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Let T be an operator on a Banach space X. We give a survey of results
concerning orbits {Tnx : n = 0, 1, . . .} and weak orbits {〈Tnx, x∗〉 : n = 0, 1, . . .} of T
where x ∈ X and x∗ ∈ X∗. Further we study the local capacity of operators and prove
that there is a residual set of points x ∈ X with the property that the local capacity
cap(T, x) is equal to the global capacity cap T . This is an analogy to the corresponding
result for the local spectral radius.

INTRODUCTION

Let T be a bounded linear operator acting on a (real or complex) Banach space
X and let x ∈ X. The orbit of x under the operator T is the sequence {Tnx : n =
0, 1, . . .}.

The properties of orbits of different points may differ very much — the orbits
of some points may be ”regular” while other points may have very ”irregular” orbits.

Many deep results and problems of operator theory may be formulated using
the notion of orbits, For example, T has no nontrivial invariant subspace if and only
if the orbit of each non-zero vector x ∈ X spans the whole space. Similarly, T has no
nontrivial closed invariant subset if and only if the orbit of each x 6= 0 is dense; in this
case all orbits are extremely irregular.

Analogously, weak orbits under T are sequences {〈Tnx, x∗〉 : n = 0, 1, . . .}
where x ∈ X and x∗ ∈ X∗ are fixed. This notion is also closely related to the invariant
subspace problem — the main idea of the celebrated Scott Brown technique is the
construction of a weak orbit with very definite properties.

Many results for both orbits and weak orbits have their parallel for continuous
one parameter semigroups of operators. In this context, orbits are closely related to
stability results for semigroups of operators.

In the last section of this paper we study also polynomial orbits. By the poly-
nomial orbit of x ∈ X we mean the set {p(T )x : p polynomial}. Apart from the
invariant subspace problem this notion is closely connected with the notion of capacity
of operators introduced by P. Halmos.
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The aim of this paper is to give a survey of results concerning orbits, weak orbits
and polynomial orbits of operators. We always try to construct all types of orbits as
regular as possible.

Many results concerning orbits of operators on complex Hilbert spaces may be
found in [2]. For results concerning semigroups of operators see [14].

The author wishes to thank to P. Niemiec for careful reading of the manuscript
and for discovering several gaps in the proofs.

Denote by L(X) the set of all bounded linear operators acting on a Banach
space X.

We say that a subset M ⊂ X is residual if its complement X \M is of the first
category. Clearly a subset M ⊂ X is residual if and only if it contains a dense Gδ-set.

I. ORBITS IN COMPLEX BANACH SPACES

In this section X will be a complex Banach space and T ∈ L(X).
It is known that there is a residual set of points x ∈ X with the property that

the local spectral radius rx(T ) = lim supn→∞ ‖Tnx‖1/n is equal to the spectral radius

r(T ) = lim
n→∞

‖Tn‖1/n = inf
n
‖Tn‖1/n,

see [15], [5]. In particular, for x in this residual set, there are infinitely many powers
such that ‖Tnx‖ is ”large”.

Moreover, by [9], there are always points x ∈ X such that ‖Tnx‖ is ”large” for
all powers n ≥ 0.

More precisely, we have the following results:

THEOREM 1.1. Let T ∈ L(X), let (an)n≥0 be a sequence of positive numbers
such that an → 0. Then:

(i) the set of all x ∈ X with the property that

‖Tnx‖ ≥ an‖Tn‖ for infinitely many n’s

is residual.
(ii) Let k ≥ 0. Then in each ball in X of radius greater than max{aj : j ≥ k} there

is a vector u such that

‖Tnu‖ ≥ anr(Tn) (n ≥ k).

In particular, there is a dense set of points x ∈ X with the property that ‖Tnx‖ ≥
anr(Tn) for all but a finite number of n’s. Further, there exist points x ∈ X such that
‖Tnx‖ ≥ anr(Tn) for all n ≥ 0.

PROOF. (i) For k ∈ N set

Mk = {x ∈ X : there exists n ≥ k such that ‖Tnx‖ > an‖Tn‖}.
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Clearly Mk is an open set. We prove that Mk is dense. Let x ∈ X and ε > 0.
Choose n ≥ k such that anε−1 < 1. There exists z ∈ X of norm one such that
‖Tnz‖ > anε−1‖Tn‖. Then

2an‖Tn‖ < ‖Tn(2εz)‖ ≤ ‖Tn(x + εz)‖+ ‖Tn(x− εz)‖

so that either ‖Tn(x+εz)‖ > an‖Tn‖ or ‖Tn(x−εz)‖ > an‖Tn‖. Thus either x+εz ∈
Mk or x− εz ∈ Mk so that dist {x,Mk} ≤ ε. Since x and ε were arbitrary, the set Mk

is dense.
By the Baire category theorem the intersection

⋂∞
k=1 Mk is a dense Gδ-set,

hence it is residual. Clearly each x ∈ ⋂∞
k=1 Mk satisfies ‖Tnx‖ > an‖Tn‖ for infinitely

many n’s.
In particular, for an = n−1 we obtain

rx(T ) = lim sup
n→∞

‖Tnx‖1/n ≥ lim sup
n→∞

(‖Tn‖
n

)1/n

= r(T )

for all x in a residual subset of X.

(ii) was proved in [9]; for Hilbert space operators see also [2].

COROLLARY 1.2. The set
{
x ∈ X : lim supn→∞ ‖Tnx‖1/n = r(T )

}
is resid-

ual. The set
{
x ∈ X : lim infn→∞ ‖Tnx‖1/n = r(T )

}
is dense.

In particular, there is a dense subset of points x ∈ X with the property that the
limit limn→∞ ‖Tnx‖1/n exists (and is equal to r(T )).

The existence of the limit limn→∞ ‖Tnx‖1/n was also studied in [1].
In general it is not possible to replace the word ”dense” in Corollary 1.2 by

”residual”.

EXAMPLE 1.3. Let H be a separable Hilbert space with an orthonormal basis
{ej : j = 0, 1, . . .} and let S be the backward shift, Se0 = 0, Sej = ej−1 (j ≥ 1).
Then r(S) = 1 and the set {x ∈ H : lim infn→∞ ‖Snx‖1/n = 0} is residual.

In particular, the set {x ∈ H : the limit limn→∞ ‖Snx‖1/n exists} is of the first
category (but it is always dense by Corollary 1.2).

PROOF. For k ∈ N let

Mk = {x ∈ X : there exists n ≥ k such that ‖Snx‖ < k−n}.

Clearly Mk is an open subset of X. Further, Mk is dense in X. To see this, let x ∈ X
and ε > 0. Let x =

∑∞
j=0 αjej and choose n ≥ k such that

∑∞
j=n |αj |2 < ε2. Set

y =
∑n−1

j=0 αjej . Then ‖y− x‖ < ε and Sny = 0. Thus y ∈ Mk and Mk is a dense open
subset of X.

By the Baire category theorem the set M =
⋂∞

k=0 Mk is a dense Gδ-subset of
X, hence it is residual.

Let x ∈ M . For each k ∈ N there is nk ≥ k such that ‖Snkx‖ < k−nk so that
lim infn→∞ ‖Snx‖1/n = 0.
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Since the set {x ∈ H : lim supn→∞ ‖Snx‖1/n = r(S) = 1} is also residual, we
see that the set {x ∈ H : the limit limn→∞ ‖Snx‖1/n exists} is of the first category.

It is also possible to combine conditions (i) and (ii) of Theorem 1.1 and to
obtain points x ∈ X with ‖Tnx‖ ≥ an · ‖Tn‖ for all n; in this case, however, there is a
restriction on the sequence (an). The next lemma and its corollary essentially improve
the estimates of [2], Proposition 2.B.2.

LEMMA 1.4. Let X, Y be complex Banach spaces, let Tn ∈ L(X, Y ) (n =
1, 2, . . .) be a sequence of operators, let an be positive numbers such that

∑∞
n=1(αn)2/3 <

1/4. Let x ∈ X. Then there exists u ∈ X such that ‖u−x‖ < 1/4 and ‖Tnu‖ ≥ an‖Tn‖
for all n ≥ 1.

PROOF. Without loss of generality we can assume that all operators Tn are
non-zero.

Choose δ > 0 such that (1 + δ)
∑∞

n=1 α
2/3
n < 1/4. Set εn = (1 + δ)α2/3

n (n =
1, 2, . . .) so that

∑∞
n=1 εn < 1/4. For each n find zn ∈ X of norm one such that

‖Tnzn‖ ≥ (1 + δ)−1‖Tn‖.
The proof will be done in several steps.

A. For each k ∈ N there are complex numbers λ1, . . . , λn, |λn| ≤ εn (n =
1, . . . , k) such that

∥∥∥Tn

(
x +

k∑
n=1

λnzn

)∥∥∥ ≥ an‖Tn‖ (n = 1, . . . , k).

