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Abstract. An operator in a Banach space is called upper (lower) semi-Browder if
it is upper (lower) semi-Fredholm and has a finite ascent (descent). We extend this
notion to n-tuples of commuting operators and show that this notion defines a joint
spectrum. Further we study relations between semi-Browder and (essentially) semi-
regular operators.

Denote by L(X) the algebra of all bounded linear operators in a complex Banach
space X and by I the identity operator in X. For T in L(X) denote by N(T ) = {x ∈
X : Tx = 0} and R(T ) = {Tx : x ∈ X} its kernel and range, respectively. Denote
further R∞(T ) =

⋂∞
k=0 R(T k) and N∞(T ) =

⋃∞
k=0 N(T k).

The sets of all upper (lower) semi-Fredholm operators in X will be denoted by
Φ+(X) and Φ−(X). Recall that T ∈ Φ+(X) if and only if dim N(T ) < ∞ and R(T ) is
closed; T ∈ Φ−(X) if and only if codim R(T ) < ∞ (then R(T ) is closed automatically).
The ascent and descent of T are defined by a(T ) = min{n : N(Tn) = N(Tn+1)} and
d(T ) = min{n : R(Tn) = R(Tn+1)}.

We say that an operator T ∈ L(X) is upper (lower) semi-Browder if it is upper
(lower) semi-Fredholm and has a finite ascent (descent). The set of all upper (lower)
semi-Browder operators in X will be denoted by B+(X) and B−(X). Semi-Browder
operators were studied by many authors, see e.g. [4], [12], [14], [18], [20], [21], [22], [24].
The name was introduced in [6].

We extend the notion of semi-Browder operators to n-tuples of commuting opera-
tors. We discuss the lower semi-Browder case; the upper case is dual.

Let T = (T1, ..., Tn) be an n-tuple of mutually commuting operators in a Banach
space X. We use the standard multiindex notation. Denote by Z+ the set of all
non-negative integers. If α = (α1, ..., αn) ∈ Zn

+ then denote |α| = α1 + · · · + αn and
Tα = Tα1

1 · · ·Tαn
n .

For k = 0, 1, 2, ..., denote Mk(T ) = R(T k
1 ) + · · · + R(T k

n ) and let M ′
k(T ) be the

smallest subspace of X containing the set
⋃{R(Tα) : α ∈ Zn

+ and |α| = k}. Clearly
X = M0(T ) ⊃ M1(T ) ⊃ M2(T ) ⊃ · · · and X = M ′

0(T ) ⊃ M ′
1(T ) ⊃ M ′

2(T ) ⊃ · · ·.
Further

M ′
n(k−1)+1(T ) ⊂ Mk(T ) ⊂ M ′

k(T ). (1)

Indeed, if α = (α1, ..., αn) ∈ Zn
+ and |α| = n(k − 1) + 1 then there exists i, 1 ≤ i ≤ n

such that αi ≥ k, so that R(Tα) ⊂ R(T k
i ) ⊂ Mk(T ). This proves the first inclusion of

(1) and the second inclusion is clear.
Denote R∞(T ) =

⋂∞
k=0 Mk(T ) =

⋂∞
k=0 M ′

k(T ).
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If M ′
k(T ) = M ′

k+1(T ) for some k then it is easy to see by induction that M ′
m(T ) =

M ′
k(T ) for every m ≥ k, so that R∞(T ) = M ′

k(T ).
As usual we say that an n-tuple T = (T1, ..., Tn) of mutually commuting operators

in X is lower semi-Fredholm (T ∈ Φ(n)
− (X)) if

codim M1(T ) = codim (R(T1) + · · ·+ R(Tn)) < ∞.

Clearly T = (T1, . . . , Tn) is lower semi-Fredholm if and only if the operator T̂ : Xn → X
defined by T̂ (x1, . . . , xn) = T1x1 + · · ·+ Tnxn is lower semi-Fredholm.

We say that T = (T1, . . . , Tn) is semi-Browder if codim R∞(T ) < ∞. The set of all

lower semi-Browder n-tuples will be denoted by B(n)
− (X). Clearly Φ(n)

− (X) ⊂ B(n)
− (X).

