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Abstract

Let {Tt}t≥0 be a hypercyclic strongly continuous semigroup of operators. Then each

Tt (t > 0) is hypercyclic as a single operator, and it shares the set of hypercyclic

vectors with the semigroup. This answers in the affirmative a natural question con-

cerning hypercyclic C0-semigroups. The analogous result for frequent hypercyclicity

is also obtained.
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1 Introduction

A continuous linear operator T : X → X on a topological vector space X is

said to be hypercyclic if there is a vector x ∈ X (called a hypercyclic vector)

whose orbit under T , Orb(T, x) := {T nx : n ∈ N}, is dense in X.

In [1] Ansari proved that all the powers of a hypercyclic operator T are also

hypercyclic. Moreover, they share the same hypercyclic vectors with T . Recall

that Ansari [2] and Bernal [7] showed that every infinite dimensional separable

Banach space admits a hypercyclic operator. This result was also extended to

the non-normable Fréchet case by Bonet and Peris [11]. For more details about

hypercyclic operators see the surveys [10,21,22].

In the continuous case, a one parameter family T = {Tt}t≥0 of continuous

linear operators in L(X) is a strongly continuous semigroup (or C0-semigroup)

of operators in L(X) if T0 = I, TtTs = Tt+s for all t, s ≥ 0, and limt→s Ttx =

Tsx for all s ≥ 0, x ∈ X. For further information about C0-semigroups we

refer the reader to the books [20,29].

A C0-semigroup T = {Tt}t≥0 is said to be hypercyclic if Orb(T , x) := {Ttx :

t ≥ 0} is dense in X for some x ∈ X. The investigation of hypercyclic semi-

groups was initiated by Desch, Schappacher and Webb in [17]. So far, several

specific examples of hypercyclic strongly continuous semigroups have been

studied, see for example [17,16,19,24,28]. In [4] Bermúdez, Bonilla and Mar-

tinón proved that every separable infinite dimensional Banach space admits a

hypercyclic semigroup. This result was extended to Fréchet spaces in [12].

Given T ∈ L(X), let us denote by HC(T ) the set of all hypercyclic vectors
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of T , and analogously, denote by HC(T ) the set of hypercyclic vectors of a

C0-semigroup T . It is easy to see that if T = {Tt}t≥0 is a C0-semigroup and

some operator Tt in the semigroup is hypercyclic, then the semigroup T itself

is hypercyclic.

When one analizes the converse situation (from the continuous to the discrete

case), as a consequence of an old result of Oxtoby and Ulam [27] it is possible

to establish that, if x ∈ HC(T ) is hypercyclic, then there exists a residual set

G ⊂ R+, such that x ∈ HC(Tt) for all t ∈ G (see, e.g., [13]). The point here

is whether G = R+. That is, if T = {Tt}t≥0 is a hypercyclic C0-semigroup, is

every operator Tt, t > 0, hypercyclic? This problem was explicitely stated in

[4].

Our main result is the solution to this problem in the affirmative. To do

this we will adapt an argument due to León and Müller [26] on rotations of

hypercyclic operators. This approach is not new: Several authors have tried to

use similar arguments to the ones in [26] for the C0-semigroups context without

success (e.g., [14], [25] and [18]). The key point in the proof, proceeding by

contradiction, is to construct a pair of continuous maps f : HC(T ) → T and

g : D → HC(T ) such that f ◦g|T is homotopically nontrivial. Such a point has

resisted previous attempts (notice that the homotopy in [18] does not yield

any contradiction, which results in a serious gap), and it is finally solved here.

A new trend in hypercyclicity was recently open by the work of Bayart and

Grivaux. Motivated by Birkhoff’s ergodic Theorem, they introduced the notion

of frequent hypercyclicity [8,6], by quantifying the frequency with which an

orbit meets open sets. To be precise, let us define the lower density of a

set A ⊂ N by dens(A) := lim infN→∞#{n ≤ N : n ∈ A}/N. An operator
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T ∈ L(X) is said to be frequently hypercyclic if there exists x ∈ X such that,

for every non-empty open subset U ⊂ X, the set {n ∈ N : T nx ∈ U} has

positive lower density. Each such a vector x is called a frequently hypercyclic

vector for T , and the set of all frequently hypercyclic vectors is denoted by

FHC(T ).