Proof. Fix k ∈ N. Write

Λ =
{
λ = (λ1, . . . , λk) ∈ Ck : |λn| ≤ εn (n = 1, . . . , k)

}
.

For λ ∈ Λ set uλ = x +
∑k

n=1 λnzn.
For j = 1, . . . , k let Λj =

{
λ ∈ Λ : ‖Tjuλ‖ < aj‖Tj‖

}
. Let 1 ≤ j ≤ k and sup-

pose that λ, λ′ ∈ Λj where λ = (λ1, . . . , λk) and λ′ = (λ1, . . . , λj−1, λ
′
j , λj+1, . . . , λk).

Then

|λj−λ′j |(1+δ)−1‖Tj‖ ≤ |λj−λ′j |·‖Tjzj‖ = ‖Tj(uλ−uλ′)‖ ≤ ‖Tjuλ‖+‖Tju
′
λ‖ < 2aj‖Tj‖

so that |λj − λ′j | < 2aj(1 + δ). Thus, for fixed λ1, . . . , λj−1, λj+1, . . . , λk, the set{
ν ∈ C : (λ1, . . . , λj−1, ν, λj+1, . . . , λk) ∈ Λj

}
is contained in a ball of radius 2aj(1+δ).

Let µ be the Lebesgue measure on Λ. Then µ(Λ) =
∏k

n=1(πε2
n) and, by the

Fubini theorem,

µ(Λj) ≤ 4π(1 + δ)2a2
j

∏

1≤n≤k
n6=j

(πε2
n) =

4a2
j (1 + δ)2

ε2
j

µ(Λ) ≤ 4a
2/3
j µ(Λ).

Thus

µ
(

Λ \
k⋃

j=1

Λj

)
≥ µ(Λ)

(
1− 4

k∑

j=1

a
2/3
j

)
> 0.
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Hence there exists λ ∈ Λ \ ⋃k
j=1 Λj . In other words, u = uλ satisfies ‖Tju‖ ≥

aj‖Tj‖ (j = 1, . . . , k) and ‖u− x‖ ≤ ∑k
n=1 |λn| ≤

∑k
n=1 εn < 1/4.

B. The set M =
{
x +

∑∞
n=1 λnzn : |λn| ≤ εn (n = 1, 2, . . .)

}
is totally

bounded.

Proof. We must show that for each η > 0 there is a finite η-net in M .
Find k ∈ N such that

∑∞
n=k+1 εn < η/2. Set

Mk =
{

x +
k∑

n=1

λnzn : |λn| ≤ εn (n = 1, 2, . . . , k)
}

.

Clearly Mk is compact so that there exists a finite set F ⊂ Mk such that dist {u, F} ≤
η/2 for all u ∈ Mk. Clearly F is the required η-net for M .

Proof of Lemma 1.4. By A, for each k ∈ N there is uk ∈ M with

‖Tnuk‖ ≥ an‖Tn‖ (n = 1, . . . , k).

By B, there is a convergent subsequence (ukj ) of (uk). Denote by u ∈ X its limit.
Clearly ‖u− x‖ ≤ lim supj→∞ ‖ukj − x‖ ≤ ∑∞

n=1 εn < 1/4 and

‖Tnu‖ ≥ an‖Tn‖ (n = 1, 2, . . .).

COROLLARY 1.5. Let T ∈ L(X). Let (an)n≥0 be a sequence of positive

numbers satisfying
∑∞

n=0 a
2/3
n < ∞. Then there is a dense subset L ⊂ X such that, for

each x ∈ L, there is k ∈ N with

‖Tnx‖ ≥ an‖Tn‖ (n ≥ k).

Further, there are points x ∈ X such that ‖Tnx‖ ≥ an‖Tn‖ for all n ≥ 0.

PROOF. Let x ∈ X and ε > 0. Find k ∈ N and s such that
(

4
∑∞

n=k a
2/3
n

)3/2
<

s < ε. Set a′n = an

s . Then
∑∞

n=k a′2/3
n < 1/4 so that, by Lemma 1.4, there exists

u ∈ X with ‖u − x
s ‖ < 1/4 and ‖Tnu‖ ≥ a′n‖Tn‖ (n ≥ k). Thus ‖su − x‖ < ε and

‖Tn(su)‖ ≥ an‖Tn‖ (n ≥ k).

A better estimate can be obtained using the essential norm.
For T ∈ L(X) and a closed subspace M ⊂ X denote by T |M the restriction

T |M : M → X. For T ∈ L(X) let ‖T‖µ = inf
{‖T |M‖ : M ⊂ X, codim M < ∞}

. This
quantity belongs to ”measures of non-compactness” since ‖T‖µ = 0 if and only if T is
compact (for more details see [8]).

For Hilbert space operators ‖T‖µ is equal to the essential norm ‖T‖e = inf{‖T +
K‖ : K ∈ K(X)} where K(X) denotes the ideal of all compact operators acting on X.

The following lemma (see [10], Lemma 1) is a useful technical tool in many
constructions. It plays the role of the ”orthogonal complement” in general Banach
spaces.
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LEMMA 1.6. Let F be a finite dimensional subspace of a Banach space X, let
ε > 0. Then there exists a closed subspace M ⊂ X of finite codimension such that

‖f + m‖ ≥ (1− ε) max
{‖f‖, ‖m‖/2

}

for all f ∈ F and m ∈ M .

THEOREM 1.7. Let T ∈ L(X), let (an)n≥0 be a sequence of positive num-
bers satisfying

∑∞
n=0 an < ∞. Then each ball in X of radius greater than 2

∑∞
n=0 an

contains a point u such that

‖Tnu‖ ≥ an‖Tn‖µ (n = 0, 1, . . .). (1)

PROOF. The statement is trivial if dim X < ∞. Suppose that X is infinite
dimensional.

Let x ∈ X and ε > 2
∑∞

n=0 an. We show that there is u ∈ X such that
‖u− x‖ < ε and (1).

Let δ > 0 satisfy (1 + δ)a0 + 2(1 + δ)3 ∑∞
n=1 an < ε. We construct inductively

a convergent sequence (uk)k≥0 whose limit will satisfy the required conditions.
Let u0 ∈ X be any vector satisfying ‖u0− x‖ = a0(1 + δ) and ‖u0‖ ≥ a0(1 + δ)

(for example, u0 = x + a0(1 + δ)x/‖x‖ will do).
If uk ∈ X has already been constructed then set Ek =

∨{Tnuk : 0 ≤ n ≤
k + 1}. By Lemma 1.6, there is a closed subspace Yk ⊂ X of finite codimension
such that ‖e + y‖ ≥ (1 + δ)−1 max{‖e‖, ‖y‖/2} for all e ∈ Ek, y ∈ Yk. Let Zk =⋂k+1

s=0

⋂k
j=0 T−sYj . Clearly codim Zk < ∞ so that there is zk+1 ∈ Zk of norm one

such that ‖T k+1zk+1‖ ≥ (1 + δ)−1‖T k+1‖µ. Clearly T szk+1 ∈ Yj for all s ≤ k + 1
and j ≤ k. Set uk+1 = uk + 2(1 + δ)3ak+1zk+1. Then ‖uk+1 − uk‖ = 2(1 + δ)3ak+1

so that the sequence (uk) constructed in this way is Cauchy. Denote by u its limit,
u = u0 +

∑∞
k=1 2(1 + δ)3akzk. Clearly ‖u− x‖ ≤ ‖u0− x‖+ 2(1 + δ)3 ∑∞

k=1 ak < ε and
‖u‖ ≥ (1 + δ)−1‖u0‖ ≥ a0. For each n ≥ 1 we have

‖Tnu‖ =
∥∥∥Tn

(
un +

∞∑

k=n+1

2(1 + δ)3akzk

)∥∥∥ ≥ (1 + δ)−1‖Tnun‖

= (1 + δ)−1
∥∥∥Tn

(
un−1 + 2(1 + δ)3anzn

)∥∥∥ ≥ (1 + δ)−2

2

∥∥Tn
(
2(1 + δ)3anzn

)∥∥

= (1 + δ)an‖Tnzn‖ ≥ an‖Tn‖µ.

If X is a Hilbert space then it is possible to take in the previous proof Yk = E⊥
k .

The sequence (zk) is then orthonormal and it is possible to obtain a better result, which
improves [2], Theorem 2.A.7 (compare also Remark 2.A.8 of [2] with the just proved
Theorem 1.7).

COROLLARY 1.8. Let T be an operator on a Hilbert space H. Let (an)n≥0 be
a sequence of positive numbers satisfying

∑∞
n=0 a2

n < ∞. Then in each ball of radius

greater than
(∑∞

n=0 a2
n

)1/2
there exists a point x such that ‖Tnx‖ ≥ an‖Tn‖e (n ≥ 0).
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Further, there exists a dense subset L ⊂ H such that for each x ∈ L there is
k ∈ N with

‖Tnx‖ ≥ an‖Tn‖e (n ≥ k).

