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ABSTRACT. A sequence (Tn) of bounded linear operators between
Banach spaces X,Y is said to be hypercyclic if there exists a vector
x ∈ X such that the orbit {Tnx} is dense in Y . The paper gives
a survey of various conditions that imply the hypercyclicity of (Tn)
and studies relations among them. The particular case of X = Y
and mutually commuting operators Tn is analyzed. This includes the
most interesting cases (Tn) and (λnTn), where T is a fixed operator
and λn are complex numbers. We also study when a sequence of
operators has a large (either dense or closed infinite dimensional)
manifold consisting of hypercyclic vectors.

I. Introduction

Let X and Y be separable Banach spaces. Denote by B(X,Y ) the set of all bounded
linear operators from X to Y . Let (Tn) ⊂ B(X, Y ) be a sequence of operators. A vector
x ∈ X is called hypercyclic for (Tn) if the set {Tnx} is dense in Y . The sequence (Tn)
is called hypercyclic if there is at least one vector hypercyclic for (Tn). We say that an
operator T : X → X is hypercyclic if the sequence of its iterates (Tn) is hypercyclic.

Similarly, an operator T is said to be supercyclic if there exists a vector x ∈ X
such that the set {λTnx : λ ∈ C , n ∈ N} is dense; the vector x with this property is
called supercyclic for T .

Usually it is not easy to verify whether a sequence (Tn) is hypercyclic or not.
There are many criteria that have been studied by a number of authors implying the
hypercyclicity of (Tn), see e.g. [K], [GS], [BG]. In the second section we give a survey
of various conditions implying the hypercyclicity and study relations among them. A
number of illustrative examples is given.

The third section concentrates on the situation when Y = X and the operators
Tn : X → X are mutually commuting. The relations among various conditions are
much simpler in this case. The following section studies the case when Tn = S1 · · ·Sn

where Sj : X → X are mutually commuting. This includes the most interesting cases
(Tn) and (λnTn) where T is a fixed operator and λn complex numbers.

Sequences of operators with “many hypercyclic vectors”are very important in the
hypercyclic theory. The interest in them (especially in the cases (Tn) and (λnTn))
arises from the invariant subspace/subset problem.
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There are two research lines in the literature. The first one, which was initiated by
B. Beauzamy [Bea] and continued in [G],[GS],[He],[Bo] and recently [Gri], studies the
existence of dense manifolds consisting of hypercyclic vectors. The second more recent
line studies the existence of closed infinite dimensional subspaces whose all non-zero
elements are hypercyclic, see [Mo], [LMo] and [GLMo]. The questions of this type will
be studied in Section V.

II. Hypercyclicity of sequences of operators

Let X,Y be separable Banach spaces and let (Tn) ⊂ B(X, Y ) be a sequence of
operators. It is well-known that the set of all hypercyclic vectors for (Tn) is a Gδ set.
Indeed, x ∈ X is hypercyclic for (Tn) if and only if x ∈ ⋂

U

⋃
n∈N T−1

n U , where U runs
over a countable base of open subsets of Y ; it is clear that

⋃
n∈N T−1

n U is open for
each U .

Lemma 1. [GS] Let (Tn) ⊂ B(X, Y ) be a sequence of operators. The following
conditions are equivalent:
(i) (Tn) has a dense subset of hypercyclic vectors;

(ii) the set of all hypercyclic vectors for (Tn) is residual (i.e., its complement is of the
first category);

(iii) for all nonempty open subsets U ⊂ X, V ⊂ Y there exists n ∈ N such that
TnU ∩ V 6= ∅;

(iv) for all x ∈ X, y ∈ Y and ε > 0 there exist n ∈ N and u ∈ X such that ‖u− x‖ < ε
and ‖Tnu− y‖ < ε.

Denote by BX the closed unit ball in a Banach space X.
The most useful criteria of hypercyclicity are the following two:

Definition 2. We say that a sequence (Tn) ⊂ B(X, Y ) satisfies condition (C) if there
exist an increasing sequence of positive integers (nk) and a dense subset X0 ⊂ X such
that
(i) limk→∞ Tnk

x = 0 for all x ∈ X0;
(ii)

⋃
k Tnk

BX is dense in Y .

The second condition is similar:

Definition 3. We say that a sequence (Tn) ⊂ B(X,Y ) satisfies condition (Cfin) if
there exist an increasing sequence of positive integers (nk) and a dense subset X0 ⊂ X
such that
(i) limk→∞ Tnk

x = 0 for all x ∈ X0;
(ii)

⋃
k

(
Tnk

BX ⊕ · · · ⊕ Tnk
BX︸ ︷︷ ︸

j

)
is dense in Y ⊕ · · · ⊕ Y︸ ︷︷ ︸

j

for all j ∈ N.