Analogously, if we define the lower density of a measurable set M ⊂ R+ by

Dens(M) := lim infN→∞ µ(M ∩ [0, N ])/N , where µ is the Lebesgue measure

on R+, then a C0-semigroup T = {Tt}t≥0 in L(X) is said to be frequently

hypercyclic if there exists x ∈ X such that for any non-empty open set U ⊂ X,

the set {t ∈ R+ : Ttx ∈ U} has positive lower density. As before, we denote

by FHC(T ) the set of all hypercyclic vectors of T . In both cases, frequent

hypercyclicity is stronger than hypercyclicity. See also [23,9,5] For further

details concerning frequently hypercyclic operators and semigroups.

We prove that, if a C0-semigroup T = {Tt}t≥0 is frequently hypercyclic, then

every single operator Tt 6= I is frequently hypercyclic.

From now on, X stands for an F -space over K, where K denotes the field of

either real or complex numbers; by an F -space we mean that it is a metrizable

and complete topological vector space. Let U0(X) be a base of open balanced

neighbourhoods of the origin in X. Within this context, any C0-semigroup

T = {Tt : X → X}t≥0 is locally equicontinuous, i.e., for any t0 > 0, the family

of operators {Tt : t ∈ [0, t0]} is equicontinuous. This fact will be used

repeatedly throughout the paper. We would like to point out that there is no

simplification in the proofs if we assume that X is a Banach space, and that

our results remain valid for general topological vector spaces X if we assume

that T = {Tt}t≥0 is locally equicontinuous.
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2 Hypercyclic Operators and Semigroups

We begin this section with some technical results. The first one is an adapta-

tion to F -spaces of a result of Costakis and Peris [15], using ideas of Wengen-

roth [30]. See also [12].

Lemma 2.1 Let T = {Tt}t≥0 be a hypercyclic semigroup in L(X). Then Tt−

λI has dense range for all t > 0 and λ ∈ K.

Proof. Fix arbitrarily λ ∈ K and t0 > 0. We assume L := (Tt0 − λI)(X) 6= X,

and consider the quotient map q : X → X/L, which satisfies q◦(Tt0−λI) = 0.

Inductively, this yields q ◦ T n
t0

= λnq for all n ∈ N. Consider x ∈ HC(T ), and

define M := q(Orb(T , x)) = {λnq(Tsx) : n ∈ N0, s ∈ [0, t0]}, which is dense by

the definition of q. Now we distinguish two cases:

|λ| ≤ 1: Since {Tsx : s ∈ [0, t0]} is bounded in X, M must be bounded, so that it

cannot be dense. A contradiction.

|λ| > 1: Fix an arbitrary y ∈ L with q(y) 6= 0. There exists an r > 0 such

that q(Trx) 6= 0. We pick U ∈ U0(X/L) satisfying q(Trx) 6∈ U . The

equicontinuity of {Ts : s ∈ [0, t0]} yields the existence of V ∈ U0(X)

such that q(Tt(V )) ⊂ U , t ∈ [0, t0]. Fix t′ > r with Tt′x ∈ V . We write

t′ = mt0 − t + r, for some m ∈ N and t ∈ [0, t0]. Since |λ| > 1, we have

λmq(Trx) 6∈ U . On the other hand,

λmq(Trx) = q(Tmt0+rx) = q(Tt(Tt′x)) ∈ q(Tt(V )) ⊂ U,

which is a contradiction.