Another result which is true for Hilbert space operators is the following theorem,
see [2], Corollary 3.6. We give an alternative proof which can be adapted to Banach
space operators.

LEMMA 1.9. Let H be a Hilbert space, let T ∈ L(H) be a non-nilpotent
operator. Then there exists x ∈ H such that

∞∑
n=0

‖Tnx‖
‖Tn‖ = ∞.

PROOF. We distinguish two cases.

A. There exists a subspace M ⊂ H of finite codimension such that ‖Tn|M‖ ≤
1
2‖Tn‖ for infinitely many n’s.

Let {f1, . . . , fr} be an orthonormal basis in M⊥. Let A =
{
n ∈ N : ‖Tn|M‖ ≤

1
2‖Tn‖}, so that A is an infinite set. For j = 1, . . . , r set

Aj =
{
n ∈ A : ‖Tnfj‖ ≥ 1

3r
‖Tn‖}.

We show that
⋃r

j=1 Aj = A. Suppose on the contrary that there is n ∈ A \⋃r
j=1 Aj .

Let x ∈ H, ‖x‖ = 1 and ‖Tnx‖ > 5
6‖Tn‖. Write x as x =

∑r
j=1 αjfj + u where αj ∈ C

and u ∈ M . Then |αj | ≤ 1, ‖u‖ ≤ 1 and

‖Tnx‖ ≤
r∑

j=1

|αj | · ‖Tnfj‖+ ‖Tnu‖ ≤ r
1
3r
‖Tn‖+

1
2
‖Tn‖ =

5
6
‖Tn‖,

a contradiction. Thus A =
⋃r

j=1 Aj and there exists j ∈ {1, . . . , r} such that Aj is
infinite. Hence ∞∑

n=0

‖Tnfj‖
‖Tn‖ ≥

∑

n∈Aj

‖Tnfj‖
‖Tn‖ ≥

∑

n∈Aj

1
3r

= ∞.

B. For each subspace M ⊂ H of finite codimension, ‖Tn|M‖ > 1
2‖Tn‖ for all

but a finite number of n’s.

We construct inductively a convergent sequence (xk) ⊂ H and an increasing
sequence (nk) of positive integers such that ‖Tnj xk‖ ≥ 1

2j · ‖Tnj‖ (j ≤ k). Then the

limit x = limk→∞ xk will satisfy ‖Tnj x‖ ≥ 1
2j · ‖Tnj‖ for all j, so that

∞∑
n=0

‖Tnx‖
‖Tn‖ ≥

∞∑

j=1

‖Tnj x‖
‖Tnj‖ ≥

∞∑

j=1

1
2j

= ∞.
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Let n1 = 1, x1 ∈ H, ‖x1‖ = 1 and ‖Tx1‖ > ‖T‖/2. Let k ∈ N and suppose that
we have found xk ∈ H and n1 < n2 < · · · < nk such that ‖Tnj xk‖ ≥ 1

2j ‖Tnj‖ (j ≤ k).
Let

M =
⋂

s≤nk

T−s
(
∨{T jxi : 0 ≤ j ≤ nk, 1 ≤ i ≤ k}⊥

)
.

Clearly codim M < ∞ so that there are nk+1 > nk and a vector uk+1 ∈ M of norm one
such that ‖Tnk+1uk+1‖ > 1

2‖Tnk+1‖. Then

∥∥∥Tnk+1

(
xk +

uk+1

k + 1

)∥∥∥ +
∥∥∥Tnk+1

(
xk − uk+1

k + 1

)∥∥∥ ≥ 2‖Tnk+1uk+1‖
k + 1

≥ ‖Tnk+1‖
k + 1

so that either xk+1 = xk+ uk+1

k+1 or xk+1 = xk− uk+1

k+1 will satisfy ‖Tnk+1xk+1‖ ≥ ‖T nk+1‖
2(k+1) .

Further Tnj xk ⊥ Tnj uk+1 (j ≤ k) so that

‖Tnj xk+1‖ ≥ ‖Tnj xk‖ ≥ 1
2j
‖Tnj‖ (j ≤ k).

Let (xk) be the sequence constructed in the above described way. For m < k we have
‖xk−xm‖2 =

∑k
i=m+1

1
i2 . Thus the sequence (xk) is convergent and its limit x satisfies

the required condition.

THEOREM 1.10. Let T be a non-nilpotent operator on a Hilbert space H.

Then the set
{

x ∈ H :
∑∞

n=0
‖T nx‖
‖T n‖ = ∞

}
is residual.

PROOF. For k ∈ N let Mk = {x ∈ H :
∑∞

n=0
‖T nx‖
‖T n‖ > k}. Clearly Mk is open.

To show that Mk is dense, let x ∈ H and ε > 0. By the previous lemma there is u ∈ H

such that
∑∞

n=0
‖T nu‖
‖T n‖ = ∞. Clearly we can assume that ‖u‖ = ε. Then

∞∑
n=0

‖Tn(x + u)‖
‖Tn‖ +

∞∑
n=0

‖Tn(x− u)‖
‖Tn‖ ≥ 2

∞∑
n=0

‖Tnu‖
‖Tn‖ = ∞

so that either x + u or x − u belongs to Mk. Thus Mk is an open dense subset of X
and M =

⋂∞
k=0 Mk is residual. The points of M satisfy the required property.

For Banach space operators the previous statements are not true:

EXAMPLE 1.11. There are a Banach space X and a non-nilpotent operator
T ∈ L(X) such that

∑∞
n=0

‖T nx‖
‖T n‖ < ∞ for all x ∈ X.

PROOF. Let X be the `1 space with the standard basis {e0, e1, . . .}. Let T ∈
L(X) be the weighted backward shift defined by Te0 = 0 and Tek = (k+1

k )2ek−1 (k ≥
1). For n ∈ N we have

Tnek =

{
0 (n > k),

(k+1)2

(k−n+1)2 ek−n (n ≤ k)
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and ‖Tn‖ = (n + 1)2. Thus r(T ) = 1.
Let x ∈ X, x =

∑∞
k=0 αkek where

∑∞
k=0 |αk| < ∞. Then

∞∑
n=0

‖Tnx‖
‖Tn‖ =

∞∑
n=0

∞∑

k=n

|αk|(k + 1)2

(n + 1)2(k − n + 1)2
=

∞∑

k=0

|αk|
k∑

n=0

(k + 1)2

(n + 1)2(k − n + 1)2
.

We have

k∑
n=0

(k + 1)2

(n + 1)2(k − n + 1)2
=

[k/2]∑
n=0

(k + 1)2

(n + 1)2(k − n + 1)2
+

k∑

n=[k/2]+1

(k + 1)2

(n + 1)2(k − n + 1)2

≤
[k/2]∑
n=0

4
(n + 1)2

+
k∑

n=[k/2]+1

4
(k − n + 1)2

≤ 8
∞∑

j=1

1
j2

=
4π2

3
.

Thus ∞∑
n=0

‖Tnx‖
‖Tn‖ ≤

∞∑

k=0

|αk| · 4π2

3
=

4‖x‖π2

3
< ∞.

REMARK 1.12. Let H be a Hilbert space, let T ∈ L(H) be an non-nilpotent
operator and let c < 2. Using the method of proof of Theorem 1.9 it is easy to check
that the set {

x ∈ H :
∞∑

n=0

(‖Tnx‖
‖Tn‖

)c

= ∞
}

is residual. For c = 2 the statement is not true; an example will be given later.
For Banach space X and T ∈ L(X) it is possible to show that

{
x ∈ X :

∞∑
n=0

(‖Tnx‖
‖Tn‖

)c

= ∞
}

is residual for all c < 1. By the previous example, this is not true for c = 1.

II. ORBITS IN REAL BANACH SPACES

The main technical difficulty in generalizing the results of the previous section
to the real case is the lack of approximate eigenvalues. Most of the results that do not
use approximate eigenvalues remain unchanged in the real case.

This is true for Theorem 1.1 (i), Lemma 1.6, Theorems 1.7, 1.8, 1.10 and
Remark 1.12. Because of different geometry of the real line Theorem 1.5 is modified in
the following way:

THEOREM 2.1. Let T be an operator in a real Banach space X. Let (an)n≥0

be a sequence of positive numbers satisfying
∑∞

n=0 a
1/2
n < ∞. Then there is a dense

subset L ⊂ X such that, for each x ∈ L, there is k ∈ N with

‖Tnx‖ ≥ an‖Tn‖ (n ≥ k).
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Other results can be proved in the real case by using the complexification of a
real Banach space.