Clearly, condition (Cfin) implies (C). Condition (C) is the weakest known property
which can be practically used to show the hypercyclicity of a sequence (Tn). Moreover,
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it implies the existence of a dense (and hence residual) set of hypercyclic vectors. Fur-
thermore, under a reasonable additional condition it implies that there is a closed
infinite dimensional subspace of hypercyclic vectors.

Condition (Cfin) has a number of equivalent formulations and it implies that there
is a dense linear subspace consisting of hypercyclic vectors.

Theorem 4. Let (Tn) ⊂ B(X, Y ) be a sequence of operators. The following conditions
are equivalent:
(i) (Tn) satisfies condition (C);

(ii) for all j ∈ N and nonempty open subsets U0, U1, . . . , Uj ⊂ X, V0, V ⊂ Y such that
U0 and V0 contain the origins of X and Y , respectively, there exists n ∈ N such
that TnUi ∩ V0 6= ∅ (i = 1, . . . , j) and TnU0 ∩ V 6= ∅.
In particular, if (Tn) satisfies (C) then there is a dense (and hence residual) set of

hypercyclic vectors for (Tn).

Proof. (i)⇒(ii): Clear.

(ii)⇒(i): Let (xn) ⊂ X and (yn) ⊂ Y be dense sequences. Set ui,i = xi (i ∈ N).
By induction on k we construct an increasing sequence (nk), and vectors ui,k ∈ X (i =
1, . . . , k − 1) and vk ∈ BX such that

‖Tnk
vk − yk‖ < 2−k,

‖ui,k − ui,k−1‖ <
1

2k max{1, ‖Tn1‖, . . . , ‖Tnk−1‖}
,

‖Tnk
ui,k‖ < 2−k

for all i, k with 1 ≤ i < k. For each i the sequence (ui,k)k is Cauchy. Let ui be its limit.
Then

‖ui − xi‖ ≤
∞∑

k=i+1

‖ui,k − ui,k−1‖ ≤
∞∑

k=i+1

1
2k

=
1
2i

.

Therefore the sequence (ui) is dense in X.
Clearly the sequence (Tnk

vk) is dense, and so
⋃

k Tnk
BX = Y . Further,

lim
k→∞

‖Tnk
ui‖ ≤ lim

k→∞

(
‖Tnk

ui,k‖+
∞∑

j=k

‖Tnk
‖ · ‖ui,j+1 − ui,j‖

)

≤ lim
k→∞

( 1
2k

+
∞∑

j=k

1
2j+1

)
= lim

k→∞
1

2k−1
= 0

for each i. Thus (Tn) satisfies (C).
To show that condition (C) implies the existence of a dense subset of hypercyclic

vectors we use Lemma 1. Let x ∈ X, y ∈ Y and ε > 0. By (ii), there are x0, x1 ∈ X and
n ∈ N such that ‖x0‖ < ε/2, ‖Tnx0−y‖ < ε/2, ‖x1−x‖ < ε/2 and ‖Tnx1‖ < ε/2. Then
‖(x0 +x1)−x‖ ≤ ‖x0‖+‖x1−x‖ < ε and ‖Tn(x0 +x1)−y‖ ≤ ‖Tnx0−y‖+‖Tnx1‖ < ε.
By Lemma 1, (Tn) has a dense subset of hypercyclic vectors.

Theorem 5. Let (Tn) ⊂ B(X, Y ) be a sequence of operators. The following conditions
are equivalent:
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(i) (Tn) satisfies condition (Cfin);
(ii) (Tn ⊕ · · · ⊕ Tn︸ ︷︷ ︸

j

) satisfies condition (C) for all j ∈ N;

(iii) (Tn ⊕ · · · ⊕ Tn︸ ︷︷ ︸
j

) has a dense subset of hypercyclic vectors for all j ∈ N;

(iv) for all j ∈ N and nonempty open subsets U1, . . . , Uj ⊂ X, V1, . . . , Vj ⊂ Y there is
an n ∈ N such that TnUi ∩ Vi 6= ∅ (i = 1, . . . , j);

(v) there is a subsequence (Tnk
) such that each its subsubsequence has a dense set of

hypercyclic vectors;
(vi) there are dense subsets X0 ⊂ X, Y0 ⊂ Y , an increasing sequence (nk) ⊂ N and

mappings Si : Y0 → X (i ∈ N) such that

Tnk
x → 0 (x ∈ X0);

Sky → 0 (y ∈ Y0);

Tnk
Sky → y (y ∈ Y0);

(vii) for each Banach space Z the sequence of operators LTn : F (Z, X) → F (Z, Y )
defined by LTnS = TnS (S ∈ F (Z, X)) has a dense set of hypercyclic vectors;
here F (Z, X) denotes the set of all finite rank operators from Z to X;

(viii) for each Banach space Z the sequence (LTn) satisfies condition (C).