2

6



An easy consequence of the previous lemma is the following

Corollary 2.2 Let T = {Tt}t≥0 be a hypercyclic semigroup in L(X). If t > 0,

(λ1, λ2) 6= (0, 0) and x ∈ HC(T ), then λ1x + λ2Ttx ∈ HC(T )

Theorem 2.3 Let T = {Tt}t≥0 be a hypercyclic semigroup on L(X), and let

x ∈ HC(T ). Then x ∈ HC(Tt0) for every t0 > 0.

Proof. Without loss of generality, we may assume that t0 = 1. Indeed, we can

consider the semigroup T̃ = {T̃t}t≥0 in L(X), with T̃t := Ttt0 for every t ≥ 0.

Clearly, x ∈ HC(T̃ ) and T̃1 = Tt0 .

Let T := {z ∈ C : |z| = 1} denote the unit circle, D := {z ∈ C : |z| ≤ 1}

the closed unit disc, and let R+ := {t ∈ R : t ≥ 0}.

We define the map ρ : R+ → T by ρ(t) := e2πit. For every pair u, v ∈ X let

Fu,v :=
{
λ ∈ T : ∃(tn)n ⊂ R with lim

n
tn = ∞, lim

n
Ttnu = v, and lim

n
ρ(tn) = λ

}
.

Our proof is divided into several steps.

Step 1 If u ∈ HC(T ), then Fu,v 6= ∅ for all v ∈ X. Since u is hypercyclic for T ,

we can find an unbounded increasing sequence {tk}k in R+, such that Ttku

converges to v. By passing to a subsequence, if necessary, we may assume

that (ρ(tk))k is convergent. Its limit is an element of Fu,v.

Step 2 If limk vk = v, λk ∈ Fu,vk
, and limk λk = λ, then λ ∈ Fu,v. (In particular,

Fu,v is a closed set for each u, v ∈ X.) Indeed, for each k we select tk > k

such that limk(Ttku−vk) = 0 and limk |ρ(tk)−λk| = 0. It is easy to see that

limk Ttku = v and that limk ρ(tk) = λ.
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Step 3 If u, v, w ∈ X, λ ∈ Fu,v, and µ ∈ Fv,w, then λµ ∈ Fu,w. Given U ∈ U0(X)

and ε > 0, take U ′ ∈ U0(X) such that U ′ + U ′ ⊂ U . Find t1 such that

Tt1v − w ∈ U ′ and |ρ(t1) − µ| < ε. Pick V ∈ U0(X) and t2 > 0 satisfying

Tt1(V ) ⊂ U ′, Tt2u− v ∈ V , and |ρ(t2)− µ| < ε. Then

Tt1+t2u− w = Tt1(Tt2u− v) + (Tt1v − w) ∈ Tt1(V ) + U ′ ⊂ U, and

|ρ(t1+t2)−λµ| = |ρ(t1)ρ(t2)−λµ| ≤ |ρ(t1)−µ| · |ρ(t2)|+ |µ| · |ρ(t2)−λ| < 2ε.

Hence λµ ∈ Fu,w.

Fix now x ∈ HC(T ). By Steps 1, 2 and 3, Fx,x is a nonempty closed sub-

semigroup of T with multiplication. Firstly, suppose that Fx,x = T. Then,

given y ∈ X, by Steps 1 and 3 we get Fx,y = T. In particular 1 ∈ Fx,y, which

yields the existence of a sequence (tn)n ⊂ R+ tending to infinity such that

limn Ttnx = y and limn ρ(tn) = 1. Write tn as tn = kn + εn with kn ∈ N and

εn ∈ (−1/2, 1/2]. Then limn εn = 0. Let U ∈ U0(X). We fix U ′, V ∈ U0(X)

with U ′+U ′ ⊂ U and Ts(V ) ⊂ U ′, 0 ≤ s ≤ 2. Let n ∈ N be large enough such

that Ttnx− y ∈ V and T1−εny − T1y ∈ U ′. Then we have

Tkn+1x− T1y = T1−εn(Ttnx− y) + (T1−εn − T1)y

∈ T1−εn(V ) + U ′ ⊂ U ′ + U ′ ⊂ U.

