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ABSTRACT. We prove that, in the class of commutative topological algebras with
separately continuous multiplication, an element is permanently singular if and only if
it is a topological divisor of zero. This extends the result given by R. Arens [1] for the
Banach algebra case. We also give sufficient conditions for non-removability of ideals in
commutative topological algebras with jointly continuous multiplication.

AMS Subject Classification (1980): 46J10

Introduction. By a topological algebra we mean a topological vector space with a
jointly continuous multiplication making of it a complex algebra. The topology of a
topological algebra A can be given by a system U of zero-neighbourhoods satisfying the
following properties:

(i) For every V € U, there exists W € U such that W + W C V.
(ii) For every V € U and a € C with |a] <1, aV C V.

(iii) Every V € U is absorbent.

(iv) For every V € U, there exists W € U such that W -W C V.

Every algebra in this paper will be a commutative complex algebra with unit element
denoted usually by e.

A locally convex algebra is a topological algebra with a system of convex zero-
neighbourhoods. The topology of a locally convex algebra A can be given by a directed
system of seminorms {| - |, : a € D} (in this case, (iv) above can be written as follows:
for every o € D there exists § € D such that |zy|, < |z|gly|g for all z,y € A).

Let A and B be topological algebras with units e4 and ep, respectively. We say that
B is an extension of A if there exists a unit preserving, injective algebra homomorphism
f + A — B such that A is topologically isomorphic to its image f(A). In this case, we
identify A with f(A) and simply write A C B.

Let A be a topological algebra and I C A an ideal. We say that I is removable if
there exists an extension B D A such that I is not contained in any proper ideal of B.
It is easy to see that this condition is equivalent to the existence of a finite number of
elements x1,...,xx € I and y1,...,yx € B such that z1y; + -+ + zxyr = e. An ideal
which is not removable will be called non-removable. The notion of non-removable ideal
was introduced by R. Arens [2]. Non-removable ideals in commutative Banach algebras
have been studied, e.g., in [2], [6], [4] and [5], and in topological algebras in [8], [9] and
[10].

*The second and fourth named authors have been partially supported by a research project from
La Consejeria de Educacién y Ciencia de La Junta de Andalucia. The third named author has been
supported by a research grant from El Ministerio de Educacién y Ciencia.
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§1. The aim of this section is to give a sufficient condition for an ideal in a topological
algebra to be non-removable. This condition will be shown to be more general than
the one given in [10]. However, it seems that there is no simple necessary and suffi-
cient condition characterizing non-removability. Our result will be reformulated also for
permanently singular elements.

Theorem 1. Let A be a commutative topological algebra with unit e, and U(A) a
system of zero-neighbourhoods defining the topology of A and satisfying (i)—(iv). Let
I C A be an ideal such that

(1) For every finite subset {x1,--- ,x} C I
AV eld(A), VW eld(A), In>1, ¥Vr>0, Juc A\V
such that uz] € rW (it=1,...,k)

then I is non-removable.

Proof. Suppose, on the contrary, that there exists an extension B D A, and elements
1,k € 15 y1,...,yx € B such that x1y; + - - -+ xxyx = e. Let U(B) be a system of
zero-neighbourhoods for the topology of B. Let V € U(A) be the neighbourhood given
by condition (1). Take V', W' € U(B) such that V'NA C Vand W'W'+ ...+ W'W' C

'

k times

V', and W € U(A) satisfying W C W’ N A. Let n be the integer from condition (1) (for
V and W) and m = k(n — 1) + 1. Then we have

k m
_om __ _ m! i1 ik
eE=e" = TiYs = ﬁ(%yl) "'(mkyk) .
i—1 i1 tig=m 1 k:

In every term of this sum at least one exponent i; > n, so that, for some v; € B, we

may write
k
n
e= E ;.
i=1

Take s > 0 such that v; € sW’' fori=1,...,k, let r = s~ and take u € A\ V given by
condition (1). Then
ue A\VcB\V

but, on the other hand
uriv; = (ux)v; € rW - sW' c W' - W’ (i=1,...,k)

and therefore

k
u:ue:Zux?UZ-EW’W—}—~~—|—W’W1CV’,

i=1 7

k times

a contradiction.
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Remark 1. For a locally convex algebra A, with the topology given by a system of
seminorms {| - |, : @ € D} condition (1) can be reformulated as follows:

(1) For every finite subset {z1,...,2x} C I

k
JaeD, V€D, 3n > 1 such that inf{ZMxﬂg:ueA, \u!azl}zo.

i=1
Therefore, if I is an ideal in A satisfying (1’) then it is non-removable.

