≤ cs|[x, t]| for all positive s and all classes

[x, t]. Consider a decomposition

[x, t] =
n∑

i=0

[xi, i]
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with xi ∈ X. Then

[x, t + s] =
n∑

i=0

[xi, i + s].

Thus

|[x, t + s]|p ≤
n∑

i=0

cp
i+s‖xi‖p.

Using the submultiplicativity of the sequence c = (cj)
∞
j=1 we obtain

|S−s[x, t]|p = |[x, t + s]|p ≤ cp
s

n∑
i=0

cp
i ‖xi‖p.

This yields the announced estimate.

We show now that
∣∣∣∣∣

n∑
j=1

S−jπ(yj)

∣∣∣∣∣ ≤
(

n∑
j=1

cp
j ‖yj‖p

)1/p

for every n ≥ 1 and all yj ∈ X. Indeed, we have
n∑

j=1

S−jπ(yj) =
n∑

j=1

S−j[yj, 0] =
n∑

j=1

[yj, j].

Therefore ∣∣∣∣∣
n∑

j=1

S−jπ(yj)

∣∣∣∣∣

p

≤
n∑

j=1

cp
j‖yj‖p.

In fact, the same arguments provide the stronger (if p > 1) inequality
∣∣∣∣∣

n∑
j=0

S−jπ(yj)

∣∣∣∣∣

p

≤
n∑

j=0

cp
j‖yj‖p,

for all yj ∈ X, j ≥ 0.

The space Y . We take the Banach space Y to be the completion of X1

with the norm | · | and extend S continuously to an operator (also denoted

by) S on Y .

We show now that Y is an SQp(X)-space. Let [aij] be an n×n matrix with

complex entries such that ‖a‖p,X ≤ 1 (the definition of ‖a‖p,X is recalled in

the Introduction). Let [xj, tj] be elements of X1 with decompositions

[xj, tj] =
n(j)∑
r=0

[w(j)
r , r].
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We have

∑
i

∣∣∣∣∣
∑

j

[ai,jxj, tj]

∣∣∣∣∣

p

=
∑

i

∣∣∣∣∣
∑

j

∑
r

[ai,jw
(j)
r , r]

∣∣∣∣∣

p

≤
∑

i

∑
r

cp
r

∥∥∥∥∥
∑

j

ai,jw
(j)
r

∥∥∥∥∥

p

=
∑

r

cp
r

∑
i

∥∥∥∥∥
∑

j

ai,jw
(j)
r

∥∥∥∥∥

p

≤
∑

r

cp
r

∑
j

∥∥w(j)
r

∥∥p
=

∑
j

∑
r

cp
r

∥∥w(j)
r

∥∥p
.

By taking the infimum over all possible decompositions, we get

∑
i

∣∣∣∣∣
∑

j

[ai,jxj, tj]

∣∣∣∣∣

p

≤
∑

j

|[xj, tj]|p .

Thus ‖a‖p,Y ≤ 1, and so [He] X1 and Y are SQp(X)-spaces.

Spectrum behaviour. Suppose that T − λ is invertible in B(X). Define

L on X1 by L[x, t] = [(T − λ)−1x, t]. It is easy to see that the definition of

L is correct. We have

(S − λ)[x, t] = [x, t− 1]− [λx, t] = [(T − λ)x, t]

and L(S − λ)[x, t] = (S − λ)L[x, t] = [x, t]. Hence S − λ is invertible in

B(Y ). ¤

3.2. Remarks. (a) The embedding π becomes isometric if M = p = 1 (for

instance). The case M = p = 1 and cj = 1 for j ≥ 1 was considered in

[BY].

(b) An alternative definition of the norm in X1 is

|[x, t]|p = inf

{
n∑

i=1

‖xi‖pcp
i : n ∈ N,

n∑
i=1

[xi, i] = [x, t]

}
.

The difference is that decompositions of [x, t] start now at i = 1. The

construction of Y , S and π : X → Y remains unchanged. The embedding

π satisfies in this case

‖x‖
M

≤ |π(x)| ≤ c1‖T‖ · ‖x‖ (x ∈ X).

The remaining properties are without any change.

(c) Note that σap(T ) ⊂ σap(S).
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(d) We also note that Theorem 3.1 has a generalization to representations

of semigroups (like in [BY]).

