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Abstract. We construct a Banach space operator T which is not E(T)-
subscalar but ‖(T − z)−1‖ ≤ (|z| − 1)−1 for |z| > 1 and m(T − z) ≥
const · (1 − |z|)3 for |z| < 1 (here m denotes the minimum modulus).

This gives a negative answer to a variant of a problem of Laursen and

Neumann. We also give a sufficient condition (in terms of growth of

resolvent and of an analytic left inverse of T − z) implying that T is

an E(T)-subscalar operator. This condition is also necessary for Hilbert

space operators.

1. Introduction

Generalized scalar operators are those Banach spaces operators possessing

a C∞-functional calculus. To be more specific, let E(C) denote the usual

Fréchet algebra of all C∞-functions on C with the topology of uniform

convergence of derivatives of all orders on compact subsets of C. Let X

be a complex Banach space. A bounded linear operator S ∈ B(X) is said

[CF] to be an E(C)-scalar (or generalized scalar) operator if there is a

continuous algebra homomorphism Φ : E(C) → B(X) for which Φ(1) = I

and Φ(z) = S. Here z denotes the identity function on C. A bounded linear

operator is E(C)-subscalar if it is similar to the restriction of an E(C)-scalar

operator to one of its closed invariant subspaces. We refer to three books

[CF], [EP] and [LN] for more information on E(C)-scalar and E(C)-subscalar

operators.

The following statements are known to be equivalent (see [CF, LN]) :

(1) S is E(T)-scalar, i.e., it has a continuous functional calculus on the

Fréchet algebra E(T) of C∞ functions on the unit circle T;
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(2) S is E(C)-scalar with spectrum σ(S) in the unit circle T;

(3) S is invertible, and there exist constants C > 0, p ≥ 0 and q ≥ 0

such that

‖Sn‖ ≤ Cnp (n ∈ N)

and

‖S−n‖ ≤ Cnq (n ∈ N);

(4) σ(S) ⊂ T and there exist constants C > 0, p ≥ 0 and q ≥ 0 such

that

‖(S − z)−1‖ ≤ C (|z| − 1)−p (|z| > 1)

and

‖(S − z)−1‖ ≤ C (1− |z|)−q (|z| < 1).

The distinction between the growth of norms of positive and negative

powers (and the resolvent growth inside and outside unit disc) will become

apparent later on.

For T ∈ B(X) we denote

m(T ) = inf{‖Tx‖ : x ∈ X, ‖x‖ = 1}.

This quantity is called the minimum modulus of T ([GT]) or the lower

bound of T ([LN]). It is easy to see that m(T ) > 0 if and only if T ∈ B(X)

is one-to-one and with closed range. For invertible operators S we have

m(S) = ‖S−1‖−1.

The main question we consider in this note is the problem of intrinsic

characterizations of E(T)-subscalar operators (i.e. operators similar to a

restriction of a E(T)-scalar operator to an invariant subspace). Let T ∈
B(X) be an E(T)-subscalar operator. Using (3) for the invertible extension

of T we obtain the existence of constants C > 0, p ≥ 0 and q ≥ 0 such

that :

(P ) ‖T n‖ ≤ Cnp and m(T n)−1 ≤ Cnq.

It is natural to ask if the polynomial growth condition (P ) above (in terms

of norms and minimum moduli of iterates) characterizes E(T)-subscalars

operators (cf. K.B. Laursen and M.M. Neumann [LN, Problem 6.1.15] and

M. Didas [Di]). This problem was also discussed in [MMN1, MMN2, MMN3,

MMN4]. It was recently proved by the authors [BM2, BM1] that E(T)-

subscalars operators are indeed characterized by the polynomial growth

condition (P ).
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Using the resolvent condition (4), it can be proved similarly that if T ∈
B(X) is an E(T)-subscalar operator then there exist constants C > 0, p ≥ 0

and q ≥ 0 such that

(R) ‖(T−z)−1‖ ≤ C

(|z| − 1)p (|z| > 1) and m(T−z) ≥ C(1− |z|)q (|z| < 1).

Note that if T is E(T)-subscalar then σap(T ), the approximate point spec-

trum of T given by

σap(T ) =
{
λ ∈ C : inf{‖(T − λ)x‖ : ‖x‖ = 1} = 0

}
,

is included in the unit circle. Moreover, either σ(T ) is included in the unit

circle (and so T is E(T)-scalar) or σ(T ) = D, the closed unit disc.