Define

σΦ−(T ) = {(λ1, . . . , λn) ∈ Cn : (T1 − λ1, . . . , Tn − λn) /∈ Φ(n)
− (X)},

and
σB−(T ) = {(λ1, . . . , λn) ∈ Cn : (T1 − λ1, . . . , Tn − λn) /∈ B(n)

− (X)}.
It is well known that σΦ− satisfies the spectral mapping property [1]. In particular,

(T1, ..., Tn) ∈ Φ(n)
− (X) if and only if (T k

1 , ..., T k
n ) ∈ Φ(n)

− (X). Thus codim M1(T ) < ∞
implies codim Mk(T ) < ∞ for every k.

Theorem 1. Let T = (T1, ..., Tn) be an n-tuple of mutually commuting operators in a
Banach space X. The following statements are equivalent:
(a) T ∈ B(n)

− (X).

(b) T ∈ Φ(n)
− (X) and there exists k such that M ′

k(T ) = M ′
k+1(T ).

(c) T ∈ Φ(n)
− (X) and there exists k such that Mk(T ) = Mk+1(T ).

(d) There exists a subspace Y ⊂ X invariant with respect to every Ti (i = 1, . . . , n)
such that codim Y < ∞ and T1Y +· · ·+TnY = Y . It is possible to take Y = R∞(T ).

Proof. (c) ⇒ (b): Let Mk(T ) = Mk+1(T ) for some k. Using the same argument as in
the proof of (1) it is possible to show that M ′

n(k−1)+1(T ) = M ′
n(k−1)+2(T ).

(b) ⇒ (a): Let M ′
k(T ) = M ′

k+1(T ) for some k. Then Mk(T ) ⊂ M ′
k(T ) = R∞(T ).

Further T ∈ Φ(n)
− (X) implies codim Mk(T ) < ∞, so that T ∈ B(n)

− (X).
(a) ⇒ (d): Set Y = R∞(T ). Clearly Y is invariant with respect to Ti (i = 1, . . . , n),

codim Y < ∞ and Y = Mk(T ) = Mk+1(T ) for some k. If y ∈ Y then for some
x1, . . . , xn ∈ X we have

y =
n∑

i=1

T k+1
i xi =

n∑

i=1

Ti(T
k
i xi) ∈ T1Y + · · ·+ TnY.

(d) ⇒ (c): Since M1(T ) ⊃ M1(T |Y ) = Y we have codim M1(T ) < ∞ so that

T ∈ Φ(n)
− (X). Further M ′

1(T |Y ) = M ′
0(T |Y ) = Y implies R∞(T |Y ) = Y and Mk(T ) ⊃

Mk(T |Y ) ⊃ Y for every k. Thus the sequence Mk(T ) is constant for k big enough.

Corollary 2. Let T = (T1, ..., Tn) ∈ B(n)
− (X). Then there exists ε > 0 such that

(T1−λ1, ..., Tn−λn) ∈ B(n)
− (X) for all complex numbers λ1, . . . , λn ∈ C with

∑n
i=1 |λi| <

ε. Moreover codim R∞(T1 − λ1, ..., Tn − λn) ≤ codim R∞(T1, ..., Tn).
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Proof. Denote Y = R∞(T ). Then codim Y < ∞ and T1Y + · · · + TnY = Y . There
exists ε > 0 such that (T1−λ1)Y +· · ·+(Tn−λn)Y = Y if λ1, . . . , λn ∈ C,

∑n
i=1 |λi| < ε,

so that R∞(T1 − λ1, ..., Tn − λn) ⊃ Y = R∞(T1, ..., Tn).

Proposition 3. Suppose T1, ..., Tn, S1, ..., Sn are mutually commuting operators in X

such that
∑n

i=1 TiSi = I. Then (T1, ..., Tn) ∈ B(n)
− (X).

Proof. Clearly M1(T1, ..., Tn) = X = M0(T1, ..., Tn) so that (T1, ..., Tn) ∈ B(n)
− (X).

Corollary 4. σB−(T ) is a compact subset of Cn.

Proof. σB−(T ) is closed by Corollary 2. Further σB−(T ) ⊂ σ<T>(T ) where < T >
denotes the smallest closed subalgebra of L(X) containing T1, ..., Tn and the identity
operator and σ<T>(T ) denotes the spectrum in the commutative Banach algebra
< T >. Thus σB−(T ) is bounded and hence compact.