3.3. Definition. Let X be a Banach space, T ∈ B(X), and let p ≥ 1 be a

fixed real number. Let (cj)
∞
j=1 be a sequence of positive numbers which is

submultiplicative. We say that (cj) satisfies condition (∗)p for T ∈ B(X) if

there exists an increasing sequence of integers (kn) such that 0 = k0 < k1 <

k2 < · · · and

(∗)p cj ≥ 2(n+1)(p−1)/p(kn+1 − kn)(p−1)/p

m(T k1)m(T k2−k1) · · ·m(T kn+1−kn)
‖T kn+1−j‖

for all n ≥ 0 and j satisfying kn < j ≤ kn+1.

We say that (cj) satisfies condition (∗)∞ for T ∈ B(X) if there exists an

increasing sequence of integers (kn) such that 0 = k0 < k1 < k2 < · · · and

(∗)∞ cj ≥ 2n+1(kn+1 − kn)

m(T k1)m(T k2−k1) · · ·m(T kn+1−kn)
‖T kn+1−j‖

for all n ≥ 0 and j satisfying kn < j ≤ kn+1.

The condition (∗)1 is the same as condition (∗) considered above for

Banach algebra elements. Clearly (∗)p implies (∗)q whenever ∞ ≥ p ≥ q ≥
1 ; in particular, (∗)∞ implies all other conditions (∗)p, p ≥ 1.

3.4. Lemma. Let p ≥ 1 be a fixed real number. Suppose that (cj) is a

sequence of positive numbers satisfying condition (∗)p for T ∈ B(X). Then

‖x‖p ≤ cp
m‖x0‖p + cp

m−1‖x1‖p + · · ·+ cp
1‖xm−1‖p,

whenever Tmx = x0 + Tx1 + · · ·+ Tm−1xm−1.

Proof. Suppose that kn < m ≤ kn+1 and that the conclusion of the lemma

was proved for decompositions of the form T kn+1x = x0 + Tx1 + · · · +

T kn+1−1xkn+1−1. If Tmy = y0 + Ty1 + · · ·+ Tm−1ym−1, then

T kn+1y = 0 + · · ·+ T kn+1−my0 + T kn+1−m+1y1 + · · ·+ T kn+1−1ym−1

and the lemma will be also proved for decompositions starting with Tmy.

So suppose that

T kn+1x =

kn+1∑
j=1

T kn+1−jxkn+1−j.
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Then, using the inequality ‖a− b‖p ≥ 1
2p−1‖a‖p − ‖b‖p, we have

‖x0‖p =

∥∥∥∥∥T kn+1x−
kn+1−1∑

j=1

T kn+1−jxkn+1−j

∥∥∥∥∥

p

=

∥∥∥∥∥T kn+1−kn

(
T knx−

kn∑
j=1

T kn−jxkn+1−j

)
−

kn+1−1∑

j=kn+1

T kn+1−jxkn+1−j

∥∥∥∥∥

p

≥ 1

2p−1
m(T kn+1−kn)p

∥∥∥∥∥T knx−
kn∑
j=1

T kn−jxkn+1−j

∥∥∥∥∥

p

−
∥∥∥∥∥

kn+1−1∑

j=kn+1

T kn+1−jxkn+1−j

∥∥∥∥∥

p

.

Using now the inequality

∥∥∥∥∥
N∑

i=1

ai

∥∥∥∥∥

p

≤ Np−1

(
N∑

i=1

‖ai‖p

)
,

we obtain

‖x0‖p + (kn+1 − kn − 1)p−1

kn+1−1∑

j=kn+1

∥∥T kn+1−j‖p‖xkn+1−j

∥∥p

≥ 1

2p−1
m(T kn+1−kn)p

∥∥∥∥∥T knx−
kn∑
j=1

T kn−jxkn+1−j

∥∥∥∥∥

p

.