Again it is natural to ask if the condition (R) implies the E(T)-subscalarity

of T . This is a variant of the open Problem 6.1.14 in [LN]. A characteriza-

tion of E(T)-subscalar operators in terms of the growth of the local resolvent

of the adjoint has been given by Didas [Di].

The aim of this note is to show that the answer to the above problem

is negative : there is a Banach space operator T satisfying condition (R)

(with suitable p and q) which is not E(T)-subscalar. We also give a sufficient

condition (in terms of growth of resolvent and of an analytic left inverse of

T −z) implying that T is an E(T)-subscalar operator. This condition is also

necessary for Hilbert space operators.

2. A Counterexample

Recall that an equivalent definition of decomposable operators is the fol-

lowing : T ∈ B(X) is decomposable if for every open cover C = U ∪ V ,

there are closed invariant (for T ) subspaces Y and Z of X such that

X = Y + Z and σ(T | Y ) ⊂ U , σ(T | Z) ⊂ V . We refer for instance

to [CF] and [LN]. An operator T ∈ B(X) has Bishop’s property (β) if, for

every open set U ⊂ C, the operator TU defined by TU(f)(z) = (T − z)f(z)

on the set O(U,X) of holomorphic functions from U into X is injective and

has closed range. According to a result by E. Albrecht and J. Eschmeier

[AE], T ∈ B(X) is subdecomposable (i.e., T is similar to the restriction of

a decomposable operator) if and only if T has Bishop’s property (β).

Example 2.1. There exist a Banach space X and an operator T ∈ B(X)

such that

(i) ‖T‖ ≤ 1, σap(T ) = T and σ(T ) = D ;

(ii) ‖(T − z)−1‖ ≤ (|z| − 1)−1 (|z| > 1),
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(iii) there is a constant C > 0 such that

m(T − z) ≥ C(1− |z|)3 (z ∈ D);

(iv) T is not E(T)-subscalar ;

(v) T has Bishop’s property (β).

The Construction. Let X = c0 be the Banach space of all complex

sequences converging to zero endowed with the supremum norm. We denote

its standard basis by e1, e2, . . . . For n ≥ 1 let

wn = eln2(n+2)−ln2(n+3).

Let T ∈ B(X) be the weighted shift defined by Ten = wnen+1 (n ≥ 1).

The Proof. The proof of the properties of Example 2.1 will be obtained

in several steps.

We first remark that 0 < wn < 1 for all n.

Claim 1. (wn) is an increasing sequence and limn→∞ wn = 1.

Proof. For each n ≥ 1 there exists x = x(n) such that n + 2 ≤ x ≤ n + 3

and

ln2(n + 2)− ln2(n + 3) = −2
ln x

x
.

The function g(x) = −2 ln x
x

is increasing since g′(x) = −2 · 1−ln x
x2 > 0 (x >

e). Therefore
(
ln2(n + 2)− ln2(n + 3)

)
is an increasing sequence for n ≥ 1

and

lim
n→∞

(ln2(n + 2)− ln2(n + 3)) = 0.

Hence (wn) is an increasing sequence and limn→∞ wn = 1. ¤

The previous Claim implies that ‖T‖ ≤ 1. Therefore, for |z| > 1, we have

∥∥(T − z)−1
∥∥ =

∥∥∥∥∥−
1

z

∑
n≥0

1

zn
T n

∥∥∥∥∥ ≤
1

|z| − 1
.

This proves (ii).

For n ≥ 1 we have T nek = wkwk+1 · · ·wk+n−1ek+n (k ≥ 1), and so

m(T n) = inf
k

wk · · ·wk+n−1

= w1 · · ·wn

= eln2 3−ln2 4eln2 4−ln2 5 · · · eln2(n+2)−ln2(n+3)

= eln2 3−ln2(n+3) =
3ln 3

(n + 3)ln(n+3)
.
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Therefore T does not satisfy condition (P ), and so [BM2] T is not E(T)-

subscalar. This proves (iv).

We also have limn→∞ m(T n)1/n = 1. Therefore [MZ] σap(T ) ⊂ {z : |z| =

1}. Since the spectrum of a weighted shift is circularly symmetric, we have

in fact σap(T ) = {z : |z| = 1}. But ∂σ(T ) ⊂ σap(T ) ⊂ σ(T ) and thus σ(T )

is either equal to D or contained in T. Since T is not invertible we have

σ(T ) = D. Another proof of the equality σ(T ) = D can be given using [Sh,

Th. 4] and the fact that the spectral radius of T is one. This completes the

proof of (i).

