Hypercyclic Behaviour of Operators in a

Hypercyclic Cy-Semigroup

Jose A. Conejero!

Dep. Matematica Aplicada € IMPA-UPYV, Facultat d’Informatica
Universitat Politécnica de Valéncia

E-46022 Valéncia, Spain

V. Miiller 2

Mathematical Institute, Czech Academy of Sciences
Zitnda 25

115 67 Prague 1, Czech Republic

A. Peris ™1

Dep. Matematica Aplicada & IMPA-UPV, ETS Arquitectura
Universitat Politécnica de Valéncia
E-46022 Valéncia, Spain
Tel. +34 963877662

Fazx.+34 965877669

Preprint submitted to Elsevier Science



Abstract

Let {Tt}tzo be a hypercyclic strongly continuous semigroup of operators. Then each
T, (t > 0) is hypercyclic as a single operator, and it shares the set of hypercyclic
vectors with the semigroup. This answers in the affirmative a natural question con-
cerning hypercyclic Cy-semigroups. The analogous result for frequent hypercyclicity

is also obtained.
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1 Introduction

A continuous linear operator T : X — X on a topological vector space X is
said to be hypercyclic if there is a vector x € X (called a hypercyclic vector)

whose orbit under T', Orb(T,z) := {T"x : n € N}, is dense in X.

In [1] Ansari proved that all the powers of a hypercyclic operator T are also
hypercyclic. Moreover, they share the same hypercyclic vectors with 7T". Recall
that Ansari [2] and Bernal [7] showed that every infinite dimensional separable
Banach space admits a hypercyclic operator. This result was also extended to
the non-normable Fréchet case by Bonet and Peris [11]. For more details about

hypercyclic operators see the surveys [10,21,22].

In the continuous case, a one parameter family 7 = {Ti},, of continuous
linear operators in L(X) is a strongly continuous semigroup (or Cy-semigroup)
of operators in L(X) if Ty = I, T, Ts = Ty, for all t,s > 0, and lim, ., Tyx =
Tsx for all s > 0, x € X. For further information about Cy-semigroups we

refer the reader to the books [20,29].

A Cy-semigroup T = {1}, is said to be hypercyclic if Ord(T, ) := {Tiz :
t > 0} is dense in X for some z € X. The investigation of hypercyclic semi-
groups was initiated by Desch, Schappacher and Webb in [17]. So far, several
specific examples of hypercyclic strongly continuous semigroups have been
studied, see for example [17,16,19,24,28]. In [4] Bermidez, Bonilla and Mar-
tinon proved that every separable infinite dimensional Banach space admits a

hypercyclic semigroup. This result was extended to Fréchet spaces in [12].

Given T' € L(X), let us denote by HC(T') the set of all hypercyclic vectors



of T, and analogously, denote by HC(7T) the set of hypercyclic vectors of a
Co-semigroup 7. It is easy to see that if 7 = {Tt}tzo is a Cj-semigroup and
some operator T; in the semigroup is hypercyclic, then the semigroup 7 itself

is hypercyclic.

When one analizes the converse situation (from the continuous to the discrete
case), as a consequence of an old result of Oxtoby and Ulam [27] it is possible
to establish that, if z € HC(7) is hypercyclic, then there exists a residual set
G C Ry, such that z € HC(Ty) for all t € G (see, e.g., [13]). The point here
is whether G = R,.. That is, if 7 = {T;},., is a hypercyclic Cp-semigroup, is
every operator T3, t > 0, hypercyclic? This problem was explicitely stated in

14].

Our main result is the solution to this problem in the affirmative. To do
this we will adapt an argument due to Leén and Miiller [26] on rotations of
hypercyclic operators. This approach is not new: Several authors have tried to
use similar arguments to the ones in [26] for the Cy-semigroups context without
success (e.g., [14], [25] and [18]). The key point in the proof, proceeding by
contradiction, is to construct a pair of continuous maps f : HC(7) — T and
g : D — HC(T) such that fog|r is homotopically nontrivial. Such a point has
resisted previous attempts (notice that the homotopy in [18] does not yield

any contradiction, which results in a serious gap), and it is finally solved here.