Let X be a real Banach space. Set Xc = {x + iy : x, y ∈ X}. Define a norm in
Xc by

‖x + iy‖ = inf
n∑

j=1

|αj + iβj | · ‖xj‖ (x, y ∈ X)

where the infimum is taken over all n ∈ N, αj , βj ∈ R and xj ∈ X such that
∑n

j=1(αj +
iβj)xj = x + iy. With naturally defined algebraic operations, Xc is a complex Banach
space called the complexification of X.

It is easy to see that

max{‖x‖, ‖y‖} ≤ ‖x + iy‖ ≤ ‖x‖+ ‖y‖ (x, y ∈ X).

Let T be an operator on X. The complexification of T is the operator Tc ∈
L(Xc) defined by Tc(x + iy) = Tx + iTy (x, y ∈ X). Clearly ‖T‖ ≤ ‖Tc‖ ≤ 2‖T‖.
By the spectrum of T we understand the spectrum of its complexification Tc. Similarly
we define the spectral radius r(T ) = max{|λ| : λ ∈ σ(Tc)} = limn→∞ ‖Tn‖1/n. In the
same way we use for operators in real Banach spaces the essential spectrum σe(T ) =
σe(Tc) = {λ ∈ C : Tc − λ is not Fredholm}, the essential spectral radius re(T ) =
re(Tc) = max{|λ| : λ ∈ σe(T )} and the upper semi-Fredholm spectrum σπe(T ) =
σπe(Tc) = {λ ∈ C : Tc − λ is not upper semi-Fredholm}. Equivalently, λ ∈ σπe(T ) if
and only if, for each subspace M ⊂ Xc of finite codimension, (Tc−λ)|M is not bounded
below. Recall that ∂σe(T ) ⊂ σπe(T ), see [7].

The proof of Theorem 1 (ii) (the existence of vectors x with ‖Tnx‖ large for all
n) is based on the existence of approximate eigenvalues and thus it can not be used in
the real case. In [12] it was proved for real Banach space operators under an additional
assumption that r(T ) = 1 and T is power bounded (supn ‖Tn‖ < ∞). We prove a
variant of this result in general.

LEMMA 2.2. Let X be a real Banach space, T ∈ L(X), let r(T ) = 1, α ∈
σe(T ), |α| = 1. Then there is a positive constant C (depending only on α) with the
following property: for each n ∈ N and each subspace Y ⊂ X of finite codimension
there exists a vector y ∈ Y of norm one with ‖T jy‖ ≥ C (j = 0, 1, . . . , n).

PROOF. There is k ∈ N such that min
{|αj−1|, |αj+1−1|, . . . , |αj+k−1|} ≤ 1/6

for all j ∈ N. This is clear if α = e2πit with t rational; if t is irrational then the
set {αj : j = 0, 1, . . .} is dense in the unit circle so that there is k ∈ N such that
{1, α, α2, . . . , αk} is a 1/6-net in the unit circle so that the same is true also for the set
{αj , αj+1, . . . , αj+k}.

Set C =
(
6 max{1, ‖T‖, ‖T 2‖, . . . , ‖T k‖})−1

.
We have α ∈ ∂σe(T ) ⊂ σπe(T ). Let n ∈ N and let Y be a subspace of X of

finite codimension. Let Xc = X + iX be the complexification of X and Yc = Y + iY .
Clearly Yc is a subspace of finite codimension in Xc. Then there exists a vector z ∈ Yc

of norm one such that ‖T jz − αjz‖ ≤ 1/6 (j = 0, 1, . . . , n + k). Express z = u + iv
for some u, v ∈ Y . Then either ‖u‖ ≥ 1/2 or ‖v‖ ≥ 1/2. Without loss of generality we
can assume that ‖u‖ ≥ 1/2.
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Let j ≤ n. Find j′ ∈ {j, j + 1, . . . , j + k} such that |αj′ − 1| ≤ 1/6. Then

‖T j′u− u‖ ≤ ‖T j′z − z‖ ≤ ‖T j′z − αj′z‖+ ‖αj′z − z‖ ≤ 1/6 + 1/6 = 1/3

so that
‖T j′u‖ ≥ ‖u‖ − ‖T j′u− u‖ ≥ 1/2− 1/3 = 1/6.

Further ‖T j′u‖ ≤ ‖T j′−j‖ · ‖T ju‖ so that ‖T ju‖ ≥ 1
6‖T j′−j‖ ≥ C for all j ≤ n.

The next result is a weaker form of Theorem 1.1 (ii) for real Banach spaces.

THEOREM 2.3. Let X be a real Banach space, T ∈ L(X), let (an)n≥0 be a
sequence of positive numbers, an → 0. Then there exists a dense subset L ⊂ X with
the property that for each x ∈ L there is a constant c > 0 with

‖Tnx‖ ≥ c · anr(Tn) (n = 0, 1, . . .).

PROOF. By replacing an by sup{aj : j ≥ n} we can assume that an ↘ 0. We
can also assume that r(T ) = 1.

We distinguish two cases:

A. re(T ) < 1.

Find α ∈ σ(T ) with |α| = 1. Then α is an isolated eigenvalue of Tc. Let
M ⊂ Xc be the corresponding spectral subspace and let P be the Riesz projection onto
M . Then dim M < ∞ and (Tc − α)|M is a nilpotent operator.

Suppose that w be a non-zero vector in M . Let k ∈ N satisfy (Tc − α)kw = 0
and (Tc − α)k−1w 6= 0. Let Q ∈ L(M) be a projection satisfying Qw = w and
Q

(
ker(Tc −α)k−1|M)

= 0. Then Q(Tc −α)T j−1
c w = 0 (j = 1, 2, . . .) so that QT j

c w =
αQT j−1

c w. By induction we get QT j
c w = αjQw = αjw for all j ≥ 0. Thus

‖T j
c w‖ ≥ ‖Q‖−1|αj | · ‖w‖ = ‖Q‖−1‖w‖ (j ≥ 0).

Set Z = {z ∈ Xc : Pz 6= 0}. For z ∈ Z we have ‖T j
c Pz‖ = ‖PT j

c z‖ ≤
‖P‖ · ‖T j

c z‖ so that

‖T j
c z‖ ≥ ‖P‖−1‖T j

c Pz‖ ≥ ‖Pz‖
‖P‖ · ‖Q‖ (j ≥ 0).

Clearly Z is an open dense subset of Xc. It is sufficient to show that Z ∩X is dense in
X since all vectors y ∈ Z ∩X satisfy

inf{‖T jy‖ : j = 0, 1, . . .} ≥ ‖Py‖
‖P‖ · ‖Q‖ > 0.

Let x ∈ X and ε > 0. Let u, v ∈ X, u + iv 6= 0 and Tc(u + iv) = α(u + iv).
Then u + iv ∈ M so that P (u + iv) = u + iv 6= 0. Thus either Pu 6= 0 or Pv 6= 0.
Consequently at least one of the vectors x, x+εu, x+εv is in X ∩Z and X ∩Z is dense
in X (in fact X ∩ Z is also open so that it is even a residual subset of X).
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B. re(T ) = 1.
Find α ∈ σe(T ) with |α| = 1. Let C be the constant from the previous lemma.

Find an increasing sequence m1 < m2 < · · · such that amj
< 2−(j+1).

Let x ∈ X and ε > 0. We construct inductively vectors xj (j = 0, 1, . . .) in
the following way:

Set x0 = x. If j ≥ 1 and xj−1 ∈ X has already been constructed then let
Ej be the finite dimensional subspaces defined by Ej = ∨{Tnxs : n = 0, . . . ,mj , s =
0, . . . , j − 1}. By Lemma 1.6 find a subspace Yj ⊂ X of finite codimension satisfying
‖e + y‖ ≥ max{‖e‖/2, ‖y‖/4} (e ∈ Ej , y ∈ Yj) and a vector uj ∈ Yj of norm one such
that ‖Tnuj‖ ≥ C (n = 0, . . . , mj). Let xj = xj−1 + εuj

2j . Clearly the sequence (xj)
constructed in this way is convergent; denote its limit by u = x +

∑∞
j=1

εuj

2j . We have
‖u− x‖ ≤ ∑∞

j=1

∥∥ εuj

2j

∥∥ = ε.
Let j ≥ 1, n ∈ N and mj < n ≤ mj+1. Then

‖Tnu‖ = lim
k→∞

‖Tnxk‖ = lim
k→∞

∥∥∥Tn
(
xj+1 + ε

k∑

s=j+2

us

2s

)∥∥∥ ≥ lim
k→∞

1
2
‖Tnxj+1‖

= lim
k→∞

1
2

∥∥∥Tn
(
x + ε

j+1∑
s=1

us

2s

)∥∥∥ ≥ 1
8

ε‖Tnuj+1‖
2j+1

≥ Cε

8 · 2j+1
≥ Cε

8
an.

Thus ‖Tnu‖ ≥ Cε
8 an for all n ≥ m1 so that there there is a positive constant c with

‖Tnu‖ ≥ c · an for all n ≥ 0.