Note also that

∑
n

| ln m(T n)|
n2

< ∞,

so T satisfies the Beurling-type condition (B) (cf. [BM2]). Consequently, T

has Bishop’s property (β) (see [BM2]).

We prove now (iii).

Claim 2. limn→∞
(1−wn)3

wn+1−wn
= 0.

Proof. Let n ∈ N. Then there is an x = x(n), n + 2 ≤ x ≤ n + 3 such that

wn+1 − wn = eln2(n+3)−ln2(n+4) − eln2(n+2)−ln2(n+3)

= eln2 x−ln2(x+1)

(
2 ln x

x
− 2 ln(x + 1)

x + 1

)

and there is a y = y(n), x ≤ y ≤ x + 1 (i.e., n + 2 ≤ y ≤ n + 4) such that

wn+1 − wn = −2eln2 x−ln2(x+1) · 1− ln y

y2
.

Similarly, there is an x′ = x′(n), n + 2 ≤ x′ ≤ n + 3 such that

ln2(n + 2)− ln2(n + 3) = −2 ln x′

x′
.
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We have

lim
n→∞

(1− wn)3

wn+1 − wn

= lim
n→∞

(
1−eln2(n+2)−ln2(n+3)

ln2(n+2)−ln2(n+3)

)3

· (ln2(n + 2)− ln2(n + 3)
)3

−2eln2 x−ln2(x+1) 1−ln y
y2

= (−1)3

(
−1

2

)
lim

n→∞

(
ln2(n + 2)− ln2(n + 3)

)3

1−ln y
y2

=
1

2
lim

n→∞

(−2 ln x′
x′

)3

1−ln y
y2

= −4 lim
n→∞

y2

x′2
· lim

n→∞
ln3 x′

x′(1− ln y)
= 0.

¤

Claim 3. There is an r > 0 such that m(T − z) ≥ (1− |z|)3 for all z ∈ D,

|z| ≥ r.

Proof. Find n0 such that

(1− wn)3

wn+1 − wn

<
1

16

for all n ≥ n0. Find r, 1/2 ≤ r < 1, such that r − (1− r)3 > wn0 .

Suppose on the contrary that there is a λ ∈ D, |λ| ≥ r such that m(T −
λ) < (1 − |λ|)3. Thus there exists x = (xi) ∈ X with ‖x‖ = maxi |xi| = 1

and ‖(T − λ)x‖ < (1− |λ|)3. Since

(T − λ)x = (−λx1, w1x1 − λx2, w2x2 − λx3, · · · ),
we have

|λ| · |x1| < (1− |λ|)3

and

sup
i
|wixi − λxi+1| < (1− |λ|)3.

Without loss of generality we may assume that λ > 0 and xi > 0 for all

i ≥ 1. Indeed, replace λ by |λ| and xi by |xi| (i ≥ 1). We have

sup
i

∣∣wi|xi| − |λ| · |xi+1|
∣∣ ≤ sup

i
|wixi − λxi+1| < (1− |λ|)3.

Thus we may assume that there is a µ > r ≥ 1/2 and u = (ui) ∈ X with

ui ≥ 0 (i ∈ N), ‖u‖ = maxi ui = 1 and

(2.1) µ · u1 < (1− µ)3, sup
i
|wiui − µui+1| < (1− µ)3.

We show that this is not possible. Write for short a = (1− µ)3.
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Let m ∈ N satisfy um = 1 and uj < 1 for all j < m.

We have u1 < (1−µ)3

µ
< 1. Thus m ≥ 2.

We show that wm−1 ≥ µ−a. Suppose on the contrary that wm−1 < µ−a.

By (2.1), we have

a > |wm−1um−1 − µum| ≥ µum − wm−1um−1

≥ µ− (µ− a)um−1

= (µ− a)(1− um−1) + a ≥ a,

a contradiction. Hence

(2.2) wm−1 ≥ µ− a.

We show now that wm ≥ µ+a. Suppose on the contrary that wm < µ+a.