Hence T1y ∈ Orb(T1, x). Since T1 has dense range and y ∈ X is arbitrary, then

x is hypercyclic for T1.

For the rest of the proof we assume that Fx,x 6= T, and we will show that it

leads to a contradiction.

Step 4 There exists some k ∈ N such that, for each y ∈ HC(T ), there is λ ∈ T

satisfying Fx,y =
{
λz : zk = 1

}
. It turns out that there is k ∈ N such that
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Fx,x = {z ∈ T : zk = 1}. Indeed, given z ∈ Fx,x, the set {zn : n ∈ N}

is either dense in T or finite. Since it is contained in the closed semigroup

Fx,x 6= T, it should be finite. Now, given y ∈ HC(T ), λ ∈ Fx,y, and µ ∈ Fy,x,

by Step 3, λFx,x ⊂ Fx,y, and µFx,y ⊂ Fx,x, then #(Fx,y) = #(Fx,x). This

implies that Fx,y = λFx,x

Step 5 There is a continuous function h : D → T, whose restriction to the unit

circle is homotopically nontrivial. A contradiction.

Let us recall that two maps f, g : X → Y are homotopic if there is a

continuous map H : X× [0, 1] → Y such that H(x, 0) = f(x) and H(x, 1) =

g(x), x ∈ X. f is homotopically trivial if it is homotopic to a constant map.

If f is homotopically trivial, then so are all its restrictions. Any continuous

map f : D → Y is homotopically trivial. We say that a continuous map g :

T → T has index n, (n = 0, 1, 2, . . . ), if it is homotopic to the map z 7→ zn.

Any continuous map g : T → T has some index, and it is homotopically

trivial if and only if it has index 0. We refer the reader to, e.g., [3].

Consider the function f : HC(T ) → T as f(y) := λk, where λ ∈ Fx,y.

Clearly, by Steps 2 and 4, f is well defined and continuous. Besides, f(x) = 1

and, since x ∈ HC(T ), then Ttx ∈ HC(T ) for every t ≥ 0 by Corollary 2.2.

Therefore it easily follows that e2πit ∈ Fx,Ttx and f(Ttx) = e2πitk for every

t ≥ 0.

We will find g : D → HC(T ) such that h := f ◦ g is the desired function

which will give the contradiction. We first define g : T → HC(T ), and then

extend it to D. To do this, since f is continuous at x, we find U ∈ U0(X)

such that |f(y) − 1| < 1 if y ∈ HC(T ) and y − x ∈ U . We now fix t0 > 1
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satisfying Tt0x− x ∈ U . Let us define g : T → HC(T ) by

g(e2πit) :=


T2tt0x if 0 ≤ t < 1/2,

(2t− 1)x + (2− 2t)Tt0x if 1/2 ≤ t < 1.

Clearly, g is well defined and continuous. By Corollary 2.2, we have g(T) ⊂

HC(T ). Since U is balanced, g(e2πit) − x ∈ U , for 1/2 ≤ t < 1. This

implies |f(g(e2πit)) − 1| < 1, 1/2 ≤ t < 1. Moreover f(g(e2πit)) = e4πitt0k,

0 ≤ t < 1/2, which yields that the index of f ◦ g at 0 is between [t0]k and

([t0] + 1)k (depending on the difference t0 − [t0]).

We extend the function g to D by defining g(z) := (1− |z|)x+ |z|g(z/|z|)

for each z 6= 0, and g(0) = x. Clearly, this extension is also continuous

on D, and g(z) ∈ HC(T ) for every z ∈ D since g(z) is a non-zero linear

combination of x and Ttx, for some 0 < t ≤ t0 (Corollary 2.2).

To sum up, we have a continuous function h := f ◦ g : D → T, such that

its restriction to the unit circle is homotopically nontrivial, a contradiction.