Proof. The equivalences (vi)⇔(v)⇔(iii) were proved in [BG]. The implications (i)⇒(ii)
and (vi)⇒(i) are obvious. The equivalence (iii)⇔(iv) follows from Lemma 1 and the
implication (ii)⇒(iii) follows from Theorem 4. This implies the equivalence of the first
six conditions.

(i)⇒(viii): Let X0 be a dense subset of X and let (nk) be a sequence satisfying

Tnk
x → 0 (x ∈ X0) and

⋃(
Tnk

BX ⊕ · · · ⊕ Tnk
BX

)
= Y ⊕ · · · ⊕ Y .

Let M ⊂ B(Z, X) be the set of all finite rank operators with the range included
in the linear space generated by X0. Clearly M is dense in F (Z, X). For G ∈ M we
have limk LTnk

G = limk Tnk
G = 0.

Let F ∈ F (Z, Y ) and ε > 0. We can write F =
∑j

i=1 z∗i ⊗ yi for some yi ∈ Y and
z∗i ∈ Z∗. Since (Tn) satisfies condition (Cfin), there are vectors ui ∈ X (i = 1, . . . , j)
and k ∈ N such that ‖Tnk

ui − yi‖ < ε
j max{‖z∗1‖,...‖z∗j ‖}

and ‖ui‖ ≤ 1
j max{‖z∗1‖,...,‖z∗j ‖}

.

Set F0 =
∑j

i=1 z∗i ⊗ ui ∈ F (Z,X). Then ‖F0‖ ≤
∑j

i=1 ‖z∗i ‖ · ‖ui‖ ≤ 1 and

‖LTnk
F0 − F‖ = ‖Tnk

F0 − F‖ =

∥∥∥∥
j∑

i=1

z∗i ⊗ Tnk
ui −

j∑

i=1

z∗i ⊗ yi

∥∥∥∥

=

∥∥∥∥
j∑

i=1

z∗i ⊗ (Tnk
ui − yi)

∥∥∥∥ ≤
j∑

i=1

‖z∗i ‖ · ‖Tnk
ui − yi‖ < ε.

(viii)⇒(vii): Follows from Theorem 4.

(vii)⇒(iii): Let j ∈ N and let Z be a j-dimensional Banach space. Then F (Z, X)
is isomorphic to X ⊕ · · · ⊕X︸ ︷︷ ︸

j

and F (Z, Y ) to Y ⊕ · · · ⊕ Y︸ ︷︷ ︸
j

. In the same way LTn can

be identified with Tn ⊕ · · · ⊕ Tn.
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For the sake of completeness we mention here also other conditions on a sequence
(Tn) ⊂ B(X, Y ) that have been studied in the literature. In the diagram below we
show the relations among them. The abbreviations there mean:

(HC) (Hypercyclicity criterion) There exist dense subsets X0 ⊂ X, Y0 ⊂ Y , an
increasing sequence (nk) ⊂ N and mappings Sk : Y0 → X such that

Tnk
x → 0 (x ∈ X0);

Sky → 0 (y ∈ Y0);

Tnk
Sky = y (y ∈ Y0, k ∈ N).

(hc) (Tn) is hypercyclic.

(dense hc) (Tn) has a dense set of hypercyclic vectors.

(4 nbhd) (4 neighbourhoods condition) for all nonempty open subsets U,U0 ⊂ X,
V, V0 ⊂ Y such that U0 and V0 contain the origins in X and Y , respectively,
there exists n ∈ N such that TnU ∩ V0 6= ∅ and TnU0 ∩ Vn 6= ∅ (when
X = Y this condition reduces to “the three open sets condition”, which was
introduced in [GS], section III).

(her hc) (hereditarily hypercyclic) There is a subsequence (Tnk
) such that each its

subsubsequence is hypercyclic.