Then wm − wm−1 ≤ 2a and 1− wm−1 ≥ 1− wm ≥ 1− µ− a. Therefore we

have

(1− wm)3

wm − wm−1

≥ (1− µ− a)3

2a
=

(
1− µ− (1− µ)3

)3

2(1− µ)3
≥ 1/16,

since µ ≥ 1/2 and (1 − µ) − (1 − µ)3 = (1 − µ)µ(2 − µ) ≥ 1
2
(1 − µ). Thus

m − 1 < n0, and so µ − a ≥ r − (1 − r)3 > wn0 ≥ wm−1, a contradiction

with (2.2). Hence

(2.3) wm ≥ µ + a.

Since |wmum − µum+1| < a, we have µum+1 > wm − a, and so um+1 >
wm−a

µ
≥ 1, a contradiction with the assumption that ‖u‖ = 1.

Hence m(T − z) ≥ (1− |z|)3 for all z ∈ D with |z| ≥ r. ¤

Since m(T − z) > 0 for all z ∈ D and the function

z 7→ m(T − z)

(1− |z|)3

is continuous, there is a constant C > 0 such that m(T − z) ≥ C · (1− |z|)3

for all z ∈ D.

The proof of Example 2.1 is now complete.

Remarks 2.2. (a) Another proof of Bishop’s property (β) for T can be

given using [LN, 1.7.1].

(b) The fact that T has Beurling-type property (B) implies [BM2, Th.

4.5] that there exists a Banach space Y containing c0 and an invertible
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operator S ∈ B(Y ) such that T = S|X and S satisfies

∞∑
n=−∞

log ‖Sn‖
1 + n2

< ∞.

Note that this condition implies [CF] that S is decomposable.

3. Sufficient conditions

We begin with the following sufficient condition.

Proposition 3.1. Let T ∈ B(X) be a Banach space operator satisfying

‖(T − z)−1‖ ≤ C(|z| − 1)−p (|z| > 1),

for some fixed constants C > 0 and p ≥ 0. Suppose that there are q ≥ 0

and an analytically dependant left inverse function L : D→ B(X) such that

L(z)(T − z) = I and

‖L(z)‖ ≤ C(1− |z|)−q (z ∈ D).

Then T is E(T)-subscalar.

We note that the growth condition on the analytically dependant left

inverse function L implies that

‖x‖ = ‖L(z)(T − z)x‖ ≤ C(1− |z|)−q‖(T − z)x‖;
hence

m(T − z) ≥ C−1(1− |z|)q.

Proof. A proof of this result can be given using Didas’ criterion [Di] in terms

of local resolvent of the adjoint of T . We give here a different proof.

It is a classical result (see [LN, Th. 1.5.12]) that the resolvent growth

condition outside the closed unit disc implies a polynomial growth condition

for the powers of T : there is a constant c > 0 such that

‖T n‖ ≤ cnp (n ∈ N).

Write

L(z) =
∞∑
i=0

Liz
i (z ∈ D),

with Li ∈ B(X). Let 0 < r < 1. By the Cauchy formula, for each n ∈ N
we have

‖Ln‖ ≤ max{‖L(z)‖ : |z| ≤ r}
rn

≤ C

rn(1− r)q
.
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In particular, for r = n
n+q

(where the function r 7→ r−n(1− r)−q attains the

minimum) we have

‖Ln‖ ≤ C ·
(

n

n + q

)−n (
1− n

n + q

)−q

.

We have

lim
n→∞

(
n

n + q

)−n

= lim
n→∞

(
1− q

n + q

)−n

= lim
n→∞

(
1− q

n + q

)n+q
q
·−nq
n+q

= (e−1)−q = eq.

Further, for n ≥ q we have
(

1− n

n + q

)−q

=

(
q

n + q

)−q

≤
( q

2n

)−q

= 2qq−qnq.

Thus there is a constant K > 0 such that ‖Ln‖ ≤ K · nq for all n.

We have

I = L(z)(T − z) =
∞∑
i=0

Liz
i(T − z) = L0T +

∞∑
i=1

zi(LiT − Li−1)

for all z ∈ D. Thus L0T = I and LiT = Li−1 for all i ≥ 1. Hence

LnT n+1 = Ln−1T
n = · · · = L0T = I.

Let x ∈ X, ‖x‖ = 1. Then

1 = ‖x‖ = ‖Ln−1T
nx‖ ≤ ‖Ln−1‖ · ‖T nx‖.

Thus ‖T nx‖ ≥ ‖Ln−1‖−1, and so for some constant K ′ we have m(T n) ≥
K ′n−q for all n. Hence T is E(T)-subscalar by [BM2]. ¤

The next result gives an intrinsic characterization of E(T)-subscalar op-

erators on Hilbert spaces.