Writing again

T knx−
kn∑
j=1

T kn−jxkn+1−j

as

T kn−kn−1

(
T kn−1x−

kn−1∑
j=1

T kn−1−jxkn+1−j

)
−

kn∑

j=kn−1+1

T kn−jxkn+1−j
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and applying the same inequalities, we arrive after several steps at

‖x0‖p + (kn+1 − kn − 1)p−1

kn+1−1∑

j=kn+1

∥∥T kn+1−j‖p‖xkn+1−j

∥∥p
+

n∑
r=1

(
1

2p−1

)r

m(T kn+1−kn)p · · ·m(T kn−r+2−kn−r+1)p (kn−r+1 − kn−r)
p−1

×
kn−r+1∑

j=kn−r+1

∥∥T kn−r+1−j
∥∥p ∥∥xkn+1−j

∥∥p

≥
(

1

2p−1

)n+1

m(T kn+1−kn)p · · ·m(T k2−k1)pm(T k1)p ‖x‖p .

This yields

‖x‖p ≤
n∑

r=0

(2p−1)n+1−r(kn−r+1 − kn−r)
p−1

m(T kn−r+1−kn−r)p · · ·m(T k1)p

kn−r+1∑

j=kn−r+1

∥∥T kn−r+1−j
∥∥p ∥∥xkn+1−j

∥∥p

≤
n∑

r=0

kn−r+1∑

j=kn−r+1

cp
j

∥∥xkn+1−j

∥∥p
=

kn+1∑
j=1

cp
j

∥∥xkn+1−j

∥∥p
.

¤

The above results imply the following generalization of Theorem 2.4.

3.5. Theorem. Let p ≥ 1. Let T be an operator acting on a Banach space

X. Let (cj)
∞
j=1 be a sequence of positive numbers satisfying condition (∗)p

for T ∈ B(X). Then there exists a Banach space Y which is a SQp(X)

space, an isomorphic embedding π : X 7→ Y satisfying ‖x‖
2(p−1)/p ≤ ‖π(x)‖ ≤

‖x‖ (x ∈ X) and an invertible operator S ∈ B(Y ) such that Sπ = πT ,

‖S−j‖ ≤ cj (j ≥ 1) and ‖Sj‖ ≤ ‖T j‖ (j ≥ 1). Moreover, S−1 is (c, p)-

near the null operator modulo π(X) and σ(S) ⊂ σ(T ).

4. Applications

The previous extension results give a general way of constructing invert-

ible extensions of an operator with prescribed growth conditions. For an

operator T ∈ B(X) we write for short

vn(T ) = max{‖T n‖,m(T n)−1} (n ≥ 0).

We consider the following growth conditions for T :
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(P (s)) (polynomial growth condition) there are C > 0 and s ≥ 0 such that

vn(T ) ≤ Cns (n ≥ 1);

(B) (Beurling-type condition)
∑∞

n=1
log vn(T )

n2 < ∞;

(E(s)) (Exponential growth) there are C > 0 and 0 < s < 1 such that

vn(T ) ≤ Cens
(n ≥ 1).

Note that condition (P (s)) implies (E(s′)) (for a any s′ > 0), which implies

(B). Also, [MMN1], if T satisfies (B) and T is invertible, then σ(T ) =

σap(T ) ⊂ T. If T satisfies (B) and 0 ∈ σ(T ), then σap(T ) = T and σ(T ) =

{z : |z| ≤ 1}.
Other growth conditions can be also considered.

4A. E(T)-subscalar operators. We denote by E(C) = C∞(C) the usual

Fréchet algebra of all C∞-functions on C with the topology of uniform

convergence of derivatives of all orders on compact subsets of C. An op-

erator S ∈ B(X) is said [CF] to be generalized scalar (or E(C)-scalar) if

there is a continuous algebra homomorphism Φ : E(C) → B(X) for which

Φ(1) = I and Φ(z) = S. A bounded linear operator is E(C)-subscalar if

it is similar to the restriction of a E(C)-scalar operator to one of its closed

invariant subspaces. According to a result by J. Eschmeier and M. Putinar

(see [EP, Sect. 6.4]), a Banach space operator T is E(C)-subscalar if and

only if T has property (β)E , i.e., for every open set U ⊂ C, the opera-

tor TU on E(U,X) (the space of C∞-functions from U into X), defined by

TU(f)(z) = (T − z)f(z), is injective and has closed range.

The following statements are equivalent (see [CF]) :

(1) T is E(T)-scalar, i.e., it has a continuous functional calculus on the

Fréchet algebra E(T) = C∞(T) of smooth functions on the unit circle T;

(2) T is generalized scalar with σ(T ) ⊂ T ;

(3) T is invertible, and there exist constants C > 0 and s ≥ 0 such that

‖T n‖ ≤ C(1 + |n|)s (n ∈ Z).