Remark 2. In [10, Prop.2.18] was given the following sufficient condition for the non-
removability of an ideal I in a topological algebra A with a system of zero-neighbour-
hoods U:

(2) I is contained in an ideal J = I; + I;(A) where:
I; consists locally of joint topological divisors of zero, i.e.,
for every finite {y1,...,y,} C I there exists a net {u,}, C A4
such that u, /4 0 but u,y; — 0, fori=1,...,7.
I5(A) is the set of all elements of A with small powers:
z € A is said to have small powers if for every zero-neighbourhood V'
there exists an integer n > 1 such that A\z" € V for all A € C.

Proposition. Let A be a topological algebra and I C A an ideal satisfying (2), then I
satisfies (1).

Proof. Let U be a system of zero-neighbourhoods in A satisfying (i)—(iv). To see that I
satisfies condition (1), take x1,...,x, € I. Then, since I satisfies condition (2), we can
find y1,...,yx € Iy and 21,..., 2, € I4(A) such that z; = y; +2; fori =1,... k. It is
easy to see that the y;’s and the z;’s satisfy the following conditions:

(a) Ve, YVWeU, 3ue A\V such that uy; € W fori =1,... k.

(b) YU €U, I3n>1such that 2 € ﬂrUforizl,...,k.
r>0

Let V' € U be given by (a), and for W € U arbitrary take U € U such that UU+UU C W.
Let n > 1 be the integer from (b), then we can write:

mn
N\ -1 n—j .
! = (yi +2:)" = 2] + v Z(j)yf L =2ty (it=1,...,k)
i=1

for some vq,...,vr € A. Fix r > 0 and let s > 0 be such that v; € sU fori=1,...,k,
then by using (a) we can find u € A\ V such that

uy; € rs— U (i=1,...,k).
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Therefore, we can write uz] = uz]* + (uy;)v; where, for some ¢t > 0,

qufemm((]ﬂU)c(]ﬂUUcTUU

r’'>0 r’'>0

and, on the other hand,
(uy;)v; € rs iU - sU C rUU.

Hence uz} € rUU +rUU C rW, for i = 1,...,k, which proves that I satisfies (1).

An element x of a topological algebra A is called permanently singular if = is singular
in every extension B D A. Clearly, x € A is permanently singular if and only if the
ideal z A generated by x is non-removable. Therefore Theorem 1 yields the following

Corollary. Let A be a commutative topological algebra with unit e, and a system
of zero-neighbourhoods U satisfying (i)—(iv). Suppose x € A satisfies the following
condition

(3) IVeUd, VWeU, In>1, such that (A\ V)z" NrW # O for every r > 0,
then x is permanently singular.

Remark 3. The previous corollary for locally convex algebras has been proved in [8,
Prop. 2]. If A is a locally convex algebra, and {| - |, : o € D} is the corresponding
system of seminorms, condition (3) may be written as follows:

(3") FaeD, V8eD, In>1, such that inf{|zz"|g : z€ A |z|o =1} =0.

We construct now an example showing that condition (1) is more general than (2)
even in the case of simply generated ideals in locally convex algebras.

Example. Let A be the algebra of all polynomials with complex coefficients in the
variable z, endowed with the topology given by the system of seminorms ||, k = 1,2, ...

defined by:
> o
i=0

(actually, all sums are finite) where c;, (K = 1,2,...; i = 0,1,2,...) are positive
numbers satisfying:

= ciles]  (k=1,2,...)
k 1=0

() cpo=1

(B)  Chiitj < Cht1,iCht1,
(v)  Ckt1i > Cri

(0)  Chl,i41 > Chy

@)iﬁ{ﬁﬁﬁ:jZOJ,”}:a

€1,j
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Conditions () and () imply that A is a locally convex algebra. It is clear, since all
cik > 0, that | > a;x%|y > 0 for every non-zero polynomial > a;z° and every index
k=1,2,..., this means that there are no elements with small powers in A. Condition
(0) imply |ax|k+1 > |alk for alla € A and k =1,2,..., i.e. x is not a topological divisor
of zero in A. Therefore, the ideal A does not satisfy (2).

On the other hand, x satisfies (3’): take a = 1, and for arbitrary seminorm | - |, put
n = k, then, by condition (¢g):

k+j )
inf{|uz®|;, : u € A, ]u|1:1}§igg{|x |k}:inf{ck’ﬂ}:0_
3>

\ilfjh j=>0 C1,j

It remains to show that it is possible to find numbers cy; satisfying (a) — (¢). To see
this, assume we can construct sets My C {0,1,2,...}, k =1,2,..., satisfying 0 € M},
and

My 1+ My 1 C My,

Myy1 —1C My,

My, +1 C My and

Vk>1,Vn>k, dmsuchthat mm+1,..., m+n¢ My, and m+n+ k € M.

