The distance from the Apostol spectrum
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Abstract. If T is an s-regular operator in a Banach space (i.e. T' has closed range
and N(T') C R>*(T)) and v(T) is the Kato reduced minimum modulus, then

lim ~(T™)Y™ = sup{r: T — X is s — regular for |\| < r}.

n—oo

Let x be an element of a Banach algebra A. The spectral radius of x is given by
the well-known spectral radius formula: r(x) = lim,, o ||z"*/".

There are a number generalizations of this formula. If we denote d(x) = inf{||zy|| :
y € A, |lyll = 1} and by 7(z) = {A € C : d(x — \) = 0} the left approximate point
spectrum of x then dist {0, 7;(2)} = lim,, o, d(z™)/", see [13], [9]. In particular in the
algebra B(X) of all bounded linear operators in a Banach space X this gives formulas
for radii of boundedness below or surjectivity:

sup{r : T — X is bounded below for |\| < r} = lim j(T™)'/"

and
sup{r : T — X is onto for |\| < r} = lim k(T™)¥/",

where j(T') and k(T') are the moduli of injectivity and surjectivity of 71"
J(T) = nf{||Tz| : x € X, [lz] =1}

and
k(T) =sup{r:TUx D rUx},

where Ux is the closed unit ball in X.

For a bounded linear operator 7" in a Banach space X denote by N(7T') and R(T)
its kernel and range, respectively. Denote further R*(T) = (°—, R(T") and N>°(T) =
U, N(T™).

The injectivity and surjectivity moduli of an operator which is bounded below
(onto) are special cases of the Kato reduced minimum modulus [7]

[T ||
dist {z, N(T)}

A(T) = inf{ ‘z€ X\N(T)}
(for T'= 0 we define formally v(7") = o0).

The existence and the meaning of the limit lim,, o, v(7")
setting was studied by Apostol [1] and Mbekhta [10].

/7 in a more general
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Definition. Let T € B(X). We say that T is s-regular (= semi-regular) if R(T) is
closed and N(T') C R>(T).

The s-regular operators and closely related classes of operators were studied (under
various names) by many authors, see [3], [4], [5], [6], [8], [16]. We list some of the most
important equivalent conditions for s-regular operators, see [11], [12].

Theorem. Let T' € B(X) be an operator with a close range. The following conditions
are equivalent:
) T is s-regular,

the function A\ — R(T — \) is continuous at 0 in the gap topology,

the function \ — N(T — \) is continuous at 0 in the gap topology,

the function A — ~(T — \) is continuous at 0,

2)
3)
4)
5) liminfy_oy(T — A) > 0,
6) N
7 N

(1
(
(
(
(
(6) N>=(T) C R(T),

(7) N>=(T) < R>(T).

Denote further 04(T) = {A € C : T'— X is not s — regular}. The set o (T") was
studied by Apostol [1], Rakocevi¢ [15], Mbekhta and Ouahab [11], [12] and Mbekhta
[10]. The terminology is not unified; we suggest to call o (7") the Apostol spectrum of
T.

The Apostol spectrum o.,(7") is always a non-empty compact subset of the complex
plane, 0o(T) C 0,(T) C o(T) and 0., f(T) = fo(T) for any function f analytic in a
neighbourhood of (7).

If T is an s-regular operator in a Hilbert space then the limit lim,, ., (7)™
exists and

nlLrI;O A(T™)Y™ = dist {0, 0., (T)} = sup{r : T — X is s — regular for |\ <7}, (1)
see [1], Theorem 3.2 or [10], Theorem 3.1.

The aim of this paper is to prove equality (1) for operators in Banach spaces. This
gives a positive answer to the conjecture of Rakoc¢evi¢ [15] and Mbekhta and generalizes
the above mentioned results for radii of injectivity and surjectivity.

Further we study the essential version of this result.
If T'is a semi-Fredholm operator then the limit lim,, _, o v(7T™)'/" exists by [2] and
it is equal to the semi-Fredholm radius of 7"
lim ~(7T™)Y"™ = sup{r : T — X is semi — Fredholm for |\| < r},

n—oo

see [17] and [2].

We prove a similar formula for essentially s-regular operators which generalizes the
semi-Fredholm case.

The authors wish to thank to M. Mbekhta for drawing their attention towards the
problem and for fruitful discussions concerning it.

Lemma 1. T € B(X) is s-regular if and only if there exists a closed subspace M C X
such that TM = M and the operator T : X/M — X/M induced by T is bounded
below.



Proof. If T is s-regular then set M = R*>°(T). It is well-known that M is closed and
(see e.g. [4],Theorem 3.4) that TM = M and T : X/M — X/M is bounded from
bellow.

Conversely, let M be the subspace of X with the required properties. Then T'M =
M implies M C R>®(T). If Tz = 0 then T(z + M) = 0 and the injectivity of 7" implies
x € M. Thus N(T') C M C R>*(T).

