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Abstract

We study invertible extensions of Banach and Hilbert space bounded linear operators with prescribed growth
conditions for the norm of inverses. In particular, the solutions of some open problems are obtained. To cite this
article : C. Badea, V.Müller, C. R. Acad. Sci. Paris, Ser. I ??? (200?).

Résumé

Nous étudions les extensions inversibles des opérateurs linéaires et bornés sur un espace de Banach ou de Hilbert
avec des conditions de croissance données pour les normes des inverses. Nous obtenons en particulier la réponse à
plusieurs problèmes ouverts formulés dans la literature. Pour citer cet article : C. Badea, V.Müller, C. R. Acad.
Sci. Paris, Ser. I ? ? ? (200 ?).

Version française abrégée

Un thème classique en théorie des opérateurs (linéaires et bornés) est l’éxistence des dilatations et ex-
tensions ayant des bonnes propriétés spectrales. Dans le cas des opérateurs agissant sur l’espace de Hilbert,
un exemple célèbre est le théorème de dilatation de B. Sz.-Nagy, [20], qui affirme que chaque contrac-
tion a une dilatation unitaire. Notons aussi,[20], que chaque contraction a une extension co-isométrique.
Un autre exemple hilbertien est la notion d’opérateur sous-normal. Un exemple banachique,[6], est le
théorème suivant dû à R.G. Douglas : chaque isométrie sur un espace de Banach admet comme extension
une isométrie surjective. La construction de Douglas est hilbertienne : si l’isométrie agit sur un espace de
Hilbert, alors son extension, a posteriori un opérateur unitaire, agit aussi sur un espace de Hilbert. Dans
le cadre d’une algèbre de Banach commutative A, d’après un théorème de R.F. Arens, [1], un élément
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u ∈ A est inversible dans une algèbre de Banach commutative contenant A si et seulement si u n’est pas
un diviseur topologique de zéro.

Nous nous intéressons ici aux extensions inversibles des opérateurs avec des conditions de croissance
données pour les normes des inverses. On considère notament la condition de croissance de type poly-
nomial (P (s)), la condition (B) de Beurling, et la condition de croissance de type exponentiel (E(s))
(les conditions sont définies dans la version anglaise). Si T vérifie une de ces trois conditions, alors T a
une extension inversible, S, agissant sur un espace plus grand, et qui vérifie le même type de condition
de croissance. Toutes les constructions sont hibertiennes. On obtient ainsi la réponse à trois problèmes
ouverts formulées dans [12, Problem 6.1.15] et [7,13,14].

Cette Note d’annonce ne contient aucune preuve. Celles-ci seront publiées ultérieurement [3].

1. Introduction

We intoduce some notation and terminology.
Operators. In this paper X (and Y ) will denote complex Banach spaces and H (and K) will denote

Hilbert spaces. Denote by B(X) the algebra of all bounded linear operators on the Banach space X. By
an operator we always mean a bounded linear operator.

For an operator T ∈ B(X) acting on a Banach space X, we denote m(T ) = inf{‖Tx‖ : x ∈ X, ‖x‖ = 1}.
This quantity is called the minimum modulus of T ([4]) or the lower bound of T ([12]). We write for short
vn(T ) = max{‖Tn‖,m(Tn)−1} (n ≥ 0).

We denote by σ(T ) and σap(T ) the spectrum and the approximate point spectrum of a bounded linear
operator T ∈ B(X), respectively. The latter is given by

σap(T ) =
{
λ ∈ C : inf{‖(T − λ)x‖ : ‖x‖ = 1} = 0

}
.

Note that m(T ) > 0 if and only if T ∈ B(X) is one-to-one and of closed range. If T is a Hilbert space
operator, then σap(T ) coincides with the left spectrum and m(T ) > 0 if and only if T is left invertible.

We say that S ∈ B(Y ) is an extension of T ∈ B(X) if there is an isometry π : X → Y such that
Sπ = πT . We can also consider X as a subspace of Y and write T = S|X .

Banach spaces of class SQp. Let p ≥ 1 be a real number. A Banach space E is said to be a SQp-space
if it is a quotient of a subspace of an Lp-space. Let X be a Banach space. A Banach space E is said to be
a SQp(X)-space if it is (isometric to) a quotient of a subspace of an ultraproduct of spaces of the form
Lp(Ω, µ,X), for some measure spaces (Ω, µ). Since ultraproducts of Lp-spaces are Lp-spaces, the latter
definition is consistent with the former one. Note that any Banach space is isometric to a subspace (resp.
a quotient) of an L∞-space (resp. an L1-space). Also, if H is a Hilbert space, then each SQ2(H)-space is
a Hilbert space too. Note also that SQp-spaces are precisely the p-spaces in the sense of Herz, [10]. We
refer to [11] for more information.