K.B. Laursen and M.M. Neumann [LN, Problem 6.1.15.] and M. Di-

das [Di] asked if E(T)-subscalar operators are characterized by the polyno-

mial growth condition (P (s)) above. We refer to [Di, LN, MMN1, MMN2,

MMN3, MMN4] for several partial results. By [Do] the hard implication

holds for s = 0 and C = 1.
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Since condition (P (s)) implies that σap(T ) ⊂ T, it follows ([Mü, Re2])

that T has an invertible extension S such that σ(S) = σap(T ) ⊂ T. By

[Re3], if T acts on a Hilbert space, then S acts also on a Hilbert space.

However, no control on the norms of inverses is guaranteed by this method.

The following result gives a complete positive answer.

4.1. Theorem. (1) An operator T ∈ B(X) is E(T)-subscalar if and only if

there exist constants C > 0 and s ≥ 0 such that

(P (s))
1

Cns
‖x‖ ≤ ‖T nx‖ ≤ Cns‖x‖ (x ∈ X; n ∈ N).

Moreover, given p ≥ 1, there exist a SQp(X)-space Y , an invertible E(T)-

scalar operator S on Y and a closed subspace M ⊂ Y invariant with respect

to S such that T is similar to the restriction S|M . We also have σ(S) =

σap(T ).

For p = 1 the operator S is an extension of T .

(2) If the Hilbert space operator T ∈ B(H) verifies

(P (s))
1

Cns
‖h‖ ≤ ‖T nh‖ ≤ Cns‖h‖ (h ∈ H; n ∈ N),

then there exists a Hilbert space K and a E(T)-scalar extension S ∈ B(K)

with σ(S) = σap(T ).

Proof. (1) Suppose that T is similar to an operator having a E(T)-scalar

extension S. According to the above mentioned result, S is E(T)-scalar if

and only if S is invertible and ‖Sn‖ is bounded by a constant times (1+|n|)s,

for each n ∈ Z. Therefore, restrictions of E(T)-scalar operators satisfy the

growth condition (P (s)) from the theorem. Consequently, T satisfies (P (s)).

Suppose now that T satisfies the growth condition (P (s)). Let C >

0 and s ≥ 0 satisfy vn := vn(T ) ≤ Cns (n ≥ 1). Let ε > 0. Then

limn→∞ vn

ns+ε/6 = 0. Choose k1 ≥ e4 such that vn ≤ ns+ε/6 for all n ≥ k1.

Let

K = max{2k1‖T j‖ ·m(T k1)−1 : 0 ≤ j ≤ k1}
and set cj = K(j + 1)6s+3+ε. Clearly (cj) is a submultiplicative sequence.

We show that (cj) satisfies condition (∗)∞ for T . Set kn = k2n−1

1 (n ≥ 1).

For j ≤ k1 we have

2k1m(T k1)−1 · ‖T k1−j‖ ≤ K ≤ cj.
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Let n ≥ 1 and kn < j ≤ kn+1. Then 2n−1 log k1 ≤ log j and

2n+1(kn+1 − kn)m(T k1)−1 · · ·m(T kn+1−kn)−1‖T kn+1−j‖
≤ 2n+1kn+1

(
k1k2 · · · kn+1kn+1

)s+ε/6

≤
(

22

log k1

log j

)
k2n

1

(
k1k

2
1 · · · k2n

1 k2n

1

)s+ε/6

≤ (log j)
(
k2n−1

1

)2 (
k3·2n

1

)s+ε/6

≤ j
(
k2n−1

1

)2+6s+ε

≤ j6s+ε+3 ≤ cj.

Thus (cj) satisfies condition (∗)∞. If p ≥ 1 is fixed, then (cj) also satisfies

condition (∗)p. By Theorem 3.5, there exists an invertible operator S on a

SQp(X)-space Y extending T up to a similarity and satisfying ‖Sj‖ = ‖T j‖
and ‖S−j‖ ≤ cj for all j ≥ 1. Clearly S has property (P (6s + ε + 3)).

Moreover, S−1 is (c, p)-near the null operator modulo X.

For p = 1, the space X is isometrically embedded into Y , and so S is an

extension of T .