Lemma 5. Let T1, ..., Tn, Tn+1 be mutually commuting operators in a Banach space
X. Suppose codim R∞(T1, ..., Tn) = ∞ and let k ∈ N. Then there exists a complex
number λ such that

codim
[
R(T k

1 ) + · · ·+ R(T k
n ) + R((Tn+1 − λ)k)

] ≥ k. (2)

Proof. Using condition (c) of Theorem 1 we can distinguish two cases:

(a) (T1, ..., Tn) /∈ Φ(n)
− (X) so that (0, ..., 0) ∈ σΦ−(T1, ..., Tn). By the projection prop-

erty for σΦ− there exists λ ∈ C such that (0, ..., 0, λ) ∈ σΦ−(T1, ..., Tn, Tn+1), i.e.,
codim[R(T k

1 ) + · · ·+ R(T k
n ) + R((Tn+1 − λ)k)] = ∞. Hence we have (2).

(b) codim Mm(T ) < ∞ and Mm(T ) 6= Mm+1(T ) for every m ≥ 1 where T =
(T1, ..., Tn).

Fix k ∈ N. Then there exists i, 1 ≤ i ≤ n such that R(T k−1
i ) 6⊂ Mk(T ) (otherwise

Mk−1(T ) = Mk(T )). Denote Y = X/Mk(T ), so that dim Y < ∞ and let S : Y 7→ Y be
defined by S(x + Mk(T )) = Tix + Mk(T ). Clearly Sk = 0 and Sk−1 6= 0.

Consider the operator U : Y 7→ Y defined by U(x + Mk(T )) = Tn+1x + Mk(T ).
Clearly US = SU . Let Z be a subspace of Y satisfying Z ⊕ N(Sk−1) = Y . In this
decomposition U can be written as

U =

(
U11 0
U12 U22

)
.

Choose a complex number λ such that U11 − λ is singular, i.e., there exists a non-zero
z ∈ Z with (U − λ)z ∈ N(Sk−1). Since z ∈ N(Sk) \N(Sk−1) we have

Sk−mz ∈ N(Sm) \N(Sm−1) (m = 1, . . . , k).

Further

(U − λ)Sk−mz = Sk−m(U − λ)z ∈ Sk−mN(Sk−1) ⊂ N(Sm−1).
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For m = 1, . . . , k we have

dim
[
N(Sm)/(U − λ)mN(Sm)

]
= dim N

(
(U − λ)m|N(Sm)

) ≥ dim N
(
(U − λ)m|M

)
,

where M = N(Sm−1) ∨ {Sk−mz} and (U − λ)mM ⊂ (U − λ)m−1N(Sm−1). Further

dim N
(
(U − λ)m|M

)
= dim

[
M/(U − λ)mM

]

≥dim
[
M/(U − λ)m−1N(Sm−1)

]
= dim

[
N(Sm−1)/(U − λ)m−1N(Sm−1)

]
+ 1,

since Sk−mz 6∈ N(Sm−1). Thus, by induction,

dim
[
N(Sm)/(U − λ)mN(Sm)

] ≥ m (m = 1, . . . , k).

In particular dim(Y/(U − λ)kY ) ≥ k. Consequently

codim
[
R(T k

1 ) + · · ·+ R(T k
n ) + R((Tn+1 − λ)k)

] ≥ k.

Corollary 6. Let T1, ..., Tn, Tn+1 be mutually commuting operators in a Banach space
X. Suppose that codim R∞(T1, ..., Tn) = ∞. Then there exists λ ∈ C such that

codim R∞(T1, ..., Tn, Tn+1 − λ) = ∞.

Proof. For each k ≥ 1 we can find λk ∈ C such that

codim R∞(T1, . . . , Tn, Tn+1 − λk)

≥codim [R(T k
1 ) + · · ·+ R(T k

n ) + R((Tn+1 − λk)k)] ≥ k.

Clearly λk ∈ σ(Tn+1) for every k. Thus we may assume (by passing to a subsequence,
if necessary) that the sequence {λk} is convergent, λk → λ ∈ σ(Tn+1). We have

lim
k→∞

codim R∞(T1, . . . , Tn, Tn+1 − λk) = ∞.