Growth conditions. We consider the following growth conditions for the operator T :
(P (s)) (polynomial growth condition) there are C > 0 and s ≥ 0 such that vn(T ) ≤ Cns (n ≥ 1);

(B) (Beurling-type condition)
∑∞

n=1
log vn(T )

n2 < ∞;
(E(s)) (Exponential growth) there are C > 0 and 0 < s < 1 such that vn(T ) ≤ Cens

(n ≥ 1).
Note that condition (P (s)) implies (E(s′)) (for any s′ > 0), which implies (B). Also, if T satisfies (B)
and T is invertible, then σ(T ) = σap(T ) ⊂ T. Here T = {z : |z| = 1}. If T satisfies (B) and 0 ∈ σ(T ),
then σap(T ) = T and σ(T ) = {z : |z| ≤ 1}.

We consider in this Note the following problems. Let T be an operator satisfying one of the above three
conditions. Then T has an invertible extension S satisfying the same type of growth condition. Note that
m(Sn)−1 = ‖S−n‖ for invertible operators S and so the growth conditions for invertible S are in fact
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growth conditions for the norm of iterates of S and S−1. The existence of such invertible extensions solves
several open problems mentioned in the literature, as we explain below. Proofs will be given elsewhere [3].

2. E(T)-subscalar operators

We denote by E(C) = C∞(C) the usual Fréchet algebra of all C∞-functions on C with the topology of
uniform convergence of derivatives of all orders on compact subsets of C. An operator S ∈ B(X) is said to
be generalized scalar (or E(C)-scalar) if there is a continuous algebra homomorphism Φ : E(C) → B(X)
for which Φ(1) = I and Φ(z) = S (see [5,12]). Such a homomorphism may be interpreted as an operator-
valued distribution with compact support ([12]). A bounded linear operator is E(C)-subscalar if it is
similar to the restriction of a E(C)-scalar operator to one of its closed invariant subspaces. According to
a result by J. Eschmeier and M. Putinar (see [8, Sect. 6.4]), a Banach space operator T is E(C)-subscalar
if and only if T has property (β)E , i.e., for every open set U ⊂ C, the operator TU on E(U,X) (the space
of C∞-functions from U into X), defined by TU (f)(z) = (T − z)f(z), is injective and has closed range.

The following statements are equivalent (see [5]) :
(1) T is E(T)-scalar, i.e., it has a continuous functional calculus on the Fréchet algebra E(T) of smooth

functions on the unit circle T ;
(2) T is generalized scalar with σ(T ) ⊂ T ;
(3) T is invertible, and there exist constants C > 0 and s ≥ 0 such that

‖Tn‖ ≤ C(1 + |n|)s (n ∈ Z).

K.B. Laursen and M.M. Neumann [12, Problem 6.1.15] and M. Didas [7] asked if E(T)-subscalar opera-
tors are characterized by the polynomial growth condition (P (s)) above. One implication is easy. We refer
to [7,12,13,14,15,16] for several partial results. By [6] the hard implication holds for s = 0 and C = 1.

Since condition (P (s)) implies that σap(T ) ⊂ T, it follows ([17,18]) that T has an invertible extension
S such that σ(S) = σap(T ) ⊂ T. By [19], if T acts on a Hilbert space, then S acts also on a Hilbert space.
However, no control on the norms of inverses is guaranteed by this method.

The following result gives a complete positive answer.
Theorem 2.1 (1) An operator T ∈ B(X) is E(T)-subscalar if and only if there exist constants C > 0
and s ≥ 0 such that

(P (s))
1

Cns
‖x‖ ≤ ‖Tnx‖ ≤ Cns‖x‖ (x ∈ X;n ∈ N).

Moreover, given p ≥ 1, there exist a SQp(X)-space Y , an invertible E(T)-scalar operator S on Y and a
closed subspace M ⊂ Y invariant with respect to S such that T is similar to the restriction S|M . We also
have σ(S) = σap(T ).

For p = 1 the operator S is an extension of T .
(2) If the Hilbert space operator T ∈ B(H) verifies

(P (s))
1

Cns
‖h‖ ≤ ‖Tnh‖ ≤ Cns‖h‖ (h ∈ H;n ∈ N),

then there exists a Hilbert space K and a E(T)-scalar extension S ∈ B(K) with σ(S) = σap(T ).