Since σ(S) ⊂ T, we have σap(S) = σ(S). By the spectral radius formula

we have σ(T ) ⊂ {z : |z| ≤ 1}. By [MZ],

min{|z| : z ∈ σap(T )} = lim
n→∞

m(T n)1/n ≥ 1.

Thus σap(T ) = σ(T ) ∩ T. By Theorem 3.1, σap(T ) ⊂ σ(S) ⊂ σ(T ). Hence

σ(S) = σap(T ).

(2) Since (cj) satisfies condition (∗)2 for T , it follows from from The-

orem 3.5 that there exists a Hilbert space K, an isomorphic embedding

π : H 7→ K and an E(T)-scalar operator S ∈ B(K) satisfying Sπ = πT .

We can introduce a new equivalent Hilbert space norm on K such that π

becomes an isometry. Indeed, let P be the orthogonal projection onto π(H).

Define the new norm on K by

|||u||| = (‖π−1Pu‖2
H + ‖(I − P )u‖2

K)1/2. (u ∈ K)

We have |||π(x)||| = ‖x‖H for all x ∈ H. Then S, acting on the Hilbert

space (K, ||| · |||), is the required E(T)-scalar extension of T . ¤
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4.2. Remark. Let H be the Hilbert space with an orthonormal basis (en)

(n = 0, 1, . . . ). It is easy to see that the Bergman shift on H, given by

Ben =

√
n + 1

n + 2
en+1,

satisfies the polynomial growth condition (P (1/2)). Therefore, the Bergman

shift has a generalized scalar extension with spectrum the unit circle. This

has to be compared to the known fact that B is subnormal, with minimal

normal extension (the multiplication by the variable z on L2(D, µ), where

µ is the Lebesgue measure in D) having as spectrum the closed unit disk D.

4.3. Problem. Let s ≥ 0. What is the optimal value of s′ = f(s) such that

every T ∈ B(X) satisfying (P (s)) has an invertible extension satisfying

(P (s′))? What is the optimal value of s′ = g(s) such that every T ∈
B(H) satisfying (P (s)) has an invertible Hilbert space extension satisfying

(P (s′)) ?

The proof of Theorem 4.1 can be modified to give, for fixed ε > 0 and T ∈
B(X), a Banach space Y and an extension (with an isometric embedding)

S ∈ B(Y ) satisfying condition (P (6s + ε)). Indeed, with k1 as in the proof

of Theorem 4.1, let

K = max{‖T j‖ ·m(T k1)−1 : 0 ≤ j ≤ k1}

and set cj = K(j + 1)6s+ε. Then a similar proof shows that the sequence

(cj) satisfies condition (∗)1 for kn = k2n−1

1 (n ≥ 1).

We also notice that g(0) = 0. Indeed, if a Hilbert space operator T ∈
B(H) satisfies (P (0)), then by [SN] there exists an invertible operator L ∈
B(H) such that V = L−1TL is an isometry. Let U be a unitary extension

of V on a larger Hilbert space K = H ⊕ H⊥. Then (L ⊕ I)U(L ⊕ I)−1 is

an extension of T satisfying (P (0)).

We can consider representations of Nn to deal with E(Tn)-subscalar op-

erators. The proof of the following result follows a different approach.

4.4. Theorem. An n-tuple of commuting Banach space operators is E(Tn)-

subscalar if and only if each of the n operators is E(T)-subscalar.
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Proof. The previous characterization of E(T)-subscalar operators implies

that if T1, . . . , Tn are commuting E(T)-subscalar operators, then the product

operator T1 · · ·Tn is also E(T)-subscalar. The result follows from [Di, Th.

2.2.7]. ¤

4B. Operators with Bishop’s property (β). Recall that an equivalent defini-

tion of decomposable operators is the following : T ∈ B(X) is decomposable

if for every open cover C = U ∪ V , there are closed invariant (for T ) sub-

spaces Y and Z of X such that X = Y +Z and σ(T | Y ) ⊂ U , σ(T | Z) ⊂ V .

We refer for instance to [CF] and [LN]. An operator T ∈ B(X) has Bishop’s

property (β) if, for every open set U ⊂ C, the operator TU defined by

TU(f)(z) = (T − z)f(z) on the set O(U,X) of holomorphic functions from

U into X is injective and has closed range. According to a result by E.