By Corollary 2 this implies that codim R∞(T1, . . . , Tn, Tn+1 − λ) = ∞.

Corollary 7. If T1, ..., Tn, Tn+1 be mutually commuting operators, then

σB−(T1, ..., Tn) = PσB−(T1, ..., Tn+1),

where P : Cn+1 7→ Cn is the projection onto the first n coordinates.

Proof. The inclusion ⊂ was proved in Corollary 6. If (T1, ..., Tn) ∈ B−(n)(X) then
clearly

R∞(T1, . . . , Tn, Tn+1 − λ) ⊃ R∞(T1, . . . , Tn),

so that (T1, . . . , Tn, Tn+1 − λ) ∈ B(n+1)
− (X) for every λ ∈ C. This proves the second

inclusion.
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Corollary 8. σB− is a subspectrum in the sense of Żelazko [25]. Consequently, by [17],
σB− satisfies the spectral mapping property:

fσB−(T ) = σB−f(T )

for every n-tuple T = (T1, ..., Tn) of mutually commuting operators and every m- tuple
f = (f1, . . . , fm) of functions analytic in a neighbourhood of the Taylor spectrum of
(T1, ..., Tn).

The following lemma is a well–known stability result for semi-Fredholm operators.

Lemma 9. Let T = (T1, ..., Tn) ∈ Φ(n)
− (X). Then there exists ε > 0 such that

codim M1(S) ≤ codim M1(T )

for every commuting n-tuple S = (S1, ..., Sn) ∈ L(X)n with
∑n

i=1 ‖Si − Ti‖ < ε.

The previous lemma enables to generalize the result of [12] for n-tuples of operators.

Theorem 10. Let T = (T1, ..., Tn) ∈ B(n)
− (X). Then there exists ε > 0 such that S ∈

B(n)
− (X) for every commuting n-tuple S = (S1, ..., Sn) ∈ L(X)n with

∑n
i=1 ‖Si−Ti‖ < ε.

Proof. Choose k such that Mk(T ) = R∞(T ) and codim R∞(T ) ≤ k. Then (T k+1
1 , . . . ,

T k+1
n ) ∈ Φ(n)

− (X). By the previous lemma there exists ε > 0 with the following property:
if S = (S1, ..., Sn) is a commuting n-tuple of operators in X with

∑n
i=1 ‖Si − Ti‖ < ε

then (Sk+1
1 , . . . , Sk+1

n ) ∈ Φ(n)
− (X) and

codim M1(Sk+1
1 , ..., Sk+1

n ) ≤ codim M1(T k+1
1 , . . . , T k+1

n )

=codim Mk+1(T ) = codim R∞(T ) ≤ k.

Since M1(S) ⊃ M2(S) ⊃ · · · ⊃ Mk+1(S) and codim Mk+1(S) ≤ k, there exists j ≤ k

such that Mj(S) = Mj+1(S). Consequently S ∈ B(n)
− (X).

From the general theory of joint spectrum it is easy to deduce the following con-
sequences:
(a) The mapping (T1, . . . , Tn) 7→ σB−(T1, . . . , Tn) is upper semi-continuous. In partic-

ular, if T1 ∈ L(X) and U is a neighbourhood of σB−(T1), then σB−(S1) ⊂ U for
every operator S1 close enough to T1.

(b) σB− is continuous on commuting elements, see [11], Theorem 1.9. More precisely,
if {Tk}∞k=1 ⊂ L(X), T ∈ L(X), lim Tk = T and TkT = TTk, k = 1, 2, . . ., then
λ ∈ σB−(T ) if and only if there exist λk ∈ σB−(Tk) such that λk → λ.

(c) Let T, S ∈ L(X), TS = ST . Then (cf. [11], Proposition 1.8)

δ
(
σB−(T ), σB−(S)

) ≤ re(T − S),

where δ denotes the Hausdorff distance and re the essential spectral radius,

re(T ) = max{|λ|, T − λ is not Fredholm} = max{|λ|, T − λ 6∈ B−(X)},
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see [7].
(d) Let T, S ∈ L(X), TS = ST . Then

TS ∈ B−(X) ⇐⇒ T, S ∈ B−(X),

see [6] and [16], Theorem 2.1.
(e) Let T and Q be commuting operators acting in X, let T ∈ B−(X) and let Q be

a quasinilpotent. Then T + Q ∈ B−(X), see e.g. [11], Remark after Theorem 1.9,
[18], Theorem 4.1 or [21], Corollary 2.