It remains to prove that 7" has closed range. Let 7 : X — X/M be the canonical
projection. We show R(T) = 7T_1R(T). If y e R(T),y = Tz for some x € X then
my=Tx+ M =T(x+ M) € R(T) so that R(T) C 7~ *R(T). If y € X and 7y € R(T),
ie. y+ M = Tx + M for some x € X then y € R(T) since M C R(T). Thus
R(T) = n'R(T) which is closed since R(T) is closed and 7 continuous.

Lemma 2. Let T' € B(X) and let M be a closed subspace of X such that TM = M
and the operator T' : X/M — X/M induced by T is bounded below. Denote by
Ti : M — M the restriction of T' to M. Then

lim ~(T™)Y"™ = min{ lim AT, lim W(T")l/”}.

n—oo n—oo

Proof. The limits on the right hand side exist by [17]. If T"z = 0 then T™(z+ M) = 0,
ie. z € M. Thus N(T™) C M and N(TI7') = N(T"™). We have

177" ||
dist {z, N(T7)}

(TP :mf{ ze M\N(Tln)}

:mf{ — {‘LTX;(”T”)} Lz € M\N(T“)} > 5 (T™).

Further, since TTM = M,

- ITM e+ M) T+ M|
: [T"x]| : [T | , n
sz{w M}'WM}me{dist{x, N (T} '“ZM}EV(T )

Thus 7(T™) < min{(T}"),7(T")} and

lim sup v(T™)Y/™ < min{ lim AT, lim V(T”)l/"}.

n—oo

Denote by .
s = min{ lim ~A(TMY™, lim fy(T")l/"}.
We prove liminf,, o y(T™)'/™ > s. )
Let n > 1,z =129 € R(T"), ||z|| =1 and let s > & > 0. Then z + M € R(T™) and
1T (2 + M| < (T Hlw + M| < (T (i=1,....,n).
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Thus there exist vectors ; € T~*(x + M) such that
lil] < A (T7) M1 +e) (i=1,...,m).
Denote by m; = Tx; 11 — x; (¢=0,...,n—1). Then
Imill S ITUllziall + sl < @+ ) [ITIVTH) " +4(TH Y] @=0,...,n—1).

Further T%(m; + M) = T x; 1 — T?z; + M = M so that m; € M for each i. We have
n—1
Z T'm; = (T“:L’n—T"_lxn_l)—I—(T"_lxn_l—T"_zxn_2)+- A (Txy—x0) =T"x)p—2.
i=0

Since T1M — M is onto, there exist vectors mj € M such that 7" *m} = m; and
Imill < (14 &)y (T7*) = {lmall. Thus

n—1 n—1
T (xn — E m;) =T"x, — E T'm; =x
i=0 i=0

and
|n - Emzu <(L+en(@) 1+ 2(1 )2y [T () + ()7
Thus _ _

YT < (L4 (T) 7+ 2(1 )2y (1) T () 4+ ()7

Find ng such that
WTY) > (s —e), A(T") > (s—e) (i > no).

Denote by

_ iN—1 (=1 (o _\—i
K= max max{y(T})",«(T) 7" (s—e)7"}.

For n large enough we have

WY@kl — 4 Y (5= M ITIGs ) 4 (s —9))
EY o T KK+ Y KT~ 97+ (5 )]

< (1+2)2(s — &) [K + (n = 200)(K - [T + K) + 200 K (IT - K + )+
<(14e)*(s—eg)™ "n. K’



where K’ is a constant independent of n. Hence

liminf v(T")Y™ > liminf(s — ) # = = s —e.

n—oo n—od
Since £ > 0 was arbitrary, we conclude that liminf, ., v(T™)'/™ > s, so that

lim ~(T™)Y" = s.

n—oo

Theorem 3. Let T' € B(X) be s-regular. Then

dist {0, 0, (T)} = lim ~(T™)*/".

n—oo

Proof. Denote r = dist {0,0.,(T)}. Let M = R®(T), Ty = T|M and let T : X/M —
X/M be the operator induced by 7. If A is a complex number satisfying

Al < lim (™)™ = min{ lim y(I7)Y", lim (1™)"3,

then 77 — A is onto and T' — A is bounded below. Thus T — X is s-regular by Lemma 1
and lim,, o y(T7)Y/™ < 7.

Conversely, it is well-known (see e.g. [15], Theorem 5.2) that R>°(T'— \) is constant
on the component of C\o,(T") containing 0, in particular R>(T" — X\) = M for || <.
If |\| < 7 then (T —A\)M =M and T — \ = T—X: X/M — X /M is bounded below.
Thus lim, . y(TP)Y™ > r and lim,, o ’y(T")l/” > 7. Hence lim,, o, y(T™)Y/™ > r
by Lemma 2.

Remark. It is possible to deduce the inequality dist {0, 0. (T)} > lim,,_ v(T™)/™
from [11], Theorem 2.10. We have obtained a new direct proof of this result.

Definition. T' € B(X) is called essentially s-regular if R(T) is closed and there exists
a finite dimensional subspace F' C X such that N(T') C R>*(T) + F.
Define further . (T) = {\ € C: T — X is not essentially s-regular }.