The relations among these conditions are given in the following diagram:

(HC) −→ (Cfin) −→ (her hc) −→ (hc)y
x

(C) −→ (4 nbhd) −→ (dense hc)

Moreover, there are no other implications among the considered conditions.
The implications (HC) → (Cfin) and (Cfin) → (her hc) were proved in Theorem 5,

the implication (C) → (4 nbhd) in Theorem 4. For the implication (4 nbhd) → (dense
hc) see Proposition 6 below.

The remaining implications are trivial.
The negative results follow from the following examples. Note that it is sufficient

to show (Cfin) 6→ (HC), (C) 6→ (her hc), (her hc) 6→ (dense hc), (dense hc) 6→ (4nbhd)
and (4nbhd) 6→ (C). This will imply that there are no other implications in the diagram
above.

Proposition 6. (cf. [GS]) If (Tn) ⊂ B(X,Y ) satisfies (4 nbhd), then there is a dense
subset of hypercyclic vectors for (Tn).

Proof. The result was essentially proved already in the proof of Theorem 4. Let x ∈ X,
y ∈ Y and ε > 0. Then there are n ∈ N, u, v ∈ X such that ‖u−x‖ < ε/2, ‖Tnu‖ < ε/2,
‖v‖ < ε/2 and ‖Tnv − y‖ < ε/2. Set x′ = u + v. Then ‖x − x′‖ ≤ ‖x − u‖ + ‖v‖ < ε
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and ‖Tnx′ − y‖ < ‖Tnv − y‖ + ‖Tnu‖ < ε. By Lemma 1, this implies that (Tn) has a
dense subset of hypercyclic vectors.

Example 7. Let X be a Hilbert space with an orthonormal basis {eF : F ⊂ N, card F <
∞}. Let Y = X and let the operators Tn : X → X be defined by

TneF =

{
neF\{n} (n ∈ F ),
0 (n /∈ F ).

It is easy to verify that the sequence (Tn) satisfies condition (Cfin) for the dense
subspace X0 ⊂ X generated by the vectors {eF : F ⊂ N}. However, (Tn) does not
satisfy (HC) since the operators Tn have not dense ranges, TnX =

∨{eF : n /∈ F}.
Note that the operators Tn are even commuting.

Example 8. Let X and Tn : X → X be as in the previous example. Note that
e{n} ⊥ TnX for each n. Consider the operators Sn : X ⊕ C→ X defined by

Sn(x⊕ λ) = Tnx + λe{n} (x ∈ X,λ ∈ C).

Since the operators (Tn) satisfy condition (Cfin) and hence are hereditarily hyper-
cyclic, it is easy to see that the sequence (Sn) is also hereditarily hypercyclic. On the
other hand, the set of all vectors hypercyclic for (Sn) is not dense. Indeed, let x ∈ X,
λ ∈ C, λ 6= 0. Then

‖Sn(x⊕ λ)‖ = ‖Tnx + λe{n}‖ ≥ |λ|
for each n, and so x⊕ λ is not hypercyclic. This shows that (her hc) 6→ (dense hc).

Example 9. Let X be a separable Hilbert space with an orthonormal basis {e1, e2, . . .}.
Let Y = C2 and (yn) be a dense sequence of elements of Y . Define Tn : X → Y by
Tnen = yn and Tnei = 0 (i 6= n). Clearly Tnx → 0 for each x that is a finite linear
combination of the vectors ei (i ∈ N). Further

⋃
n TnBX ⊃ {yn : n ∈ N}− = Y . Thus

(Tn) satisfies condition (C).
On the other hand, let (nk) be any increasing sequence of positive integers such

that (Tnk
) is hypercyclic. Let U ⊂ Y be a nonempty open set such that U 6= Y and

C ·U ⊂ U . Choose a subsequence of those indices nk for which ynk
∈ U . For such an nk

we have Tnk
X = C ·ynk

⊂ U , and so (Tn) is not hereditarily hypercyclic. Consequently,
(C) 6→ (her hc).

Example 10. Let dim X = 1 (i.e., X = C) and let Y be a separable Hilbert space.
Let (yn) be a dense sequence in Y . Define Tn : X → Y by Tn(λ) = λyn. Clearly each
non-zero λ ∈ X is hypercyclic for (Tn). It is easy to see that (Tn) does not satisfy
the condition (4 nbhd). Indeed, consider the neighbourhoods U = {z ∈ C : |z| > 2},
U0 = {z ∈ C : |z| < 1}, V = {y ∈ Y : ‖y‖ > 2} and V0 = {y ∈ Y : ‖y‖ < 1}. Thus
(dense hc)6→(4 nbhd).