Analogously we can define the upper semi-Browder n-tuples. Let T = (T1, ..., Tn)
be an n-tuple of mutually commuting operators in a Banach space X. We say that
T is upper semi-Fredholm (T ∈ Φ(n)

+ (X)) if the mapping T̃ : X 7→ Xn defined by
T̃ x = (T1x, . . . , Tnx) is upper semi-Fredholm. We say that T is upper semi-Browder

(T ∈ B(n)
+ (X)) if T ∈ Φ(n)

+ (X) and dim N∞(T ) < ∞, where

N∞(T ) =
∞⋃

k=1

[
N(T k

1 ) ∩ · · · ∩N(T k
n )

]
.

Denote T ∗ = (T ∗1 , . . . , T ∗n) ∈ L(X∗)n.

Theorem 11. Let T = (T1, ..., Tn) be an n-tuple of mutually commuting operators in
a Banach space X. Then

T ∈ B(n)
− (X) ⇐⇒ T ∗ ∈ B(n)

+ (X∗)

and
T ∈ B(n)

+ (X) ⇐⇒ T ∗ ∈ B(n)
− (X∗).

Proof. The corresponding equivalences are well-known for semi-Fredholm n-tuples.
Further it is easy to check that

N(T k
1 ) ∩ · · · ∩N(T k

n ) = ⊥[
R(T ∗k1 ) + · · ·+ R(T ∗kn )

]
.

and [
R(T k

1 ) + · · ·+ R(T k
n )

]⊥
= N(T ∗k1 ) ∩ · · · ∩N(T ∗kn ).

The statement of Theorem 11 is now an easy consequence of these identities.

For a commuting n-tuple T = (T1, ..., Tn) ∈ L(X)n we define the upper semi-
Browder spectrum of T by

σB+(T ) = {(λ1, . . . , λn) ∈ Cn, (T1 − λ1, . . . , Tn − λn) /∈ B(n)
+ (X)}.

By the previous theorem it is easy to see that σB+ satisfies the same properties as σB− .
Define further the Browder spectrum σB of a commuting n-tuple T = (T1, ..., Tn)

by
σB(T ) = σB−(T ) ∪ σB+(T ).
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For a single operator T1 this definition coincides with the usual definition of the Browder
spectrum of T1 as the union of σe(T1) and the limit points of σ(T1), where σe(T1) denotes
the essential spectrum of T1, i.e.,

σe(T1) = {λ ∈ C, T − λ is not Fredholm}

and σ(T1) denotes the ordinary spectrum of T1. Again it is easy to see that σB satisfies
all properties proved for σB− .

Remark. The possibility of extending the Browder spectrum to commuting n- tuples
was proved in [3]. Our extension

σB(T1, ..., Tn) = σB−(T1, ..., Tn) ∪ σB+(T1, ..., Tn)

exhibits similar properties as the spectrum

σb(T1, ..., Tn) = σTe(T1, ..., Tn) ∪ (
σT (T1, ..., Tn)

)′

defined there. (Here σt and σte denote the Taylor and and the essential Taylor spectrum
and M ′ denotes the set of all limit points of a set M .) However these extensions differ
for n ≥ 2, an example will be given later.

The semi-Fredholm and semi-Browder operators are closely related with semi-
regular and essentially semi-regular operators which (under various names) were in-
tensively studied, see e. g. [5], [9], [10], [11], [13], [15], [16], [19] and [23]. An operator
T ∈ L(X) is called semi-regular if it has closed range and N(T ) ⊂ R∞(T ). T is
essentially semi-regular if R(T ) is closed and dim

[
N(T )/(N(T ) ∩R∞(T ))

]
< ∞.

From a number of equivalent properties of essentially semi-regular operators we
point out the following Kato decomposition (see [16, Theorem 3.1], [19, Theorem 2.1]).

Proposition 12. An operator T ∈ L(X) is essentially semi-regular if and only if R(T )
is closed and there exist closed subspaces X1, X2 ⊂ X invariant with respect to T such
that X = X1 ⊕X2, dim X1 < ∞, T |X1 is nilpotent and T |X2 is semi-regular.