Consequently, Corollary 1.2 remains true for operators in real Banach spaces.

COROLLARY 2.4. Let T be an operator acting on a real Banach space X.
Then the set {x ∈ X : lim supn ‖Tnx‖1/n = r(T )} is residual and the set {x ∈ X :
lim infn ‖Tnx‖1/n = r(T )} is dense in X.

COROLLARY 2.5. Let T be an operator acting on a real Banach space X,
let (an)n≥0 be a sequence of positive numbers such that supn an < 1 and limn an = 0.
Then there exists a norm-one vector x ∈ X such that ‖Tnx‖ ≥ anr(Tn) for all n ≥ 0.

PROOF. Without loss of generality we can assume that r(T ) = 1 and 1 > a0 ≥
a1 ≥ · · ·. Let ε be a positive number satisfying 1 > (1 + ε)a0. For n ≥ 0 set

bn = max{ai1 · · · aim(1 + ε)m : m ∈ N, i1 + · · · im = n}.
Clearly bn+k ≥ bnak(1 + ε) (n, k ≥ 0). Further limn bn = 0. Indeed, let δ > 0
and choose j such that aj(1 + ε) < δ and (a0(1 + ε))j < δ. Let n ≥ j2 and bn =
ai1 · · · aim(1 + ε)m. Then either is < j for all s or there is s with is ≥ j; in both
cases it is easy to verify that bn < δ. Thus bn → 0 and by Theorem 2.3 there exists a
positive constant C and a vector u ∈ X such that ‖T ju‖ ≥ C · bj (j = 0, 1, . . .). Set

C ′ = infj
‖T j‖

bj
> 0. Fix k such that ‖T ku‖

bk
< C ′(1 + ε). Set x = T ku

‖T ku‖ . Then ‖x‖ = 1
and

‖Tnx‖ =
‖T k+nu‖
‖T ku‖ ≥ C ′ · bk+n

C ′(1 + ε)bk
≥ an

for all n ≥ 0.
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III. WEAK ORBITS

Some results concerning orbits remain true also for weak orbits. An example
is the statement of Theorem 1.1 (i):

THEOREM 3.1. Let T be an operator in a (real or complex) Banach space X,
let (an)n≥0 be a sequence of positive numbers such that an → 0. Then the set of all
pairs (x, x∗) ∈ X ×X∗ such that

|〈Tnx, x∗〉| ≥ an‖Tn‖ for infinitely many n’s

is residual in X ×X∗.
In particular, the set

{
(x, x∗) ∈ X ×X∗ : lim supn→∞ |〈Tnx, x∗〉|1/n = r(T )

}
is residual in X ×X∗.

PROOF. (i) For k ∈ N set

Mk =
{

(x, x∗) ∈ X ×X∗ : there exists n ≥ k such that |〈Tnx, x∗〉| > an‖Tn‖}.

Clearly Mk is an open subset of X×X∗. We prove that Mk is dense. Let x ∈ X, x∗ ∈ X∗

and ε > 0. Choose n ≥ k such that an < ε2. There is a vector u ∈ X of norm one such
that ‖Tnu‖ > an

ε2 ‖Tn‖. Let u∗ ∈ X∗ satisfy ‖u∗‖ = 1 and 〈Tnu, u∗〉 = ‖Tnu‖. We
have

|〈Tn(x + εu), x∗ + εu∗〉|+ |〈Tn(x + εu), x∗ − εu∗〉|
+ |〈Tn(x− εu), x∗ + εu∗〉|+ |〈Tn(x− εu), x∗ − εu∗〉|

≥
∣∣∣〈Tn(εu + x), εu∗ + x∗〉+ 〈Tn(εu + x), εu∗ − x∗〉

+ 〈Tn(εu− x), εu∗ + x∗〉+ 〈Tn(εu− x), εu∗ − x∗〉
∣∣∣

= |4〈Tnεu, εu∗〉| = 4ε2‖Tnu‖ > 4an‖Tn‖.
Thus there is a pair

(y, y∗) ∈ {
(x + εu, x∗ + εu∗), (x + εu, x∗ − εu∗), (x− εu, x∗ + εu∗), (x− εu, x∗ − εu∗)

}

such that |〈Tny, y∗〉| > an‖Tn‖. Hence (y, y∗) ∈ Mk and Mk is dense in X ×X∗.
By the Baire category theorem the intersection M =

⋂∞
k=1 Mk is a residual

subset of X ×X∗ and all pairs (y, y∗) ∈ M satisfy |〈Tny, y∗〉| > an‖Tn‖ for infinitely
many n’s.

In particular, for an = n−1 we obtain that

lim sup
n→∞

|〈Tny, y∗〉|1/n ≥ lim sup
n→∞

(‖Tn‖
n

)1/n

= r(T )

for all pairs (y, y∗) in a residual subset of X ×X∗.

The weak version of Theorem 1.1 (ii) is an open problem. It may be stated as
follows:
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PROBLEM 3.2. Let T be an operator on a complex Banach space X, let (an)
be a sequence of positive numbers such that an → 0. Do there exist vectors x ∈ X and
x∗ ∈ X∗ such that

|〈Tnx, x∗〉| ≥ an · r(Tn)

for all n = 0, 1, . . .?
For real Banach spaces this is not true, see [12].

A positive answer was shown in [12] for positive operators on Banach lattices
and for non-unitary isometries on Hilbert spaces. We show a positive answer for C00

operators (i.e., Tn → 0 and T ∗n → 0 strongly) on Hilbert spaces. Operators of this class
play an important role in the results concerning the existence of invariant subspaces for
contractions with rich spectrum, see e.g. [3], [4]. It is an interesting question whether
it is possible to obtain these results using the weak orbits instead of the Scott Brown
technique.

LEMMA 3.3. Let T be an operator on a complex Hilbert space H such that
1 ∈ σ(T ), ‖Tnx‖ → 0 and ‖T ∗nx‖ → 0 for all x ∈ H. Then, for all ε > 0, δ > 0,
n ∈ N and each subspace M ⊂ H of finite codimension, there exists a vector z ∈ M of
norm one with

Re 〈T jz, z〉 ≥ 1− δ (j ≤ n),

Re 〈T jz, z〉 ≥ −ε (j > n).
(2)

PROOF. By the uniform boundedness theorem we have supn ‖Tn‖ < ∞ so that
r(T ) = limn→∞ ‖Tn‖1/n ≤ 1. Since 1 ∈ σ(T ) we have r(T ) = 1. Further 1 is not an
eigenvalue of T since Tn → 0 strongly. This implies in particular that H is infinite
dimensional.

Since σ(T )\σe(T ) contains only isolated eigenvalues in the unbounded compo-
nent of C\σe(T ), we have 1 ∈ σe(T ). Clearly 1 ∈ ∂σe(T ) ⊂ σπe(T ). This means that for
all δ > 0, k ∈ N and M ⊂ H, codim M < ∞ there is a vector z ∈ M of norm one such
that ‖T jz−z‖ ≤ δ (0 ≤ j ≤ k). Hence Re 〈T jz, z〉 = Re 〈z, z〉+Re 〈T jz−z, z〉 ≥ 1−δ.

Denote by A the set of all ε > 0 for which (2) is true for all δ > 0, n ∈ N and
M ⊂ H, codim M < ∞.

Clearly ε ∈ A implies (ε,∞) ⊂ A. Further A is non-empty since T is power
bounded (clearly supn ‖Tn‖ ∈ A).

We show that ε ∈ A implies 3ε
4 ∈ A. Hence inf A = 0 and A = (0,∞).

Suppose that ε ∈ A. Let n ∈ N, δ > 0 and M ⊂ H, codim M < ∞. We may
assume that δ < 1. By the assumption there is z ∈ M of norm one such that

Re 〈T jz, z〉 ≥ 1− δ (j ≤ n),

Re 〈T jz, z〉 ≥ −ε (j > n).

Since limj→∞ ‖T jz‖ = 0 and limj→∞ ‖T ∗jz‖ = 0 there exists m ≥ n such that ‖T jz‖ ≤
ε/6 and ‖T ∗jz‖ ≤ ε/6 for all j ≥ m. Consider the subspace Y =

(∨{z, Tz, . . . , Tmz})⊥.
Clearly codim Y < ∞. Let Y ′ = M ∩⋂m

j=0 T−jY . Since codim T−jY < ∞ for all j, we
have codim Y ′ < ∞. By the assumption there is u ∈ Y ′ of norm one such that

Re 〈T ju, u〉 ≥ 1− δ (j ≤ m),

Re 〈T ju, u〉 ≥ −ε (j > m).
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Since T ju ∈ Y for j = 0, 1, . . . , m, we have T ju ⊥ T iz for all i, j ≤ m. In particular,
u ⊥ z and ‖z + u‖ =

√
2. Set v = z+u√

2
. Then v ∈ M and ‖v‖ = 1.