3. Operators with Bishop’s property (β)

Recall that an equivalent definition of decomposable operators is the following : T ∈ B(X) is decompos-
able if for every open cover C = U∪V , there are closed invariant (for T ) subspaces Y and Z of X such that
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X = Y +Z and σ(T | Y ) ⊂ U , σ(T | Z) ⊂ V . We refer for instance to [5] and [12]. An operator T ∈ B(X)
has Bishop’s property (β) if, for every open set U ⊂ C, the operator TU defined by TU (f)(z) = (T−z)f(z)
on the set O(U,X) of holomorphic functions from U into X is injective and has closed range. According
to a result by E. Albrecht and J. Eschmeier (see [12,8]), T ∈ B(X) is subdecomposable (i.e., T is similar
to the restriction of a decomposable operator) if and only if T has Bishop’s property (β).

It was proved in [5, 5.3.2] that an invertible operator S ∈ B(X) is decomposable provided that
∞∑

n=−∞

log ‖Sn‖
1 + n2

< ∞.

The following result answers in the affirmative a question from [13] and [14].
Theorem 3.1 Let T ∈ B(X) be a Banach space operator such that

∞∑
n=1

log max(‖Tn‖,m(Tn)−1)
n2

< ∞.

Then there exists a Banach space Y ⊃ X and an invertible operator S ∈ B(Y ) such that T = S|X and S
satisfies

∞∑
n=−∞

log ‖Sn‖
1 + n2

< ∞.

In particular, T has Bishop’s property (β). Moreover, σ(S) = σap(T ) = σ(T ) ∩ T.
If X = H is a Hilbert space, then Y = K can be chosen to be a Hilbert space too.

4. Condition (E(s))

The following result answers an open question from [13].
Theorem 4.1 Let T ∈ B(X) satisfy (E(s)). Then there exist a Banach space Y ⊃ X and an invertible
operator S on a larger space such that T is a restriction of S and S satisfies (E(s′)) for suitable s′ < 1.
The construction is hilbertian.

The construction is hilbertian means that if X = H is Hilbert, then Y = K can be chosen a Hilbert
space too.

5. Applications

We obtain the following consequences.

5.1. Operators with countable spectrum

Using the above results and [21] we obtain the following characterization of operators which are similar
to unitaries with a countable spectrum. Recall that a Hilbert space operator T ∈ B(H) is said to be
similar to a unitary if there is an invertible operator L ∈ B(H) such that L−1TL is a unitary operator.
Corollary 5.1 Let T ∈ B(H) be a Hilbert space operator such that supn≥1 ‖Tn‖ < ∞. Suppose that
there are positive constants C and s < 1

2 such that

m(Tn)−1 ≤ Cens

(n ≥ 1)

and that σ(T ) is countable. Then T is invertible and it is similar to a unitary operator.
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We note that a classical similarity criterion of Sz.-Nagy states that an invertible Hilbert space operator
T is similar to a unitary if and only if supm∈Z ‖Tm‖ < ∞.

5.2. Contractions with spectrum a Carleson set

Recall that a closed set E of T is said to be a Carleson set if
2π∫
0

log
(

2
dist (eit, E)

)
dt < +∞.

Using the above results and [9] we obtain the following consequence.
Corollary 5.2 Let T ∈ B(H) be a Hilbert space contraction such that σap(T ) ⊂ T is a Carleson set.
Suppose that there exist C > 0 and s ≥ 0 such that m(Tn)−1 ≤ Cns. Then T is an isometry.

5.3. A hilbertian counterpart of Arens’ result.

We also obtain the following hilbertian counterpart of Arens’ result. We refer to [17,18] for versions of
Arens’ result in the case of the (non-commutative) Banach algebra B(X).
Corollary 5.3 Let T ∈ B(H) be an operator on Hilbert space with m(T ) > 0. Then there exist a Hilbert
space K, an isometric embedding π : H 7→ K and an invertible operator S ∈ B(K) such that Sπ = πT ,
‖Sj‖ ≤ ‖T j‖ (j ≥ 1), ‖S−1‖ ≤ 2/m(T ) and∥∥∥∥∥∥

N∑
j=0

S−jπ(xj)

∥∥∥∥∥∥
2

≤ 2
N∑

j=0

( √
2

m(T )

)2j

‖xj‖2

for every N ∈ N and all xj ∈ H.
The last condition says, in the terminology of [2], that S−1 is quadratically near the null operator

modulo π(H).
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