Theorem 3.2. Let H be a Hilbert space and T ∈ B(H). Then T is E(T)-

subscalar if and only if there are constants C > 0, p ≥ 0, q ≥ 0 and an

analytic operator-valued function L : D→ B(H) such that

(i) ‖(T − z)−1‖ ≤ C(|z| − 1)−p (|z| > 1);

(ii) L(z)(T − z) = I (|z| < 1);

(iii) ‖L(z)‖ ≤ C(1− |z|)−q (|z| < 1).
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Proof. Suppose that T is a Hilbert space E(T)-subscalar operator. Accord-

ing to [BM2, Th. 4.1], there are a Hilbert space K, constants C ′ > 0, s ≥ 0

and an E(T)-scalar extension S ∈ B(K) such that σ(S) = σap(T ) ⊂ T and

‖Sm‖ ≤ C ′|m|s (m ∈ Z,m 6= 0).

It is known that the power growth estimate ‖Sm‖ ≤ C ′|m|s implies that

[LN, 1.5.12]

‖(S − z)−1‖ ≤ C
∣∣|z| − 1

∣∣−s−1
(|z| 6= 1)

for a suitable constant C > 0. This implies

‖(T − z)−1‖ ≤ C(|z| − 1)−s−1 (|z| > 1).

We define L : D 7→ B(H) by

L(z)x = PH(S − z)−1x (z ∈ D, x ∈ H),

where PH ∈ B(K) is the orthogonal projection onto H.

Then L is analytic and we have

‖L(z)‖ ≤ ‖(S − z)−1‖ ≤ C(1− |z|)−s−1 (|z| < 1).

The equality L(z)(T −z) = I on D follows from the equalities (S−z)−1(S−
z) = I and S|H = T .

The second implication follows from Proposition 3.1. ¤
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[CF] Colojoară, I.; Foiaş, C. Theory of generalized spectral operators, Mathematics

and its Applications, Vol. 9. Gordon and Breach, Science Publishers, New York-

London-Paris, 1968.

[Di] Didas, M. E(Tn)-subscalar n-tuples and the Cesaro operator on Hp, Ann. Univ.

Sarav. Ser. Math. 10 (2000), no. 2, pp. i–iii and 284–335.



SUBSCALAR OPERATORS AND RESOLVENT 11

[EP] Eschmeier, J.; Putinar, M. Spectral decompositions and analytic sheaves, Lon-

don Mathematical Society Monographs. New Series, 10. The Clarendon Press,

Oxford University Press, New York, 1996.

[LN] Laursen, K.B.; Neumann, M.M. An introduction to local spectral theory, Lon-

don Mathematical Society Monographs. New Series, 20. The Clarendon Press,

Oxford University Press, New York, 2000.

[MZ] Makai, E., Zemánek, J. The surjectivity radius, packing numbers and bound-

edness below, Integral Equations Operator Theory 6 (1983), 372–384.

[MMN1] Miller,T.L. ; Miller,V. ; Neumann, M.M. Growth conditions and decomposable

extensions. in : Trends in Banach spaces and operator theory (Memphis, TN,

2001), 197–205, Contemp. Math., 321, Amer. Math. Soc., Providence, RI, 2003.

[MMN2] Miller,T.L.; Miller,V.; Neumann, M.M. Spectral subspaces of subscalar and

related operators, Proc. Amer. Math. Soc. 132 (2004), no. 5, 1483–1493.

[MMN3] Miller,T.L. ; Miller,V. ; Neumann, M.M. Local spectral properties of weighted

shifts, J. Operator Theory 51 (2004), no. 1, 71–88.

[MMN4] Miller,T.L.; Miller,V.; Neumann, M.M. Localization in the spectral theory of

operators on Banach spaces, in: Function spaces (Edwardsville, IL, 2002), 247–

262, Contemp. Math., 328, Amer. Math. Soc., Providence, RI, 2003.

[Sh] Shields, A.L. Weighted shift operators and analytic function theory, in Topics

in operator theory, 49–128. Math. Surveys, 13, Amer. Math. Soc., Providence,

R.I., 1974.

Département de Mathématiques, UMR CNRS no. 8524, Université Lille

I, F–59655 Villeneuve d’Ascq, France

E-mail address: badea@math.univ-lille1.fr

Institut of Mathematics AV CR, Zitna 25, 115 67 Prague 1, Czech Re-

public

E-mail address: muller@math.cas.cz