Example 11. Let X = C2 and dim Y = ∞. Let (yn) be a dense sequence in Y and
(xn) dense in X. For each n find un ∈ X linearly independent from xn such that
‖un‖ = 1/n. For m,n ∈ N define Tm,n : X → Y by Tm,nxn = 0 and Tm,nun = ym.
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Then (Tm,n) is a countable set of operators satisfying the condition (4 nbhd).
Let (Tmk,nk

) be any subsequence such that Tmk,nk
x → 0 for all x in a dense subset

of X. Then Tmk,nk
→ 0 in the strong operator topology, and therefore this subsequence

is bounded by the Banach-Steinhaus theorem. Thus (Tm,n) does not satisfy (C). Hence
(4 nbhd) 6→ (C).

III. Sequences of commuting operators

In this section we assume that Y = X and (Tn) ⊂ B(X) is a sequence of mutually
commuting operators. The situation is much simpler in this case.

Theorem 12. Let (Tn) ⊂ B(X) be a sequence of mutually commuting operators. The
following conditions are equivalent:
(i) (Tn) satisfies condition (C);

(ii) (Tn) satisfies condition (Cfin);
(iii) (Tn) is hereditarily hypercyclic;
(iv) (Tn) satisfies (4 nbhd); in fact in this case the 4 neighbourhoods condition reduces

to the “3 neighbourhoods condition”: for all nonempty open subsets U, V,W ⊂ X
with 0 ∈ W there exists n such that TnU ∩W 6= ∅ and TnW ∩ V 6= ∅.

Proof. (i)⇒(ii): Let X0 ⊂ X be a dense subset and (nk) ⊂ N an increasing sequence
such that Tnk

x → 0 (x ∈ X0) and
⋃

k Tnk
Bx = X.

By Theorem 4, (Tnk
) is hypercyclic. Let x ∈ X be a hypercyclic vector for (Tnk

).
Let y1, . . . , yr ∈ X and ε > 0. Since x is hypercyclic, there are k1, . . . , kr such that

‖Tnki
x − yi‖ < ε/2 (i = 1, . . . , r). Further, there are u ∈ X, ‖u‖ ≤ max{‖Tnki

‖ :
i = 1, . . . , r}−1 and s ∈ N such that ‖Tnks

u − x‖ < ε
2 max{‖Tnk1

‖,...,‖Tnkr
‖} . Set xi =

Tnki
u (i = 1, . . . , r). Then xi ∈ BX and

‖Tnks
xi − yi‖ = ‖Tnks

Tnki
u− yi‖ ≤ ‖Tnki

(Tnks
u− x)‖+ ‖Tnki

x− yi‖ < ε

for all i = 1, . . . , r.

(ii)⇒(iii): Clear.

(iii)⇒(iv): Let U, V, W ⊂ X be nonempty open sets, 0 ∈ W . Let (nk) be a sequence
of positive integers such that each subsequence of (Tnk

) is hypercyclic. Let x be a
hypercyclic vector for (Tnk

). Since each nonzero multiple of x is also hypercyclic, we can
assume that x ∈ W . Consider the subsequence (Tnk

)k∈F where F = {k : Tnk
x ∈ V }.

Consequently, each k ∈ F satisfies Tnk
W ∩ V 6= ∅.

Let y be a vector hypercyclic for this subsequence. Thus there exists k0 ∈ F
such that Tnk0

y ∈ U . Moreover, we can choose increasing numbers ki ∈ F such that
Tnki

y → 0 (i →∞). Thus

lim
i→∞

Tnki
Tnk0

y = lim
i→∞

Tnk0
Tnki

y = 0

and there is an i with Tnki
Tnk0

y ∈ W . Hence Tnki
U ∩W 6= ∅.

(iv)⇒(i): By Proposition 6, the sequence (Tn) has a dense subset of hypercyclic
vectors.
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Let U1, . . . , Ur, V, W ⊂ X be nonempty open subsets, 0 ∈ W . Let x be a hyper-
cyclic vector for the sequence (Tn). Find n1, . . . , nr ∈ N such that Tnix ∈ Ui (i =
1, . . . , r). Let ε > 0 satisfy {y : ‖y − Tni

x‖ < ε} ⊂ Ui (i = 1, . . . , r) and {y :
‖y‖ < ε} ⊂ W . By assumption, there are x′ ∈ X and n0 ∈ N such that ‖x′ − x‖ <
ε max{‖Tn1‖, . . . , ‖Tnr

‖}−1, ‖Tn0x
′‖ < ε max{‖Tn1‖, . . . , ‖Tnr

‖}−1 and Tn0W ∩ V 6= ∅.
Then ‖Tni

x′ − Tni
x‖ ≤ ‖Tni

‖ · ‖x′ − x‖ < ε, and so Tni
x′ ∈ Ui (i = 1, . . . , r). Fur-

ther ‖Tn0Tni
x′‖ = ‖Tni

Tn0x
′‖ ≤ ‖Tni

‖ · ‖Tn0x
′‖ < ε, and so Tn0Tni

x′ ∈ W . Hence
Tn0Ui ∩W 6= ∅ for all i, and so (Tn) satisfies condition (C).