For 0 ≤ j ≤ n we have

Re 〈T jv, v〉 =
1
2

(
Re 〈T jz, z〉+ Re 〈T ju, u〉) ≥ 1

2
(1− δ + 1− δ) = 1− δ.

For n < j ≤ m we have

Re 〈T jv, v〉 =
1
2

(
Re 〈T jz, z〉+ Re 〈T ju, u〉) ≥ 1

2
(−ε + 1− δ) ≥ −ε

2
>
−3ε

4
.

Finally, for j > m we have

Re 〈T jv, v〉 =
1
2

(
Re 〈T jz, z〉+ Re 〈T ju, u〉+ Re 〈T jz, u〉+ Re 〈T ju, z〉)

≥ 1
2

(−‖T jz‖ − ε− ‖T jz‖ − ‖T ∗jz‖) ≥ 1
2

(−ε− 3
6
ε) = −3ε

4
.

Since δ, n and M were arbitrary, we have 3ε
4 ∈ A. Hence (2) is true for all ε > 0.

COROLLARY 3.4. Let T be an operator acting on a complex Hilbert space H
such that 1 ∈ σ(T ), Tnx → 0 and T ∗nx → 0 for all x ∈ H. Let (an)n≥0 be a sequence
of positive numbers such that 1 > a0 ≥ a1 ≥ · · · and an → 0. Then there exists x ∈ X
of norm one such that

Re 〈Tnx, x〉 ≥ an (n = 0, 1, . . .).

PROOF. Let
√

a0 < d < 1 and ε =
√

1− d2.

Find m0 ∈ N such that am0 < ε2

4 . Find a vector u0 ∈ H of norm one such

that Re 〈Tnu0, u0〉 ≥ a0
d2 for all n ≤ m0 and Re 〈Tnu0, u0〉 ≥ −ε2

4 for all n > m0. Set
x0 = du0.

We construct inductively sequences (uk), (xk) ⊂ H and an increasing sequence
(mk) such that the limit x = limk→∞ xk will satisfy the required conditions.

Suppose that k ≥ 1, mk−1 ∈ N and vectors u0, . . . , uk−1, x0, . . . , xk−1 ∈ H
have already been constructed. Choose mk > mk−1 such that

amk
≤ ε2

2k+3
,

‖Tnxk−1‖ ≤ ε2

2k+3
and

‖T ∗nxk−1‖ ≤ ε2

2k+3

for all n > mk. Let Mk =
⋂mk

j=0 T−j
(∨{Tnui : 0 ≤ i ≤ k − 1, 0 ≤ n ≤ mk}⊥

)
. Clearly

codim Mk < ∞. Find uk ∈ Mk of norm one such that Re 〈Tnuk, uk〉 ≥ 1
2 (n ≤ mk)
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and Re 〈Tnuk, uk〉 ≥ − 1
8 (n > mk). Then Tnuk ⊥ ui and uk ⊥ Tnui (n ≤ mk, i <

k). In particular, uk ⊥ ui.
Set xk = xk−1 + εuk

2k/2 .
Clearly the sequence (xk) constructed in this way is convergent. Denote by x

its limit, x = du0 +
∑∞

i=1
εui

2i/2 . Then ‖x‖2 = d2 +
∑∞

i=1
ε2

2i = d2 + ε2 = 1. For n ≤ m0

we have

Re 〈Tnx, x〉 = Re 〈Tndu0, du0〉+
∞∑

i=1

Re
〈εTnui

2i/2
,

εui

2i/2

〉
≥ d2Re 〈Tnu0, u0〉 ≥ a0 ≥ an.

For m0 < n ≤ m1 we have

Re 〈Tnx, x〉 = Re 〈Tnx0, x0〉+
∞∑

i=1

Re
〈εTnui

2i/2
,

εui

2i/2

〉

≥ −d2ε2

4
+

1
2

∞∑

i=1

ε2

2i
≥ ε2

4
≥ am0 ≥ an.

Let k ≥ 1 and mk < n ≤ mk+1. Then

Re 〈Tnx, x〉 = Re 〈Tnxk−1, x〉+ Re 〈Tn(x− xk−1), xk−1〉+
∞∑

i,j=k

Re
〈εTnui

2i/2
,

εuj

2j/2

〉

≥ −‖Tnxk−1‖ − ‖T ∗nxk−1‖+
∞∑

i=k

ε2

2i
Re 〈Tnui, ui〉

≥ − 2ε2

2k+3
+

ε2

2k
Re 〈Tnuk, uk〉+

∞∑

i=k+1

ε2

2i
Re 〈Tnui, ui〉

≥ − 3ε2

2k+3
+

1
2

∞∑

i=k+1

ε2

2i
=

ε2

2k+3
≥ an.

The next result, which is something between the statement of Theorem 3.1 and
Problem 3.2, is a generalization of [12]. We need the following lemma:

LEMMA 3.5. Let X be a real or complex Banach space, T ∈ L(X), re(T ) = 1,
n0 ∈ N, ε > 0, m ∈ N. Then there are numbers n0 < n1 < · · · < nm such that, in
each subspace M ⊂ X of finite codimension, there exists a vector x ∈ M of norm one
with ‖Tnj x− x‖ ≤ ε (j = 1, 2, . . . ,m).

PROOF. Suppose first that X is a complex Banach space and T ∈ L(X). Let
λ ∈ σe(T ), |λ| = 1. Then λ ∈ σπe(T ). Find s ∈ N such that s > n0 and |λs−1| ≤ ε/2m.
Then

|λsj − 1| = |λs − 1| · |λs(j−1) + λs(j−2) + · · ·+ 1| ≤ ε/2

for j = 1, 2, . . . , m. Let x ∈ M be a vector of norm one satisfying ‖T sjx − λsjx‖ ≤
ε/2 (j = 1, . . . , m) so that ‖T sjx− x‖ ≤ ‖T sjx− λsjx‖+ ‖λsjx− x‖ ≤ ε.
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This finishes the proof in the complex case.
In the real case consider the complexification Xc of X and Tc ∈ L(Xc). As in

the complex case find a vector x ∈ Mc of norm one and s > n0 such that ‖T sj
c x− x‖ ≤

ε/2 (j = 1, . . . , m). Let x = u + iv where u, v ∈ X. Then ‖u‖+ ‖v‖ ≥ ‖x‖ = 1 so
that max{‖u‖, ‖v‖} ≥ 1/2; without loss of generality we can assume that ‖u‖ ≥ 1/2.
Set y = u

‖u‖ . Then y ∈ M , ‖y‖ = 1 and ‖T sjy − y‖ = 1
‖u‖‖T sju− u‖ ≤ 2‖T sjx− x‖ ≤

ε (j = 1, . . . , m).

THEOREM 3.6. Let X be a real or complex Banach space, T ∈ L(X) and
let (aj)j≥1 be a sequence of positive numbers with aj → 0. Then there exist x ∈ X,
x∗ ∈ X∗ and an increasing sequence (nj) of positive integers such that

Re 〈Tnj x, x∗〉 ≥ aj · r(T )nj

for all j ≥ 1.

PROOF. Without loss of generality we can assume that r(T ) = 1 and that
1/16 ≥ a0 ≥ a1 ≥ · · ·. We distinguish two cases:

A. Suppose that Tn does not tend to 0 weakly, so that there are x ∈ X, x∗ ∈ X∗

and c > 0 such that |〈Tnx, x∗〉| ≥ c for infinitely many n’s.

In the real case |〈Tnx, x∗〉| ≤ max
{

Re 〈Tnx, x∗〉, Re 〈Tnx,−x∗〉}; in the com-
plex case

|〈Tnx, x∗〉| ≤
√

2 ·max
{

Re 〈Tnx, x∗〉, Re 〈Tnx, ix∗〉, Re 〈Tnx,−x∗〉, Re 〈Tnx,−ix∗〉}.

In both cases there are c1 > 0 and x∗1 ∈ X∗ such that Re 〈Tnx, x∗1〉 ≥ c1 for infinitely
many powers n. By considering a suitable multiple of x∗1 we get the statement of the
Theorem.

B. Suppose that Tn → 0 weakly.
Using the uniform boundedness theorem twice it is easy to show that sup{‖Tn‖ :

n = 0, 1, . . .} = M < ∞. Further Tn → 0 weakly implies that there are no eigenvalues
of modulus 1, i.e., re(T ) = 1. Let s = 8M . Find numbers mk ∈ N such that 0 = m0 <
m1 < m2 < · · · and

aj ≤ 1
16s2k

(k ≥ 0, j > mk).