If T ∈ L(X) is a lower semi-Browder operator then the space X2 in the Kato
decomposition is determined uniquely and X2 = R∞(T ). Thus T |X2 is onto. The
analogous statement for n-tuples of commuting operator is not true.

Example. Denote by H the Hilbert space with an orthonormal basis {ei,j : i, j ∈
Z, i ≥ 0 or j ≥ 0} ∪ {e−1,−1}. Define operators T1, T2 ∈ L(X) by

T1ei,j = ei+1,j ,

T2ei,j = ei,j+1.

We list some properties of the pair (T1, T2) :

(a) T1 and T2 are commuting isometries so that (T1, T2) ∈ B(n)
+ (X).

(b) Denote
Y = ∨{ei,j : i, j ∈ Z, i ≥ 0 or j ≥ 0} = {e−1,−1}⊥.
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Then TiY ⊂ Y (i = 1, 2), T1Y + T2Y = Y and codim Y = 1. Thus (T1, T2) ∈
B(n)
− (X).

(c) Denote by σt the Taylor spectrum. Then (0, 0) ∈ σt(T1, T2). Indeed, e−1,−1 6∈
T1H + T2H so that T1H + T2H 6= H.

(d) (0, 0) is a limit point of the Taylor spectrum of (T1, T2). Indeed, if (0, 0) were
an isolated point of σt(T1, T2) then, using the Taylor functional calculus, it would
be possible to decompose H as H = H1 ⊕ H2 where TiHj ⊂ Hj (i, j = 1, 2),
σt(T1|H1 , T2|H1) = {0, 0} and {0, 0} 6∈ σt(T1|H2 , T2|H2). Since T1 and T2 are com-
muting isometries it would mean that the approximate point spectrum

σπ(T1|H1 , T2|H1)

=
{

(λ1, λ2) ∈ C2 : inf{‖(T1 − λ1)x‖+ ‖(T2 − λ2)x‖, x ∈ H1, ‖x‖ = 1} = 0
}

is empty. Thus H1 = {0}, a contradiction with the fact that

(0, 0) ∈ σt(T1|H1 , T2|H1).

(e) We have
(0, 0) ∈ σt(T1, T2)′ ⊂ σb(T1, T2)

and
(0, 0) 6∈ σB(T1, T2) = σB+(T1, T2) ∪ σB−(T1, T2).

Thus the joint spectra σB and σb are different.
(f) In the same way as in (d) it is possible to show that there is no (not necessarily

orthogonal) decomposition H = H1⊕H2 such that TiHj ⊂ Hj (i, j = 1, 2), T1|H1

and T2|H1 are nilpotent and T1H2 + T2H2 = H2. Thus there is no analogy to the
Kato decomposition of a single semi-Browder operator.

Problem. Let T = (T1, . . . , Tn) be a commuting n-tuple of operators in a Banach
space X. Denote by σδ the defect spectrum of T , i. e.,

σδ(T ) = {(λ1, . . . , λn) ∈ Cn : (T1 − λ1)X + · · ·+ (Tn − λn)X 6= X}.

Using Theorem 1 it is possible to obtain

σΦ−(T ) ∪ σδ(T )′ ⊂ σB(T ).

For n = 1 the opposite inclusion also takes place. It is an open problem whether
σΦ−(T ) ∪ σδ(T )′ = σB(T ) for n ≥ 2.

Proposition 13. Let T be an essentially semi-regular operator on a Banach space X.
Then R∞(T ) is closed, TR∞(T ) = R∞(T ) and the operator T̃ : X/R∞(T ) 7→ X/R∞(T )
induced by T is upper semi-Browder.

Proof. Set M = R∞(T ). Let X = X1 ⊕ X2 be the Kato decomposition of T (see
Proposition 12) and denote Ti = T |Xi (i = 1, 2). Clearly M = R∞(T2) ⊂ X2. It is
well-known that M is closed and TM = M , see e.g. [16], Lemma 1.4. Let k ≥ 1 and
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x = x1⊕x2 ∈ X satisfy T kx ∈ M . Then T k
2 x2 ∈ M so that x2 ∈ M , see [16, Lemma 1.4].