Thus for commuting operators Tn : X → X we have the following situation:

(HC) −→ (C) −→ (dense hc) −→ (hc)

A sequence (Tn) of commuting operators satisfying condition (C) but not (HC)
was given in Example 7.

An example of commuting operators with a dense set of hypercyclic vectors but
not satisfying condition (C) is the space X = C and operators Tn ∈ B(X) defined by
Tn(λ) = rnλ (λ ∈ C) where (rn) is a dense sequence in C.

The existence of a hypercyclic sequence of commuting operators with a non-dense
set of hypercyclic vectors is an open problem:

Problem 13. Let (Tn) be a hypercyclic sequence of mutually commuting operators
acting on a Banach space X. Is the set of all vectors hypercyclic for (Tn) dense in X?

IV. Commuting chains of operators

The most important case of a sequence of operators is the sequence of powers
(Tn) of a fixed operator T ∈ B(X). Of importance are also sequences of the form
(λnTn) where T ∈ B(X) and λn are non-zero complex numbers. Hypercyclicity of
these sequences is closely connected with the supercyclicity of the operator T . Indeed,
an operator T ∈ B(X) is supercyclic (i.e., there exists x ∈ X such that the set {λTnx :
λ ∈ C, n ≥ 0} is dense) if and only if there are complex numbers (λn) such that the
sequence (λnTn) is hypercyclic. In this way the problems concerning supercyclicity
of operators can be reduced to the problems concerning hypercyclicity of sequences of
operators.

It turns out that the most important property of the sequences (Tn) or (λnTn) is
that they form a chain of commuting operators. We call a sequence (Tn) ⊂ B(X) a
chain of commuting operators if there are mutually commuting operators Sj ∈ B(X)
such that Tn = S1 · · ·Sn for all n.

For chains of commuting operators the situation is even simpler than for the se-
quences of commuting operators. A hypercyclic chain has always a dense subset of
hypercyclic vectors and condition (C) is equivalent to (HC).

Proposition 14. Let Sj ∈ B(X) (j ∈ N) be mutually commuting operators and
Tn = S1 · · ·Sn. Suppose that the sequence (Tn) is hypercyclic. Then there exists a
dense subset of vectors hypercyclic for (Tn).
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Proof. Let x ∈ X be a vector hypercyclic for (Tn). Clearly T1X ⊃ T2X ⊃ · · ·, and
so Tn has dense range for all n. We show that Tjx is hypercyclic for all j. We have
{TnTjx : n ∈ N}− ⊃ Tj{Tnx : n ∈ N}− = TjX, which is a dense subset of X. Hence
Tjx is hypercyclic for each j and the sequence (Tn) has a dense subset of hypercyclic
vectors.

Theorem 15. Let Sj : X → X (j ∈ N) be mutually commuting operators and let
Tn = S1S2 · · ·Sn. Suppose that the sequence (Tn) satisfies condition (Cfin). Then it
satisfies (HC).

Proof. Since any subsequence of (Tn) is again a chain of commuting operators, without
loss of generality we can assume that (Tn) satisfies condition (Cfin) for all the sequence
(Tn), i.e., that Tnx → 0 for all x in a dense subset of X.

Note first that for all k, j ∈ N we have

⋃

n>k

(
Sk+1 · · ·SnBX

)j
= Y j . (1)

Indeed, we have TkBX ⊂ ‖Tk‖BX , and so

⋃

n>k

(
Sk+1 · · ·SnBX

)j ⊃ ‖Tk‖−1
⋃

n>k

(
S1 · · ·SnBX

)j
= ‖Tk‖−1

⋃

n>k

(
TnBX

)j
,

which is dense in Y j .
Let (xk) be a sequence dense in X.
By induction on j we construct an increasing sequence nj and vectors uk,j ∈ X,

(k, j ∈ N, j ≥ k). Set formally n0 = 0 and uk,k = xk.
Let j ≥ 1 and suppose that nj−1 and uk,j−1 ∈ X (k ≤ j − 1) have already been

constructed. By (1), we can find nj > nj−1 and vectors uk,j ∈ X (k = 1, . . . , j − 1)
such that

∥∥Snj−1+1 · · ·Snj uk,j − uk,j−1

∥∥ <
1

2k+j
∏

i≤nj−1
max{1, ‖Si‖}

and

‖uk,j‖ <
1

2k+j
.