Albrecht and J. Eschmeier (see [LN, EP]), T ∈ B(X) is subdecomposable

(i.e., T is similar to the restriction of a decomposable operator) if and only

if T has Bishop’s property (β).

It was proved in [CF, 5.3.2] that an invertible operator S ∈ B(X) is

decomposable provided that
∞∑

n=−∞

log ‖Sn‖
1 + n2

< ∞.

The following result answers in the affirmative a question from [MMN1].

4.5. Theorem. Let T ∈ B(X) be a Banach space operator such that

∞∑
n=1

log max(‖T n‖,m(T n)−1)

n2
< ∞.

Then there exists a Banach space Y ⊃ X and an invertible operator S ∈
B(Y ) such that T = S|X and S satisfies

∞∑
n=−∞

log ‖Sn‖
1 + n2

< ∞.

In particular, T has Bishop’s property (β). Moreover, σ(S) = σap(T ) =

σ(T ) ∩ T.

If X = H is a Hilbert space, then Y = K can be chosen to be a Hilbert

space too.
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Proof. Let T ∈ B(X) satisfy (B). By Theorem 3.5, it is sufficient to show the

existence of a submultiplicative sequence (dn) satisfying
∑∞

n=1
log dn

n2 < ∞
and the condition (∗)∞ for T .

Write rn = v2n (n ≥ 0). Clearly rn+1 ≤ r2
n for all n.

Claim a.
∑∞

n=0
log rn

2n < ∞.

Proof. Fix n ≥ 2. For 1 ≤ j ≤ 2n−3 we have

v2n ≤ v2n−1+j · v2n−1−j.

Thus log rn ≤ log v2n−1+j + log v2n−1−j and

log rn

22n
≤ log v2n−1+j

22n
+

log v2n−1−j

22n
≤ log v2n−1+j

(2n−1 + j)2
+

log v2n−1−j

(2n−1 − j)2
.

Hence

2n−3 · log rn

22n
≤

2n−3∑
j=1

( log v2n−1+j

(2n−1 + j)2
+

log v2n−1−j

(2n−1 − j)2

)

and
1

8

∞∑
n=2

log rn

2n
≤

∞∑
j=1

log vj

j2
< ∞.

Let n be a non-negative integer and let n =
∑∞

j=0 αj2
j, where αj ∈ {0, 1},

be its binary representation. Define

bn =
∞∏

j=0

r
αj

j , cn = max{b2
j : n ≤ j ≤ 2n} and dn = 4n2cn.

Claim b. (bn) is submultiplicative, i.e., bn+m ≤ bnbm for all m,n ≥ 0.

Proof. Let n =
∑∞

j=0 αj2
j and m =

∑∞
j=0 βj2

j be the binary representations

of n and m, respectively.

By induction on j0, we prove the following statement:

There are numbers γj (0 ≤ j) such that n+m =
∑∞

j=0 γj2
j,

γj ∈ {0, 1} (j < j0), γj0 ∈ {0, 1, 2, 3}, γj ∈ {0, 1, 2} (j >

j0) and bnbm ≥ ∏∞
j=0 r

γj

j .
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For j0 = 0 the statement is clear for the numbers γj = αj + βj.

Suppose that the statement is true for some j0. We show it for j0 + 1. If

γj0 ≤ 1 then the statement is clear. Let γj0 ∈ {2, 3}. Then

n + m =
∞∑

j=0

γ′j2
j,

where γ′j = γj (j 6= j0, j0 + 1), γ′j0 = γj0 − 2 and γ′j0+1 = γj0+1 + 1. Then

bnbm ≥
∞∏

j=0

r
γj

j ≥
∞∏

j=0

r
γ′j
j .

The statement for j0 > log2(n + m) gives the inequality bnbm ≥ bn+m.

Claim c. (dn) is submultiplicative.

Proof. Notice that 16m2n2 ≥ 4(m + n)2 for all positive integers m and n.

We have

dndm ≥ 4(m + n)2 max{b2
i b

2
j : n ≤ i ≤ 2n,m ≤ j ≤ 2m}

≥ 4(m + n)2 max{b2
l : n + m ≤ l ≤ 2(n + m)} = dn+m.

Claim d.
∑∞

n=1
log dn

n2 < ∞.

Proof. It is sufficient to show the analogue claim for the sequence (cn).