For properties of essentially s-regular operators and the set o.,(7") see [14],[15].

Theorem 4. LetT € B(X) be essentially s-regular . Then the limit lim,, ., v(T™)'/™
exists and

lim ~(T™)Y™ = max{r : T — X is s — regular for 0 < |A| < r} = dist {0,0,(T)\{0}}.

n—oo

Proof. By [14],Theorem 3.1 or [15], Theorem 2.1 there exist subspaces X, Xy C X
such that X = X; EBXQ,dile < OO,TXl C Xl,TXQ C XQ,Tl = Tle si nilpo—
tent and To = T|X5 is s-regular (the Kato decomposition). By the previous theo-
rem dist {0, 0, (72)} = lim, o v(T3)Y/". For n > dim X; we have 77" = 0 so that
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N(T™) = X1 ® N(T3). Let P be the projection with R(P) = X2 and N(P) = X;. Let
To € X5. We have

dist {z2, N(T13')} = inf{||z2 — ya|| : y2 € X2, T5'y2 = 0}
<||P||inf{[jyr & (z2 — y2)|| : y1 € X1,92 € X2, T5'y2 = 0}
|| P|dist {2, N(T™)} < || PlJdist {2, N(TZ)}.

Then

175 22|

dist {z2, N(T3")}
[

dist {zo, N(T™)}

~(TF) :mf{ P € Xz\N(TQ”)}

Sinf{ ta2 € Xz\N(T“)}

—int dist”{zgﬁ f\f()ln)} m @ € X\N(T") } =(17)

and
|75 2|

dist {zo, N(T™)}
175" z2 |
dist {za, N(T5")}

W(T™) < inf{ Lz € XQ\N(TS)}

<||P|int{ @2 € Xo\N(T3) | = |IPI(T3).

1/n 1/n.

Hence lim,, o y(T™)"™ = lim,, oo 7(T%")
If A # 0 then T — X is s-regular if and only if 75 — X is s-regular. Then

max{r : T — X\ is s — regular for 0 < |\ < r} = dist {0,0,(T2)} = lim ~(T™)"/",

The following lemma is an analog of Lemma 1 for essentially s-regular operators:

Lemma 5. T' € B(X) is essentially s-regular if and only if there exists a closed subspace
M C X such that TM = M and the operator T': X/M — X /M induced by T' is upper
semi-Fredholm.

Proof. If T is essentially s-regular then set M = R>(T). If X = X; & X5 is the Kato
decomposition (dim X; < o0, T7X; C X;7,TXy C Xo,77 = T|X nilpotent and Ty =
T| X5 s-regular) then M = R>®(Ty) C Xo and TM = ToM = M. If x = z1 © x, satisfies
Tx € M then Thxy € M so that z9 € M. Thus z € X; + M and N(T) c X;+ M.
Hence dim N(T) < oo.

Let 7 : X — X/M be the canonical projection. Since M C R(T) and R(T) =
{Tz+ M : 2 € X} =7R(T) the range of T is closed. Thus T is upper semi-Fredholm.

Conversely, let M be a subspace of X with the required properties. We can prove
that R(T) is closed in exactly the same way as in Lemma 1.

Further M C R>(T). If T = 0 then T(xz + M) = 0, i.e. 7z € N(T). Thus
N(T) c 7~ 'N(T) € M + F C R®(T) + F for a finite dimensional subspace F' C X.



Theorem 6. Let T, A € B(X),TA = AT, let A be a quasinilpotent. Then

(1) oy(T' + A) = o (T),

(2) 0ye(T'+ A) = 04e(T).

Proof. Let T be an essentially s-regular operator and let A be a quasinilpotent

commuting with 7. Denote M = R>(T),7y = T|M and let T : X/M — X/M

be the operator induced by T. Clearly AM C M so that we can define operators
— A|M and A : X/M — X/M induced by A. Clearly r(A;) = lim,, o | ARV <

hmn_)OO A"}/ = 0 and r(A) = lim,_ 0 [|A"]|Y™ < lim,—_oo |[A™||™ = 0 so that

o(A;) = {0} and ¢(A) = {0}. Denote by

o5(T) ={A € C: T — X is not onto},
o.(T)={\ € C:T — X is not bounded below} and
0re(T) ={X € C:T — X is not upper semi — Fredholm}

the defect spectrum, the approximate point spectrum and the essential approximate
point spectrum, respectively.
By the spectral mapping property for these spectra we have

os(T' + A) = o5(T),
ox(T + A) = 0.(T),
One(T + A) = 0e(T).

Thus 0 € o5(T+ A), i.e. (T 4+ A)M = M. Similarly 0 € o (T + A), i.e. T+ A is upper

semi-Fredholm. By the previous lemma 7" + A is essentially s-regular. This proves (2).
If T is s-regular and A an quasinilpotent commuting with 7" then in the same way

(T + A)M = M and T + A is bounded below. Hence T + A is s-regular by Lemma 1.

Remark. Statement (1) for Hilbert space operators was proved in [10], Theorem 4.8.
The second statement gives a positive answer to question 3 of [15].
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