A new trend in hypercyclicity was recently open by the work of Bayart and
Grivaux. Motivated by Birkhoft’s ergodic Theorem, they introduced the notion
of frequent hypercyclicity [8,6], by quantifying the frequency with which an
orbit meets open sets. To be precise, let us define the lower density of a

set A C N by dens(A) := liminfy . #{n < N : n € A}/N. An operator



T € L(X) is said to be frequently hypercyclic if there exists x € X such that,
for every non-empty open subset U C X, the set {n € N : T"z € U} has
positive lower density. Each such a vector x is called a frequently hypercyclic
vector for T', and the set of all frequently hypercyclic vectors is denoted by
FHC(T).

Analogously, if we define the lower density of a measurable set M C R, by
Dens(M) := liminfy_o u(M N[0, N])/N, where p is the Lebesgue measure
on Ry, then a Cy-semigroup 7 = {T}},5, in L(X) is said to be frequently
hypercyclic if there exists x € X such that for any non-empty open set U C X,
the set {t € R, : Ty € U} has positive lower density. As before, we denote
by FHC(T) the set of all hypercyclic vectors of 7. In both cases, frequent
hypercyclicity is stronger than hypercyclicity. See also [23,9,5] For further

details concerning frequently hypercyclic operators and semigroups.

We prove that, if a Cy-semigroup 7 = {Tt}tzo is frequently hypercyclic, then

every single operator T; # I is frequently hypercyclic.

From now on, X stands for an F-space over K, where K denotes the field of
either real or complex numbers; by an F-space we mean that it is a metrizable
and complete topological vector space. Let Uy(X) be a base of open balanced
neighbourhoods of the origin in X. Within this context, any Cy-semigroup
T={T;,: X — X}tZO is locally equicontinuous, i.e., for any ¢y > 0, the family
of operators {T; : t € [0,to]} is equicontinuous. This fact will be used
repeatedly throughout the paper. We would like to point out that there is no
simplification in the proofs if we assume that X is a Banach space, and that
our results remain valid for general topological vector spaces X if we assume

that 7 = {T}},, is locally equicontinuous.



2 Hypercyclic Operators and Semigroups

We begin this section with some technical results. The first one is an adapta-
tion to F-spaces of a result of Costakis and Peris [15], using ideas of Wengen-

roth [30]. See also [12].

Lemma 2.1 Let T = {T;}+>0 be a hypercyclic semigroup in L(X). Then T} —

A has dense range for all t > 0 and X € K.

Proof. Fix arbitrarily A € K and ¢, > 0. We assume L := (T}, — A )(X) # X,
and consider the quotient map ¢ : X — X /L, which satisfies go (T}, — A\I) = 0.
Inductively, this yields g o T;" = \"q for all n € N. Consider x € HC(7T), and
define M := q(Orb(T,z)) = {\"q(Tsx) : n € Ny, s € [0,t0]}, which is dense by

the definition of q. Now we distinguish two cases:

|A| < 1: Since {Tsx : s € [0,tp]} is bounded in X, M must be bounded, so that it
cannot be dense. A contradiction.

|A| > 1: Fix an arbitrary y € L with ¢(y) # 0. There exists an r > 0 such
that ¢(T,x) # 0. We pick U € Uy(X/L) satistying q(T,z) ¢ U. The
equicontinuity of {7 : s € [0,%p]} yields the existence of V' € Uy(X)
such that ¢(T3(V)) C U, t € [0,to]. Fix ¢’ > r with Tyx € V. We write
t' = mty —t + r, for some m € N and ¢ € [0,to]. Since |A| > 1, we have

A"q(T,x) ¢ U. On the other hand,

Aq(Trx) = ¢(Tsorw) = ¢(Ti(Tvw)) € o(T(V)) C U,

which is a contradiction.



An easy consequence of the previous lemma is the following

Corollary 2.2 Let T = {T;}+>0 be a hypercyclic semigroup in L(X). Ift > 0,
(A1, A2) # (0,0) and x € HC(T), then \x + ATy € HC(T)

Theorem 2.3 Let T = {T;}1>0 be a hypercyclic semigroup on L(X), and let
x € HC(T). Then x € HC(1y,) for every ty > 0.

Proof. Without loss of generality, we may assume that t, = 1. Indeed, we can
consider the semigroup 7 = {T;}1>0 in L(X), with T, := Ty, for every t > 0.

Clearly, z € HC(T) and T} = T}, .

Let T := {2z € C : |z| = 1} denote the unit circle, D := {z € C : |2| < 1}

the closed unit disc, and let R, :={t € R : ¢ > 0}.

We define the map p : Ry — T by p(t) := e*™. For every pair u,v € X let

F.,:= {)\ eT : 3(t,), C R with liTlgntn = 00, liénTtnu =, and ligbnp(tn) = )\} .