Now take

Chi = gi—max{j<i, jeMy} (1=0,1,..., k=1,2,...).

It is a matter of routine to check that the above properties of the sets M}, imply (a) —(9)
for ci;. To prove (g) consider the infimum over those j = n + m, where m is the index
existing for given k and n > k, i.e.,

j n+m . 1
inf{ck’ﬂ, ij}ginf{ck’Jr—Jrk, nzk} gmf{—, nZk}zO.
1,5 Cl,n+m 2"

The sets M}, can be constructed as follows: put

NO :{221', z'Zk:} (k=1,2,...),
r—1
T r—1 r—1 r—1 s
NO = NS >U<N,§+1>—1)UU (N,§+1 )+N1§+)1) (k=1,2,..., r=1,2,...)
s=0

and now take

My =N u{oy  (k=1,2,...).
r=0

Clearly My4+1 C My since N,g:_ll) C N,gr) for r =0,1,.... The properties My,+; — 1 C
My, and My41 + My4+1 C My can be checked analogously.

Finally, fix k and n > k, n > 2 and put m = 22" — 2n. Then 22" € M,,, 22" —1 ¢
M,,_; and by induction m +n + k = 22" — (n — k) € M. It remains to prove that
m,m+1,....,m+n ¢ M;. First note that for j =1,2,...,r=0,1,2,... we have:

minN](r) = minNﬁEl) —1l=...= minN]@T g =9¥



Further, the open interval (22%1,22”) and N;O) are disjoint: N;O) N (227171,22”) =0,

and it is easy to prove, by induction on r, that, as a matter of fact, we have:
n—1 n
NN <2T22 92" r) —

for every r and j as before. Therefore,

n—1
M, N [22” —op, 22" — n] - U {N{” N [22" —op, 22" — n}} c

—- o

IS

c L:JO {Nl("’) N (27”22”‘1, 92" _ r)} — 0.

Hence m =22" —2n, m+1,..., m+n=22" —n¢ M.

§2. In this section we deal with algebras having multiplication only separately continu-
ous. These algebras have been also called topological algebras by some authors (see e.g.
[7]). To avoid misunderstanding, these algebras will be called s-algebras in this paper.

In terms of zero-neighbourhoods, the difference is that for an s-algebra A we assume
(i)—(iii) plus the following (iv’) which is weaker than (iv):

(iv’) For every V € U and x € A, there exists W € U such that zW C V.

An element x of an s-algebra A is said to be a topological divisor of zero if there exists a
net {uy}o € A such that u, 4 0 but ugx — 0. Clearly, x is not a topological divisor of
zero if and only if the mapping f,(a) = za is a homeomorphism from A onto xA. The
notion of s-extension is defined analogously to the notion of extension for topological
algebras. Let A be an s-algebra and x € A be a topological divisor of zero, then x is
singular in any s-extension B D A. If this were not the case, we could find an s-extension
B D A and y € B such that xy = e. But for (uq)a, the net in A such that u, 4 0
and u,x — 0 we would have u, = use = (uqax)y — 0 (by the separate continuity of
multiplication in B), a contradiction.

The purpose of this section is to prove the converse of the statement above. This will
mean that in the class of s-algebras there exists a simple characterization of permanently
singular elements, similar to the one that holds for Banach algebras (recall that if A is
a Banach s-algebra, then A is a Banach algebra by the Banach—Steinhaus theorem).

Let A be an s-algebra with unit e and I/ a system of zero-neighbourhoods in A
satisfying (i)—(iii) and (iv’). Let A[x] be the algebra of all polynomials with coefficients
from A in one variable xz. We define a topology in A[z] in the following way: Let
V = (V;)$2, be a sequence from U and define

N‘;:{ZaixieA[:p] s a; €V, izO,l,...}.
i=0
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Let V be the set of all Ny, obtained from all sequences V. It is easy to see that V
satisfies (i), (ii), (iii) and (iv’), therefore A[x] is an s-algebra (if we identify A[z| with
the countable direct sum of copies of A by means of

Zaixi € Alz] — (ag,a1,...,0,,0,...) € @A
i=0 m=0

the topology defined above is precisely the direct sum topology). By identifying elements
of A with constant polynomials we see that A[x] is an s-extension of A. Moreover, if A
is a locally convex s-algebra, then A[x] is also locally convex.