For 2j ≤ n < 2j+1 we have cn = b2
i for some i, i ≤ 2n < 2j+2. So

cn ≤ b2
2j+2−1 =

∏j+1
i=0 r2

i . Thus

∞∑
n=2

log cn

n2
≤

∞∑
j=1

2j
∑j+1

i=0 2 log ri

22j
≤ 2

∞∑
i=0

log ri ·
∞∑

j=i−1

2−j ≤ 8
∞∑
i=0

log ri

2i
< ∞.

Claim e. (dn) satisfies condition (∗)∞ for T .
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Proof. Set kn = 2n − 1. For kn < j ≤ kn+1 we have 2n ≤ j < 2n+1, and so

cj ≥
∏n

i=0 r2
i . Hence

2n+1(kn+1 − kn)
(
m(T k1)m(T k2−k1) · · ·m(T kn+1−kn)

)−1

‖T kn+1−j‖
≤ 2(2n)2r0r1 · · · rn · bkn+1−j

≤ 2j2

n∏
i=0

r2
i

≤ dj.

The inequality for j = 1 = k1 is clear.

Thus (dn) also satisfies condition (∗)1, and so there is an invertible ex-

tension S of T such that ‖S−n‖ ≤ dn (n > 0). Hence S is decomposable.

The equalities σ(S) = σap(T ) = σ(T ) ∩ T can be shown as in Theorem

4.1.

If X = H is a Hilbert space, then the sequence (dn) satisfies condition

(∗)2. By Theorem 3.5, there is a Hilbert space K, an invertible operator

S ∈ B(K) and an isomorphic embedding π : H → K with πT = Sπ and

‖S−n‖ ≤ dn (n > 0). As in the proof of Theorem 4.1, K can be given a

new equivalent hilbertian norm such that π becomes an isometry. ¤

4C. Condition (E(s)). The following consequence of Theorem 4.5 implies

that condition (b) from [MMN3, Th. 3.2] is superfluous.

4.6. Corollary. Let T ∈ B(X) satisfying the exponential condition (E(s)),

that is, there are C > 0 and 0 < s < 1 such that vn(T ) ≤ Cens
(n ≥ 0).

Then T has property (β).

The following result answers an open question from [MMN1].

4.7. Theorem. Let T ∈ B(X) satisfy (E). Then there exist a Banach space

Y ⊃ X and an invertible operator S on a larger space such that T is a

restriction of S and S satisfies (E(s′)) for suitable s′ < 1. The construction

is hilbertian.

Proof. Let ε be an arbitrary positive number. Set kn = 2n (n ≥ 1). It is a

matter of routine to verify that the sequence cj = K ·ejs+ε
satisfies condition

(∗)∞ for T , where K is a suitable constant. Thus T can be extended to
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an invertible operator satisfying condition (E(s + ε)). The construction is

hilbertian in the sense that if X = H is Hilbert, then Y = K can be chosen

a Hilbert space too. We omit the details. ¤

4D. A hilbertian counterpart of Arens’ result. We obtain the following

hilbertian counterpart of Arens’ result.

4.8. Corollary. Let T ∈ B(H) be an operator on Hilbert space with m(T ) >

0. Then there exist a Hilbert space K, an isometric embedding π : H 7→
K and an invertible operator S ∈ B(K) such that Sπ = πT , ‖Sj‖ ≤
‖T j‖ (j ≥ 1), ‖S−1‖ ≤ 2/m(T ) and

∥∥∥∥∥
N∑

j=0

S−jπ(xj)

∥∥∥∥∥

2

≤ 2
N∑

j=0

( √
2

m(T )

)2j

‖xj‖2

for every N ∈ N and all xj ∈ H.

Proof. Let cj =
( √

2
m(T )

)j

, j ≥ 1. Then the sequence (cj) satisfies the con-

dition (∗)2 for T (take kn = n). It follows from Theorem 3.5 that there

exist a Hilbert space K, an isomorphic embedding π : H 7→ K satisfying
1√
2
‖x‖ ≤ ‖π(x)‖ ≤ ‖x‖ for any x ∈ H, and an invertible operator S ∈ B(K)

such that Sπ = πT , ‖Sj‖ ≤ ‖T j‖ (j ≥ 1), ‖S−1‖ ≤ √
2/m(T ) and

∥∥∥∥∥
N∑

j=0

S−jπ(xj)

∥∥∥∥∥

2

≤
N∑

j=0

( √
2

m(T )

)2j

‖xj‖2

for every N ∈ N and all xj ∈ H. We now introduce a new equivalent

Hilbert space norm on K such that π becomes an isometry as in the proof

of Theorem 4.1. So let P be the orthogonal projection onto πH and define

the new norm on K by

|||x||| = (‖π−1Px‖2
H + ‖(I − P )x‖2

K)1/2.