Thus x ∈ X1+M and dim N(T̃ k) ≤ dim X1. Consequently dim N∞(T̃ ) ≤ dim X1 < ∞.
Let π : X 7→ X/M be the canonical projection. As M ⊂ R(T ) and R(T̃ ) =

{Tx + M, x ∈ X} = πR(T ), the range of T̃ is closed. Thus T̃ is upper semi-Browder.

Theorem 14. Let T be an operator on a Banach space X. Then the following
conditions are equivalent:
(a) T is essentially semi-regular,
(b) there exists a closed subspace M of X such that TM ⊂ M , T |M is lower semi-

Fredholm and the induced operator T̃ : X/M 7→ X/M is upper semi-Fredholm,
(c) there exists a closed subspace M of X such that TM ⊂ M , T |M is lower semi-

Browder and the induced operator T̃ : X/M 7→ X/M is upper semi-Browder,
(d) there exists a closed subspace M of X such that TM ⊂ M , T |M is surjective and

the induced operator T̃ : X/M 7→ X/M is upper semi-Browder,
(e) there exists a closed subspace M of X such that TM ⊂ M , T |M is lower semi-

Browder and the induced operator T̃ : X/M 7→ X/M is bounded below.

Proof. By Proposition 13, (a) ⇒ (d). The implications (d) ⇒ (c) ⇒ (b) are straight-
forward.

(b) ⇒ (a): First we show that R(T ) is closed. Let π : X 7→ X/M be the canonical
projection. If y ∈ R(T ), y = Tx for some x ∈ X, then πy = Tx + M = T̃ (x + M) ∈
R(T̃ ), so that R(T ) ⊂ π−1R(T̃ ). Let y ∈ X and πy ∈ R(T̃ ), i.e., y + M = Tx + M for
some x ∈ X. Then y ∈ R(T ) + M = R(T ) + (F + TM) ⊂ R(T ) + F for some finite
dimensional subspace F of M . Thus π−1(R(T̃ )) ⊂ R(T )+F ⊂ π−1(R(T̃ ))+F . Further
π−1(R(T̃ )) + F is closed since π is continuous, R(T̃ ) is closed and F finite dimensional.
Hence R(T ) + F is closed, and so R(T ) is closed.

As πN(T ) ⊂ N(T̃ ) and dim N(T̃ ) is finite dimensional, there exists a finite dimen-
sional subspace G1 ⊂ N(T ) such that N(T ) ⊂ G1 + N(T |M ). The operator T |M is
lower semi-Fredholm and consequently essentially semi-regular, i.e., there exists a finite
dimensional subspace G2 of M such that N(T |M ) ⊂ G2 + R∞(T |M ). Thus

N(T ) ⊂ G1 + N(T |M ) ⊂ G1 + G2 + R∞(T |M ) ⊂ (G1 + G2) + R∞(T ),

and T is essentially semi-regular.

(a) ⇒ (e): Let X = X1 ⊕ X2 be the Kato decomposition of T , i.e., dim X1 < ∞,
TX1 ⊂ X1, TX2 ⊂ X2, T |X1 is nilpotent and T2 = T |X2 is semi-regular. Set M =
X1 ⊕ R∞(T2) = X1 ⊕ R∞(T ). Clearly, M is closed and since TR∞(T ) = R∞(T ), we
have T |M is a lower semi-Browder operator.

Let T̃ : X/M 7→ X/M be the operator induced by T . If x = x1 ⊕ x2 satisfies
Tx ∈ M then T2x2 ∈ R∞(T2), so that x2 ∈ R∞(T2) and x ∈ M . Hence N(T̃ ) = {0}.

We show that R(T̃ ) is closed. Let x, xk ∈ X (k = 1, 2, . . .) and let Txk + M →
x+M in the topology of X/M . Then x ∈ R(T ) + M = R(T )+M since M ⊂ R(T )+X1.
Consequently x + M ∈ R(T̃ ). Hence R(T̃ ) is closed and T̃ is bounded below.

(e) ⇒ (b) : Clear.