Let uk,j be the vectors constructed in the above described way. Write for short
Rj = Snj−1+1 · · ·Snj . Then we have

‖Rjuk,j − uk,j−1‖ <
1

2k+j
∏

i≤j−1 max{1, ‖Ri‖}

for all k, j, and ‖uk,j‖ < 2−(k+j) (k < j).
For fixed k, j ∈ N consider the sequence (Rj+1 · · ·Rmuk,m)∞m=j . Since

∥∥Rj+1 · · ·Rm+1uk,m+1 −Rj+1 · · ·Rmuk,m

∥∥

≤‖Rj+1 · · ·Rm‖ · ‖Rm+1uk,m+1 − uk,m‖ ≤ 1
2k+m+1

,

9



the sequence (Rj+1 · · ·Rmuk,m)∞m=j is Cauchy. Denote by vk,j its limit.
For all k, j we have

Rj+1vk,j+1 = lim
m→∞

Rj+1Rj+2 · · ·Rmuk,m = vk,j .

In particular, Tnj
vk,j = R1 · · ·Rjvk,j = vk,0 for all k, j.

Furthermore,

‖vk,0 − xk‖ = lim
m→∞

‖R1 · · ·Rmuk,m − uk,k‖

≤
∞∑

m=k

‖R1 · · ·Rm+1uk,m+1 −R1 · · ·Rmuk,m‖ ≤
∞∑

m=k

1
2k+m+1

=
1
2k

,

and so the sequence (vk,0) is dense in X.
Finally, for j > k we have

‖vk,j‖ = lim
m→∞

‖Rj+1 · · ·Rmuk,m‖

≤‖uk,j‖+
∞∑

m=j

‖Rj+1 · · ·Rm+1uk,m+1 −Rj+1 · · ·Rmuk,m‖

≤‖uk,j‖+
∞∑

m=j

‖Rj+1 · · ·Rm‖ · ‖Rm+1uk,m+1 − uk,m‖

≤ 1
2k+j

+
∞∑

m=j

1
2k+m+1

=
1

2k+j−1
,

and so limj→∞ ‖vk,j‖ = 0. Hence the sequence (Tn) satisfies condition (HC) for the
sequence (nj) and the dense set {vk,0 : k ∈ N}. Indeed, it is sufficient to define
Sjvk.0 = vk,j . Then Tnj Sjvk,0 = vk,0 and limj→∞ Sjvk,0 = limj→∞ vk,j = 0 for all k.

Corollary 16. Let T ∈ B(X) and let (λn) be a sequence of complex numbers. Then all
the conditions (C), (Cfin), (HC), (her hc) and (4 nbhd) are equivalent for the sequence
(λnTn).

If (λnTn) is hypercyclic then there is a dense subset of hypercyclic vectors.

Problem 17. Is there a chain of commuting operators (and in particular a sequence
of the form (Tn)) which is hypercyclic but does not satisfy the Hypercyclicity criterion
(or any of the equivalent conditions)?

V. Subspaces of hypercyclic vectors

In this section we study the existence of a dense (closed infinite dimensional, re-
spectively) subspace consisting of hypercyclic vectors.

In case of a hypercyclic sequence (Tn) where T ∈ B(X) is a fixed operator it is
known that there is always a dense subspace consisting of hypercyclic vectors. The
proof, however, uses special properties of the sequence (Tn).

10



Our first result gives the existence of a dense subspace consisting of hypercyclic
vectors for any sequence (Tn) ⊂ B(X, Y ) satisfying condition Cfin.

Theorem 18. Let (Tn) ⊂ B(X, Y ) be a sequence of operators satisfying condition
(Cfin). Then there exists a dense subspace X1 ⊂ X such that each non-zero vector in
X1 is hypercyclic for (Tn).