Our proof is divided into several steps.

Step 1 Ifu € HC(T), then F,, # (0 for all v € X. Since u is hypercyclic for 7,
we can find an unbounded increasing sequence {t;}x in Ry, such that T}, u
converges to v. By passing to a subsequence, if necessary, we may assume

that (p(tx))r is convergent. Its limit is an element of F,, .

Step 2 If limg vy = v, \p € Fy,,, and limg A\, = A, then A € F,,. (In particular,
F,, is a closed set for each u,v € X.) Indeed, for each k we select t;, > k
such that limy (7T}, u —vy) = 0 and limy, [p(tx) — Ax| = 0. It is easy to see that

limy, T3, u = v and that limy p(tg) = A



Step 3 Ifu,v,w € X, A € F,,, and u € F,,,, then Ay € F,,,. Given U € Uy(X)
and ¢ > 0, take U’ € Uy(X) such that U’ + U’ C U. Find t; such that
Ti,v—w € U and |p(t;) — u| < e. Pick V€ Up(X) and t5 > 0 satisfying

T, (V)Cc U Ti,u—v €V, and |p(t2) — p| < &. Then
Thi,u—w =T, (T,u—v)+ (Tyv—w) €T, (V)+ U C U, and

|p(t1+1t2) = Al = |p(t)p(t2) = Au| < |p(t1) —pl - |p(E2) [+ 1] - [p(t2) = Al < 2e.

Hence A\ € F, .

Fix now x € HC(T). By Steps 1, 2 and 3, F},, is a nonempty closed sub-
semigroup of T with multiplication. Firstly, suppose that F,, = T. Then,
given y € X, by Steps 1 and 3 we get F,, = T. In particular 1 € F},, which
yields the existence of a sequence (t,), C R, tending to infinity such that
lim, T3,z = y and lim, p(t,) = 1. Write t,, as t, = k, + ¢, with k, € N and
en € (—1/2,1/2]. Then lim, e, = 0. Let U € Upy(X). We fix U,V € Uy(X)
with U'+ U’ C U and T,(V) C U’, 0 < s < 2. Let n € N be large enough such

that Ty, x —y € V and Ty_.,y — Tyy € U’. Then we have
Tkn‘i‘lx - le = Tl—sn (ﬂnx - y) + (Tl_an - Tl)y

el ., (V)+U cU+U CU.

Hence Tyy € Orb(1}, x). Since T; has dense range and y € X is arbitrary, then

x is hypercyclic for T;.

For the rest of the proof we assume that F,, # T, and we will show that it

leads to a contradiction.

Step 4 There exists some k € N such that, for each y € HC(T), there is A € T

satisfying Iy, = {)\z 2= 1}. It turns out that there is £ € N such that



Step 5

Fo.={2€T : 2¥=1}. Indeed, given z € F,,, the set {z" : n € N}
is either dense in T or finite. Since it is contained in the closed semigroup
F, . # T, it should be finite. Now, giveny € HC(7T), A € F,,, and pu € F,, .,
by Step 3, AF,, C F,,, and uF,, C F,., then #(F,,) = #(F,.). This

implies that F, , = AF} ,

There is a continuous function h : D — T, whose restriction to the unit
circle is homotopically nontrivial. A contradiction.

Let us recall that two maps f,g : X — Y are homotopic if there is a
continuous map H : X x[0,1] — Y such that H(z,0) = f(z) and H(z,1) =
g(x), z € X. fis homotopically trivial if it is homotopic to a constant map.
If f is homotopically trivial, then so are all its restrictions. Any continuous
map f : D — Y is homotopically trivial. We say that a continuous map g :
T — T has index n, (n =0,1,2,...), if it is homotopic to the map z — 2".
Any continuous map ¢g : T — T has some index, and it is homotopically
trivial if and only if it has index 0. We refer the reader to, e.g., [3].

Consider the function f : HC(T) — T as f(y) := AF, where A\ € F, .
Clearly, by Steps 2 and 4, f is well defined and continuous. Besides, f(z) = 1
and, since x € HC(T), then Tyz € HC(T) for every t > 0 by Corollary 2.2.
Therefore it easily follows that €™ € F, r,, and f(Tiz) = > for every
t>0.