It is well-known that if T ∈ L(X) is essentially semi-regular and K is compact
operator commuting with T then T + K is also essentially semi-regular [5], Theorem
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5.9. Now we can prove a sharper result. Let us denote by

r+(T ) = sup{ε ≥ 0 : T − λI ∈ Φ+(X) for |λ| < ε}

and
r−(T ) = sup{ε ≥ 0 : T − λI ∈ Φ−(X) for |λ| < ε}

the semi-Fredholm radii of T . An operator T ∈ L(X) is upper (lower) semi-Fredholm
if and only if r+(T ) > 0 (r−(T ) > 0).

Lemma 15. Let A be an operator on a Banach space X and let M be a closed
subspace of X such that AM ⊂ M . Then re(A|M ) ≤ re(A) and re(Ã) ≤ re(A) where
Ã : X/M 7→ X/M is the operator induced by A.

Proof. Let A ∈ L(X) be a Fredholm operator and let AM ⊂ M . Then R(A|M ) is
closed (see [2], Lemma 4.3.1) and dim N(A|M ) ≤ N(A) < ∞. Thus A|M is upper
semi-Fredholm. Further, codim R(Ã) ≤ codim R(A) < ∞, and hence Ã is lower semi-
Fredholm.

The rest follows from the fact that upper and lower semi-Fredholm spectra contain
the boundary of the essential spectrum [7].

Theorem 16. Let T, S ∈ L(X), TS = ST and let T be essentially semi-regular. Let
T̂ = T |R∞(T ) and let T̃ : X/R∞(T ) 7→ X/R∞(T ) be the operator induced by T . If

re(S) < min{r−(T̂ ), r+(T̃ )} then T + S is essentially semi-regular.

Proof. By Theorem 14, T̂ ∈ Φ−(X) and T̃ ∈ Φ+(X). As TS = ST , we have
SR∞(T ) ⊂ R∞(T ) and we can define the operators S̃ : X/R∞(T ) → X/R∞(T ) and
Ŝ = S|R∞(T ). Clearly, T̂ Ŝ = ŜT̂ and T̃ S̃ = S̃T̃ . By Lemma 15, re(Ŝ) ≤ re(S) < r−(T̂ )

and re(S̃) ≤ re(S) < r+(T̃ ). As in [11], Theorem 1.9 it is possible to deduce that T̂ + Ŝ
is lower semi-Fredholm and T̃ + S̃ is upper semi-Fredholm. By Theorem 14, T + S is
essentially semi-regular.

Corollary 17. Let T be an essentially semi-regular operator on a Banach space X,
S ∈ L(X), TS = ST and let S be a Riesz operator (i.e., re(S) = 0). Then T + S is
essentially semi-regular.

For T ∈ L(X) denote by

σγ(T ) = {λ ∈ C : T − λ is not semi-regular}

and
σγe(T ) = {λ ∈ C : T − λ is not essentially semi-regular}.

The spectrum σγ(T ) and its essential version the set σγe(T ) were studied (under various
names) by many authors, see e.g., [9], [10], [11], [13], [15], [16], [19] and [23].

Corollary 18. Let T ∈ L(X). Then

σγe(T ) =
⋂

σγ(T + S)
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where the intersection is taken over all Riesz operators in X commuting with T .

Proof. The inclusion ⊃ follows from [19, Theorem 3.1]. The opposite inclusion follows
from the previous corollary.

Theorem 19. Let X be an infinite dimensional Banach space and S ∈ L(X). Then
the following conditions are equivalent:

(a) σγe(T + S) = σγe(T ) for every T ∈ L(X) commuting with S,
(b) S is a Riesz operator.

Proof. (b) ⇒ (a) : See Corollary 17.

(a) ⇒ (b) : Take T = 0. Then σγe(S) = σγe(0) = {0}. By [19], Corollary 3.4 or [16],
Theorem 3.8, σe(T ) = {0} so that S is a Riesz operator.
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[19] V. Rakočević, Generalized spectrum and commuting compact perturbations, Proc.

Edinb. Math. Soc. 36 (1993), 197–209.
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1994, 79–89.

[23] Ch. Schmoeger, Ein Spektralabbildungssatz, Arch. Math., 55 (1990), 484–489.
[24] T. T. West, A Riesz-Schauder theorem for semi-Fredholm operators, Proc. R. Ir.

Acad. 87 (1987), 137–146.
[25] W. Żelazko, Axiomatic approach to joint spectra I., Studia Math., 64 (1979), 249–

261.

Institute of Mathematics AV ČR
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