Let A be an s-algebra and I C A a closed ideal. Then A/ is again an s-algebra. To
see this we only need to prove (iv’): let a+1 € A/I and let V+1 be a zero-neighbourhood
in A/I. Take W such that aWW C V, then

(a+I)(W+1I)CaW +al +IW +1* CV + I

Theorem 2. Let A be an s-algebra with unit e and u € A. Then u is invertible in
some s-extension B D A if and only if u is not a topological divisor of zero in A.

Proof. One implication was proved above. Conversely, assume that u is not a topological
divisor of zero in A, i.e. that a — au is a homeomorphism from A onto uA. This implies
that for every V € U there exists V' € U such that V' NuA = uV. Consider the s-
algebra A[x] and let I be the ideal generated by e — uz, I = (e — ux)A[x]. We prove
firstly that I is closed in A[x]: Let (pa)a be a net of elements from I,

Z b(a) i_ b(a) + Z b(a) b(a)

(where only a finite number of coefficients bl(-a) are non-zero for every o)) and suppose
that p, — p =) ., a;z" in the topology of Alz]. Then, coordinate-wise, we have:

b(()a) — aop,
bga)—ubgf)lﬁai fori=1,...,n,
bga) — ubf)l — 0 for ¢ > n.

Since bga)u — agu, we have bga) — ay + agu, and inductively:

bgo‘)—>c¢::a7;+a¢71u+---+aoui fori=0,...,n

1—n+1 4.

. - . . ,
bz( ) = U 4 a, g ~+aou’ = cpu'" for i >n

where ¢, = a, + ap_1u+ -+ agu”™. Suppose ¢, # 0 and let Vi € U such that ¢, & Vj.
Let Wy € U such that Wy + Wy C Vy. Construct V;, W; € U such that:

Vigr N uA C ulW; and Wivi + Wi C Vi fori=0,1,2,...
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and consider the zero-neighbourhood Ny in A[z] given by the sequence

(WO7"'7W07W0,W17W27-“)'
N—— —

n times
Since p, — p and b%a) — ¢y, there exists an index a such that

B —ub? L ew;,  (i=1,2,...)

n+1 n+i—
and also
bSLa) —Cp € WQ.

o), & Wi

for : = 0,1,...: suppose b;ojr)z ¢ W;, then ubfloi)z ¢ uW,;, and so ubglojr)z ¢ Vii1,. Write

This implies b,(f‘) ¢ Wy since ¢, ¢ Vy. We prove now, by induction, that

ubg’;)Z = (—bﬁf_‘giﬂ + ubﬁbojr)z) + bglofiﬂ to deduce that bv(ffgiﬂ ¢ W;y1. Therefore, we
have that bfﬁ)l g W, for i = 0,1,... which implies bff_fl # 0 for all ¢ > 0 and this

contradicts the fact that > bga)azi is a polynomial and, consequently, has only a finite
number of non-zero coefficients. We have proved that ¢, = 0 and therefore p, the limit
of p., can be written as:

n n—1
p= Zaixi = (e—u:)s)Zcixi €l =(e—ux)A.
i=0 i=0

Now, let ¢ : A[x] — A[z]/I be the canonical homomorphism and let g : A — A[z] be
the natural embedding. Denote by f = gog. Since e —ux € I, we have (u+I)(z+1) =
e + I, hence f(u) is invertible in A[z]/I. Finally, we must check that A[z]|/I is an
s-extension of A. Clearly f is a continuous algebra homomorphism. To prove that f is
1-1 and f(A) is topologically isomorphic to A, it suffices to prove that for all V € U
there exists a sequence W = {W;}22,, Wi € U (i = 0,1,...) such that f(a) € Ny,
implies a € V.

Let V € U. We can find Wy € U such that Wy + Wy C V (hence Wy C V). Choose
V1 € U such that ua € V implies a € Wy, and take W7 € U such that W7 + Wy C V3.
Define inductively neighbourhoods V;, W; € U such that

ua € Vi1 implies a € W,
Wit1 + Wig1 C Vigq, (hence Wiyq C Vigq).

Let Ny, € V be the zero-neighbourhood in A[z] corresponding to the sequence W =
(Wi)Zo-

Let a € A satisfy f(a) € Ny, + 1. This means that a —p € Ny, for some p =
(e —xu) Y. bz’ € I (we identify A with the constant polynomials g(A4) C Alx]). We

1=0
have

a—p=(a—by)+x(uby — b1) + x*(uby — bg) +--- + 2" (ub,).
Since ub,, € Wy,41 C V41 we have b, € W,,. Furthemore ub,,_1 = (ub,—1 — by,) + b, €
W,+ W, CV,, sothat b,,_1 € W,,_1. We continue in the same way and obtain b; € W;
fori=n—1,...,1,0. Finally, since bg € Wy,a = (a —bg) + by € Wy + Wy C V.
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