We will find g : D — HC(7) such that h := f o g is the desired function
which will give the contradiction. We first define g : T — HC(7), and then
extend it to . To do this, since f is continuous at x, we find U € Uy(X)

such that |f(y) — 1| < 1ify € HC(T) and y —x € U. We now fix t; > 1



satisfying Ty,x — x € U. Let us define g : T — HC(T) by

27rit) _ TQttox if 0 S t < ]_/2,

g(e
(2t—Daz+(2—2t)T,z if1/2<t<1.

Clearly, g is well defined and continuous. By Corollary 2.2, we have g(T) C
HC(T). Since U is balanced, g(e*™) — x € U, for 1/2 < t < 1. This
implies |f(g(e?™)) — 1| < 1, 1/2 < t < 1. Moreover f(g(e*™)) = etrittok,
0 <t < 1/2, which yields that the index of f o g at 0 is between [to]k and
([to] + 1)k (depending on the difference to — [to]).

We extend the function g to D by defining g(z) := (1 — |z|)z + |z|g(2/|2])
for each z # 0, and ¢g(0) = x. Clearly, this extension is also continuous
on D, and ¢(z) € HC(7) for every z € D since g(z) is a non-zero linear
combination of z and Tiz, for some 0 < ¢t < ¢, (Corollary 2.2).

To sum up, we have a continuous function A := fog:ID — T, such that

its restriction to the unit circle is homotopically nontrivial, a contradiction.

O

3 Frequently Hypercyclic Operators and Semigroups

In this section we prove the analogous result for the stronger concept of
frequent hypercyclicity. We first need a technical lemma concerning the fre-

quently hypercyclic vectors of a Cp-semigroup 7 .

Lemma 3.1 Let 7 = {T;}+>0 be a frequently hypercyclic semigroup on L(X),
and let x € FHC(T). For every k € Nyy € X, and U € Uy(X)

Dens({t € Upen|n — 1/k,n) : Tix —y € U}) > 0.

10



Proof. Clearly, T;jx € HC(T) for every j = 0,...,k — 1, and even more,
Tiwx € HC(Ty) by Theorem 2.3. Fix U, U’ € Uy(X) such that U' + U’ C
U, and y € X. Then there are some n; € N such that T, ;rr —y € U,
j =0,...,k— 1. Besides, there is some V' € Uy(X) such that T,(V) C U’ if

s < Np:=max{n;:j=0,...,k—1} + 1.

Since © € FHC(T), we have Dens({t € R" : T,x —x € V}) > 0. So there
are C' > 0 and Ny € N such that u({t < N : Tyx —x € V}) > CN for every

N > Nj.

For every N € N, let us define L := {t < N : T,z — x € V}. In addition, for
every j =0,...,k—1, we define the sets [; := U,[n+j/k,n+(j+1)/k), L; :=
LN 1I;, and the mapping f; : Ry — Ry as f;(t) .=t +ng_j—1 +(k—j—1)/k.

These mappings satisfy that f;(t) € Iy_; for every t € L;, and
Trwx —y =Ty srth—j—v/e(Tw — ) + (T4 (h—j-1) /6% — Y)

€ Tojrrth—j—y(V) + U CU.

Finally, for N > Ny + N; we have

p({t <2N :Tw—yeUandt € I1}) > n(U= f;(Ly))

k—1

> 3 Wl L)k = 3 L)k = ()b > CNJk

J=0

Hence Dens({t € Ij—1 : Tix —y € U}) > 0, and we are done.

Theorem 3.2 Let T = {T;}>0 be a frequently hypercyclic semigroup on

L(X), and let x € FHC(T). Then v € FHC(Ty,) for every ty > 0.

11



Proof. Without loss of generality, we may again assume that ¢ty = 1 as in the
proof of Theorem 2.3. Fix y € X, U € Uy(X), and select k € N, U" € Up(X),
such that U' 4+ U C U and Tyy —y € U’ for every 0 < ¢t < 1/k. Since
7 is strongly continuous there is some V' € Uy(X) such that T,(V) C U’
for every 0 < ¢t < 1/k. By the previous lemma, we know that Dens({t €

Unenln — 1/k,n) : Tix —y € V}) > 0.

Ift € [n—1/k,n) for some n € Nand Tyx—y € V, then we define 1, := [t]+1—t.

Each n; satisfies 0 < n; < 1/k, and t + n, € N. So
E-me —Yy= Tm(ﬂx - y) + (Tmy - y) € Tnf(V> + U/ C U
Hence

dens({n € N: Tyx—y € U}) > Dens({t € Upen[n—1/k,n) : Tix—y € V}) >0
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