We construct inductively sequences (uk)k≥0 ⊂ X, (u∗k)k≥0 ⊂ X∗ and an increasing
sequence of positive integers (nj) in the following way:

Set u0 = 0 and u∗0 = 0. Let k ≥ 0 and suppose that u0, . . . , uk ∈ X, u∗0, . . . , u
∗
k ∈

X∗ and numbers n1, . . . , nmk
have already been constructed. Write xk =

∑k
i=1

ui

si−1

and x∗k =
∑k

i=1
u∗i

si−1 . Find qk such that |〈T jxk, x∗k〉| ≤ 1
16s2k (j ≥ qk). Find numbers

nmk+1, . . . , nmk+1 satisfying the properties of Lemma 3.5 such that

max{nmk
, qk} < nmk+1 < nmk+2 < · · · < nmk+1 .

Let Ek = ∨{Tnj ui : 0 ≤ j ≤ mk+1, 0 ≤ i ≤ k}. By Lemma 1.6 there exists a subspace
Yk of finite codimension such that

‖e + y‖ ≥ max{‖e‖/2, ‖y‖/4} (e ∈ Ek, y ∈ Yk).
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Let uk+1 ∈ Yk ∩
(∨{T ∗nj u∗i : 0 ≤ j ≤ mk+1, 0 ≤ i ≤ k})⊥ be a vector of norm one such

that
‖Tnj uk+1 − uk+1‖ < 1/16 (mk < j ≤ mk+1).

Find u∗k+1 ∈ E⊥
k such that ‖u∗k+1‖ = 1 and

〈uk+1, u
∗
k+1〉 = dist {uk+1, Ek} ≥ 1/4.

Note that 〈Tnj ui, u
∗
k+1〉 = 0 and 〈Tnj uk+1, u

∗
i 〉 = 0 for all i ≤ k and j ≤ mk+1.

Continue the inductive construction and set x =
∑∞

i=1
ui

si−1 and x∗ =
∑∞

i=1
u∗i

si−1 .
To show that x, x∗ and the sequence (nj) satisfy the required properties, let

k ≥ 0 and mk < j ≤ mk+1. We have

Re 〈Tnj x, x∗〉 = Re
〈
Tnj

(
xk +

∞∑

i=k

ui+1

si

)
, x∗k +

∞∑

i=k

u∗i+1

si

〉

= Re 〈Tnj xk, x∗k〉+
1

s2k
Re 〈Tnj uk+1, u

∗
k+1〉+

∞∑

i=k+1

1
s2i

Re 〈Tnj ui+1, u
∗
i+1〉

≥ − 1
16s2k

+
1

s2k

(
Re 〈uk+1, u

∗
k+1〉 − Re 〈uk+1 − Tnj uk+1, u

∗
k+1〉

)−
∞∑

i=k+1

M

s2i

≥ 1
s2k

(− 1
16

+
1
4
− 1

16
− 2M

s2

) ≥ 1
16s2k

≥ aj .

COROLLARY 3.7. (cf. [16]) Let X be a real or complex Banach space, let
T ∈ L(X), 1 ≤ p < ∞, r(T ) 6= 0. Then the set

{
(x, x∗) ∈ X ×X∗ :

∞∑
n=0

( |〈Tnx, x∗〉|
r(Tn)

)p

= ∞
}

is residual in X ×X∗. Consequently (see [17]), the set

{
x ∈ X :

∞∑
n=0

(‖Tnx‖
r(Tn)

)p

= ∞
}

is residual in X.

PROOF. For k ∈ N set

Mk =
{

(x, x∗) ∈ X ×X∗ :
∞∑

n=0

( |〈Tnx, x∗〉|
r(Tn)

)p

> k
}

.

Clearly Mk is open in X × X∗. To show that Mk is dense, let x ∈ X, x∗ ∈ X∗ and
ε > 0. By the previous lemma for a suitable sequence (an) there are u ∈ X and u∗ ∈ X∗
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such that
∑∞

n=0

(
|〈T nu,u∗〉|

r(T n)

)p

= ∞. Clearly we can assume that ‖u‖ < ε and ‖u∗‖ < ε.

Since ( |〈Tnu, u∗〉|
r(Tn)

)p

=

∣∣∣∣
〈Tn(u + x), u∗ + x∗〉

4r(Tn)
+
〈Tn(u + x), u∗ − x∗〉

4r(Tn)

+
〈Tn(u− x), u∗ + x∗〉

4r(Tn)
+
〈Tn(u− x), u∗ − x∗〉

4r(Tn)

∣∣∣∣
p

≤ max

{ |〈Tn(u + x), u∗ + x∗〉|
r(Tn)

,
|〈Tn(u + x), u∗ − x∗〉|

r(Tn)
,

|〈Tn(u− x), u∗ + x∗〉|
r(Tn)

,
|〈Tn(u− x), u∗ − x∗〉|

r(Tn)

}p

,

we have that
∑∞

n=0

(
|〈T ny,y∗〉|

r(T n)

)p

= ∞ for at least one pair

(y, y∗) ∈ {
(x + u, x∗ + u∗), (x + u, x∗ − u∗), (x− u, x∗ + u∗), (x− u, x∗ − u∗)

}
.

Thus Mk is dense in X ×X∗ and

M =
⋂

k

Mk =
{

(x, x∗) ∈ X ×X∗ :
∞∑

n=0

( |〈Tnx, x∗〉|
r(T )n

)p

= ∞
}

is residual in X ×X∗.
The second statement can be proved similarly (or we can use the fact that

the canonical projection X ×X∗ → X maps residual subsets of X ×X∗ onto residual
subsets of X).

THEOREM 3.8. Let X, Y be complex Banach spaces, Tn ∈ L(X, Y ) (n =

1, 2, . . .). Let (an) be a sequence of positive numbers satisfying
∑∞

n=1 a
1/3
n < 1/4. Let

B ⊂ X, B∗ ⊂ Y ∗ be balls of radii equal to 1/4. Then there exist x ∈ B and y∗ ∈ B∗

such that
|〈Tnx, y∗〉| ≥ an‖Tn‖

for all n = 1, 2, . . ..

PROOF. By Lemma 1.4 there exists x ∈ B such that ‖Tnx‖ ≥ a
1/2
n ‖Tn‖ for all

n.
Consider operators Sn : Y ∗ → C defined by Sny∗ = 〈Tnx, y∗〉 (y∗ ∈ Y ∗).

Clearly ‖Sn‖ = ‖Tnx‖ ≥ a
1/2
n ‖Tn‖ for all n. Using Lemma 1.4 again there exists

y∗ ∈ B∗ such that

|〈Tnx, y∗〉| = ‖Sny∗‖ ≥ a1/2
n ‖Sn‖ ≥ an‖Tn‖

for all n = 1, 2, . . ..

COROLLARY 3.9. Let X be a complex Banach space, T ∈ L(X), and let
(an)n≥0 be a sequence of positive numbers satisfying

∑∞
n=0 an

1/3 < ∞. Then there is
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a dense subset L ⊂ X ×X∗ with the following property: for all pairs (x, x∗) ∈ L there
is k ∈ N such that

|〈Tnx, x∗〉| ≥ an‖Tn‖ (n ≥ k).

If X is a real Banach space and T ∈ L(X) then the condition
∑

an
1/3 < ∞

must be replaced by
∑

an
1/4 < ∞ (cf. Theorem 2.1).

COROLLARY 3.10. Let X be a real or complex Banach space, let T ∈ L(X).
Then the set {(x, x∗) ∈ X×X∗ : lim infn→∞ |〈Tnx, x∗〉|1/n = r(T )} is dense in X×X∗.

EXAMPLE 3.11. There is a Hilbert space H and a non-nilpotent operator
T ∈ L(H) such that

∞∑
n=0

|〈Tnx, y〉|
‖Tn‖ < ∞

for all x, y ∈ H.

PROOF. For k ≥ 1 let Hk be the (k + 1)-dimensional Hilbert space with an
orthonormal basis ek0, ek1, . . . , ekk. Let Sk ∈ L(Hk) be the shift operator defined by
Skek0 = 0, Skekj = ek,j−1 (j ≥ 1). Set H =

⊕∞
k=1 Hk and T =

⊕∞
k=1

1
2k Sk. Then

‖Tn‖ = 2−n2
for all n.

Let k ∈ N and xk, yk ∈ Hk, xk =
∑k

j=0 αjekj , yk =
∑k

j=0 βjekj . Then

∞∑
n=0

|〈Tnxk, yk〉|
‖Tn‖ =

k∑
n=0

2n2

2kn

∣∣∣
k−n∑

j=0

αj+nβj

∣∣∣ ≤
k∑

n=0

1
2n(k−n)

(k−n∑

j=0

|αj+n|2
)1/2(k−n∑

j=0

|βj |2
)1/2

≤ ‖xk‖ · ‖yk‖
k∑

n=0

1
2n(k−n)

≤ ‖xk‖ · ‖yk‖
(

1 +
k−1∑
n=0

1
2n

)
≤ 3‖xk‖ · ‖yk‖.