Then |||x|||2 ≤ 2‖Px‖2
K + ‖(I − P )x‖2

K ≤ 2‖x‖2
K . In the same way a

lower bound can be obtained; we get ‖x‖ ≤ |||x||| ≤ √
2‖x‖ for every

x ∈ K. Then S, acting on the Hilbert space (K, ||| · |||), verifies the required

inequalities. ¤
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4E. Operators with countable spectrum. In the following two results we

assume that the spectrum of T is countable. We refer to [BY, BBG, KN]

and their references for related results.

4.9. Theorem. Let T ∈ B(X) be a Banach space operator. Suppose that

there are positive constants M > 0, C > 0 and 0 < s < 1
2

such that

1

Cens ‖x‖ ≤ ‖T nx‖ ≤ M‖x‖
for every x ∈ X and n ∈ N. Suppose also that the spectrum σ(T ) of T is

countable. Then

(P (0))
1

M
‖x‖ ≤ ‖T nx‖ ≤ M‖x‖

for every x ∈ X. In particular, T is E(T)-subscalar.

Proof. We have ‖T n‖ ≤ M and m(T n))−1 ≤ Cens
. Let ε > 0 be a positive

number such that s+ε < 1
2
. Using (the proofs of) Theorems 4.7 and 2.4 (or

3.5), there exists a constant K > 0 such that T has an invertible extension S

on a Banach space Y verifying ‖Sn‖ ≤ M and ‖S−n‖ ≤ K exp(ns+ε) for all

n ∈ N. Moreover, it is possible to have an extension satisfying σ(S) ⊂ σ(T ).

We obtain in particular that

lim
n→∞

log ‖S−n‖√
n

= 0

and that the spectrum σ(S) of S is countable. From [Za, Remarque 2, p.

259] we obtain ‖Sp‖ ≤ M for all p ∈ Z. This yields m(T n)−1 ≤ M for n ≥ 1

and the stated inequality (P (0)). ¤

We obtain the following consequence in the case of Hilbert space opera-

tors.

4.10. Corollary. Let T ∈ B(H) be a power bounded operator on a Hilbert

space H. Suppose that there are positive constants C and s < 1
2

such that

m(T n)−1 ≤ Cens

(n ≥ 1)

and that σ(T ) is countable. Then T is similar to a unitary operator.

Proof. By the previous theorem, the operator T satisfies (P (0)) on H, a

condition which characterizes Hilbert space operators similar to isometries

[SN]. As the spectrum is a similarity invariant, T is similar to an isometry
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with a countable spectrum. Since the spectrum of a non-invertible isometry

is the entire closed unit disk, we obtain that T is similar to a unitary

operator. ¤

4F. Contractions with spectrum a Carleson set. Recall that a closed set E

of T is said to be a Carleson set if
∫ 2π

0

log

(
2

dist (eit, E)

)
dt < +∞.

4.11. Theorem. Let T ∈ B(H) be a Hilbert space contraction such that

σap(T ) ⊂ T is a Carleson set. Suppose that there exist C > 0 and s ≥ 0

such that m(T n)−1 ≤ Cns. Then T is an isometry.

Proof. Using Theorem 4.1, (2), there exist K > 0, s ≥ 0, a Hilbert space

K and an invertible operator S ∈ B(K) which is an extension of T such

that ‖S‖ ≤ 1, ‖S−n‖ ≤ Kns′ and σ(S) = σap(T ). We obtain in particular

that σ(S) = σap(T ) is a Carleson set. By a theorem of Esterle [Es] (see also

[Ke]), S is unitary. Therefore its restriction T is an isometry. ¤

Several results for unitaries (or operators similar to unitaries) can be

transferred to results for isometries (or operators similar to isometries) in

an analogous manner.
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