2

3 Frequently Hypercyclic Operators and Semigroups

In this section we prove the analogous result for the stronger concept of

frequent hypercyclicity. We first need a technical lemma concerning the fre-

quently hypercyclic vectors of a C0-semigroup T .

Lemma 3.1 Let T = {Tt}t≥0 be a frequently hypercyclic semigroup on L(X),

and let x ∈ FHC(T ). For every k ∈ N, y ∈ X, and U ∈ U0(X)

Dens({t ∈ ∪n∈N[n− 1/k, n) : Ttx− y ∈ U}) > 0.
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Proof. Clearly, Tj/kx ∈ HC(T ) for every j = 0, . . . , k − 1, and even more,

Tj/kx ∈ HC(T1) by Theorem 2.3. Fix U,U ′ ∈ U0(X) such that U ′ + U ′ ⊂

U , and y ∈ X. Then there are some nj ∈ N such that Tnj+j/kx − y ∈ U ′,

j = 0, . . . , k − 1. Besides, there is some V ∈ U0(X) such that Ts(V ) ⊂ U ′ if

s ≤ N0 := max{nj : j = 0, . . . , k − 1}+ 1.

Since x ∈ FHC(T ), we have Dens({t ∈ R+ : Ttx − x ∈ V }) > 0. So there

are C > 0 and N1 ∈ N such that µ({t ≤ N : Ttx − x ∈ V }) ≥ CN for every

N ≥ N1.

For every N ∈ N, let us define L := {t ≤ N : Ttx − x ∈ V }. In addition, for

every j = 0, . . . , k−1, we define the sets Ij := ∪n[n+j/k, n+(j+1)/k), Lj :=

L∩ Ij, and the mapping fj : R+ → R+ as fj(t) := t + nk−j−1 + (k− j − 1)/k.

These mappings satisfy that fj(t) ∈ Ik−1 for every t ∈ Lj, and

Tfj(t)x− y = Tnk−j−1+(k−j−1)/k(Ttx− x) + (Tnk−j−1+(k−j−1)/kx− y)

∈ Tnk−j−1+(k−j−1)/k(V ) + U ′ ⊂ U.

Finally, for N ≥ N0 + N1 we have

µ({t ≤ 2N : Ttx− y ∈ U and t ∈ Ik−1}) ≥ µ(∪k−1
j=0fj(Lj))

≥
k−1∑
j=0

µ(fj(Lj))/k =
k−1∑
j=0

µ(Lj)/k = µ(L)/k ≥ CN/k.

Hence Dens({t ∈ Ik−1 : Ttx− y ∈ U}) > 0, and we are done.

2

Theorem 3.2 Let T = {Tt}t≥0 be a frequently hypercyclic semigroup on

L(X), and let x ∈ FHC(T ). Then x ∈ FHC(Tt0) for every t0 > 0.
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Proof. Without loss of generality, we may again assume that t0 = 1 as in the

proof of Theorem 2.3. Fix y ∈ X, U ∈ U0(X), and select k ∈ N, U ′ ∈ U0(X),

such that U ′ + U ′ ⊂ U and Tty − y ∈ U ′ for every 0 ≤ t ≤ 1/k. Since

T is strongly continuous there is some V ∈ U0(X) such that Tt(V ) ⊂ U ′

for every 0 ≤ t ≤ 1/k. By the previous lemma, we know that Dens({t ∈

∪n∈N[n− 1/k, n) : Ttx− y ∈ V }) > 0.

If t ∈ [n−1/k, n) for some n ∈ N and Ttx−y ∈ V , then we define ηt := [t]+1−t.

Each ηt satisfies 0 < ηt ≤ 1/k, and t + ηt ∈ N. So

Tt+ηtx− y = Tηt(Ttx− y) + (Tηty − y) ∈ Tηt(V ) + U ′ ⊂ U.

Hence

dens({n ∈ N : Tnx−y ∈ U}) ≥ Dens({t ∈ ∪n∈N[n−1/k, n) : Ttx−y ∈ V}) > 0

2
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