Let x, y ∈ H, x =
∑∞

k=1 xk, y =
∑∞

k=1 yk where xk, yk ∈ Hk. Then

∞∑
n=0

|〈Tnx, y〉|
‖Tn‖ ≤

∞∑
n=0

∞∑

k=1

|〈Tnxk, yk〉|
‖Tn‖

≤
∞∑

k=1

3‖xk‖ · ‖yk‖ ≤ 3
( ∞∑

k=1

‖xk‖2
)1/2

·
( ∞∑

k=1

‖yk‖2
)1/2

= 3‖x‖ · ‖y‖ < ∞.

REMARK 3.12. In the previous example we have
∑∞

n=0

(
‖T nx‖
‖T n‖

)2
< ∞ for all

x ∈ H.

Indeed, using the notation of the previous example, for xk ∈ Hk we have

∞∑
n=0

(‖Tnxk‖
‖Tn‖

)2
=

k∑
n=0

(2n2

2nk

(k−n∑

j=0

|αj+n|2
)1/2)2

≤
k∑

n=0

1
22n(k−n)

‖xk‖2 ≤ 3‖xk‖2
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and for x =
⊕∞

k=1 xk ∈ H we have

∞∑
n=0

(‖Tnx‖
‖Tn‖

)2
=

∞∑

k=1

∞∑
n=0

(‖Tnxk‖
‖Tn‖

)2
≤

∞∑

k=1

3‖xk‖2 = 3‖x‖2 < ∞.

REMARK 3.13. Using the method of Lemma 1.9 it is possible to show that for
each Hilbert space operator T ∈ L(H) and all c < 1 there are vectors x, y ∈ H with

∞∑
n=0

( |〈Tnx, y〉|
‖Tn‖

)c

= ∞

(one can even get y = x).
For Banach space operators this is true for all c < 1/2.

IV. LOCAL CAPACITY

In this section we replace the powers of an operator by the set of all polynomials.
All Banach spaces are supposed to be complex.

Denote by P1
n the set of all monic polynomials of degree n (by monic we mean

that the leading coefficient is equal to 1). For T ∈ L(X) we write capn T = inf{‖p(T )‖ :
p ∈ P1

n} and the capacity of T is defined by

cap T = lim
n→∞

(capn T )1/n = inf
n

(capn T )1/n,

see [6]. Clearly the capacity is related to the spectral radius, capn T ≤ ‖Tn‖ for all n
and cap T ≤ r(T ).

For T ∈ L(X), x ∈ X and n ∈ N write capn(T, x) = inf{‖p(T )x‖ : p ∈ P1
n}. In

general the limit limn→∞
(
capn(T, x)

)1/n
does not exist; the local capacity cap(T, x) is

defined by

cap(T, x) = lim sup
n→∞

(
capn(T, x)

)1/n
.

By [6], cap T = cap σ(T ); recall that the classical capacity of a nonempty
compact subset K ⊂ C is defined by cap K = limn→∞(capn K)1/n, where capn K =
inf{‖p‖K : p ∈ P1

n} and ‖p‖K = sup{|p(z)| : z ∈ K}.
Since σ(T ) \ σe(T ) consists of some bounded components of C \ σe(T ) and at

most countably many isolated points, it is easy to see that cap σe(T ) = cap σ(T ).
A nonempty compact subset K ⊂ C is called algebraic if p(K) = {0} for some

nonzero polynomial p.
The basic results for local capacities are similar to those for the spectral radius.

THEOREM 4.1. Let X be a complex Banach space, T ∈ L(X) and let ε > 0.
Then:

(i) the set of all x ∈ X with the property that

capn(T, x) ≥ (n + 1)−(2+ε)(cap T )n for infinitely many n’s
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is residual.
In particular, the set

{
x ∈ X : cap(T, x) = lim supn→∞

(
capn(T, x)

)1/n
=

cap T
}

is residual.
(ii) there is a dense subset R ⊂ X with the property that, for each x ∈ R, there

exists k ∈ N with

capn(T, x) ≥ (n + 1)−(2+ε)(cap T )n (n ≥ k).

In particular, the set
{
x ∈ X : limn→∞

(
capn(T, x)

)1/n
= cap T

}
is dense.

PROOF. (ii) is a reformulation of [10].
To show (i), we need the following lemma:

LEMMA 4.2. Let T ∈ L(X), x ∈ X, η > 0 and k ∈ N. Suppose that the set
K = σe(T ) is not algebraic. Then there exists n ≥ k such that the set

L =
{
y ∈ X : ‖y − x‖ < η, ‖p(T )y‖ > (n + 1)−(2+η)‖p‖K for all p with deg p ≤ n

}

is a non-empty open subset of X.

PROOF. Choose n ≥ k such that (n + 1)−η < η(1−η)
4 .

For a polynomial p(z) =
∑n

i=0 αiz
i set |p| =

∑n
i=0 |αi|. Since K is not an

algebraic set, the norms | · | and ‖ ·‖K are equivalent on the set of polynomials of degree
≤ n so that there exists a constant c > 0 such that |p| ≤ c · ‖p‖K for all polynomials p
with deg p ≤ n.

We prove that the set L is open. Let y ∈ L. By a compactness argument, there
exists δ > 0 such that ‖p(T )y‖ > δ + (n + 1)−(2+η) for all polynomials p with deg p ≤ n
and ‖p‖K = 1.

Let y′ ∈ X, ‖y′ − x‖ < η and ‖y′ − y‖ < δ
c·max{1,‖T‖n} . Let p(z) =

∑n
i=0 αiz

i

be a polynomial with ‖p‖K = 1. Then

‖p(T )(y′ − y)‖ ≤
n∑

i=0

|αi| · ‖T‖i‖y′ − y‖ ≤ |p|max{1, ‖T‖, . . . , ‖T‖n} · ‖y − y′‖ < δ

and

‖p(T )y′‖ ≥ ‖p(T )y‖ − ‖p(T )(y′ − y)‖ > δ +
1

(n + 1)2+η
− δ =

1
(n + 1)2+η

.

Thus y′ ∈ L.
It is sufficient to show that L is non-empty. Set E =

∨{x, Tx, . . . , Tnx}. By
[10], Lemma 3 there exists u ∈ X of norm one such that

‖p(T )(e + u)‖ ≥ 1− η

2(n + 1)2
re(p(T ))

for all e ∈ E and all polynomials p, deg p ≤ n. Note that

re(p(T )) = max
{|µ| : µ ∈ σe(p(T ))

}
= max

{|p(λ)| : λ ∈ σe(T )
}

= ‖p‖K .
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Set y = x + ηu
2 . Then ‖y − x‖ = η/2 < η and, for all polynomials p of degree ≤ n,

‖p(T )y‖ =
η

2

∥∥∥p(T )
(2x

η
+ u

)∥∥∥ ≥ η

2
· 1− η

2(n + 1)2
‖p‖K >

1
(n + 1)2+η

‖p‖K .

Hence y ∈ L.

Proof of Theorem 4.1 (i). If σe(T ) is an algebraic set then cap T = cap σe(T ) =
0, so that the statement is trivial.

Suppose that the set K = σe(T ) is not algebraic. Fix ε > 0. For each k ∈ N
let

Mk =
{
y ∈ X : there exists n ≥ k such that capn(T, y) > (n + 1)−(2+ε) capn K

}
.

For each x ∈ X and η ∈ (0, ε) let n = n(x, η, k) ≥ k and L = L(x, η, k) ⊂ X be as
constructed in Lemma 4.2. For y ∈ L(x, η, k) we have

capn(T, y) = inf{‖p(T )y‖ : p ∈ P1
n} ≥ inf

{
(n + 1)−(2+η)‖p‖K : p ∈ P1

n

}

≥(n + 1)−(2+η) capn K > (n + 1)−(2+ε) capn K.

Thus
⋃

x,η L(x, η, k) ⊂ Mk and
⋃

x,η L(x, η, k) is an open dense subset of X. Hence Mk

is residual for all k and so is the intersection
⋂

k Mk.
For k ∈ N and y ∈ M there is n ≥ k with

capn(T, y) > (n + 1)−(2+ε) capn K.

In particular, for y ∈ ⋂∞
k=1 Mk we have

cap(T, y) = lim sup
n→∞

(capn(T, y))1/n≥ lim sup
n→∞

(
capn K

)1/n
= cap K = cap σe(T ) = cap T.

The opposite inequality cap(T, y) ≤ cap T is always true.

Example 1.3 shows that in general we can not expect to have

lim inf
n→∞

(cap(T, y))1/n = cap T

for all y in a residual set. Thus (ii) cannot be improved.

REMARK 4.3. The statement of Theorem 4.1 can be generalized to commuting
n-tuples of operators. The analogue of the second statement was proved in [11]; the
analogue of part (i) can be proved as above.
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