Proof. Let Z be any separable infinite dimensional Banach space. Let x ∈ X, x 6= 0
and ε > 0. Set M =

{
V ∈ F (Z,X) : dist {x, V Z} < ε

}
. Clearly M is open. We show

that it is dense in F (Z, X).
Let W ∈ F (Z,X) and δ > 0. Then there exists a finite rank operator W1 : Z → X

such that ‖W − W1‖ < δ/2. Let z ∈ ker W1 and z∗ ∈ Z∗ satisfy 〈z, z∗〉 = 1. Set
W2 = W1 + δ·(z∗⊗x)

2‖x‖·‖z∗‖ . Then

‖W −W2‖ ≤ ‖W −W1‖+ ‖W1 −W2‖ < δ

and W2z = δx
2‖x‖·‖z∗‖ . Thus W2 ∈M and M is dense in F (Z, X).

Let (xk) ⊂ X be a dense sequence of non-zero vectors. Clearly V ∈ F (Z, X) has
dense range if and only if dist {xk, V Z} < 1/k for all k. By the Baire category theorem,
the set of all operators in F (Z, X) with dense range is residual.

By Theorem 5, the operators LTn : F (Z, X) → F (Z, Y ) satisfy condition (C), and
so there is a residual set of vectors hypercyclic for (LTn). Thus there exists an operator
V ∈ F (Z, X) with dense range such that V is hypercyclic for (LTn).

It is easy to see that each nonzero vector in the range V Z is hypercyclic for the
sequence (Tn). This completes the proof.

Next we study the existence of a closed infinite dimensional subspace consisting of
hypercyclic vectors for a sequence (Tn) ⊂ B(X,Y ). Such a subspace is known to exist
(under a natural additional assumption) if (Tn) is hereditarily hypercyclic. We prove
it now for sequences satisfying a more practical condition (C). Moreover, the proof is
essentially simplified.

Note that a particularly simple argument is available in case of a sequence (Tn)
satisfying the Hypercyclicity criterion (HC), see [ChT].

We say for short that a subspace X1 ⊂ X is a hypercyclic subspace for a sequence
(Tn) ⊂ B(X, Y ) if each nonzero vector in X1 is hypercyclic for (Tn).

Theorem 19. (cf. [Mo]) Let (Tn) ⊂ B(X,Y ) be a sequence of operators. Suppose
that (nk) is an increasing sequence of positive integers such that
(i) there exists a dense subset X0 ⊂ X such that limk→∞ Tnk

x = 0 (x ∈ X0);
(ii)

⋃
k∈N Tnk

BX = Y ;
(iii) there exists a closed infinite dimensional subspace X1 ⊂ X with the property that

limk→∞ Tnk
x = 0 (x ∈ X1).

Then there exists a closed infinite dimensional hypercyclic subspace for (Tn).

Proof. Without loss of generality we can assume that limn→∞ Tnx = 0 for all x ∈
X0 ∪X1.

Let {e1, e2, . . .} be a normalized basic sequence in X1. Let K be the corresponding
basic constant and let ε < 1

2K . Let (yk) be a dense sequence in Y .

11



Let ≺ be an order on N× (N∪{0}) defined by (i, j) ≺ (i′, j′) if either i+ j < i′+ j′

or i + j = i′ + j′ and i < i′.
Set zi,0 = ei (i = 1, 2, . . .). By induction with respect to the order ≺ we construct

vectors zi,j ∈ X0 (i, j ∈ N) and an increasing sequence ni,j ⊂ N.
Let (i, j) ∈ N × N and suppose that zi′,j′ ∈ X0 and ni′,j′ ∈ N have already been

constructed for all (i′, j′) ≺ (i, j). By definition, there exist ni,j > max{ni′,j′ : (i′, j′) ≺
(i, j)} and zi,j ∈ X0 such that

‖Tni,j
zi′,j′‖ <

ε

2i′+j′+j
((i′, j′) ≺ (i, j)),

‖zi,j‖ <
ε

2i+j max{1, 2j′‖Tni′,j′‖ : (i′, j′) ≺ (i, j)} ,

‖Tni,j zi,j − yj‖ <
ε

2i+2j
.

Construct vectors zi,j ∈ X0 and numbers ni,j inductively in this way.
Set zi =

∑∞
j=0 zi,j (i ∈ N). Then

‖zi − ei‖ ≤
∞∑

j=1

‖zi,j‖ <

∞∑

j=1

ε

2i+j
=

ε

2i
.

Hence
∑∞

i=1 ‖zi − ei‖ <
∑∞

i=1
ε
2i = ε, and so (zi) is a basic sequence.

Let M =
∨{zi : i = 1, 2, . . .}. Let z ∈ M be any non-zero vector. Then z =∑∞

i=1 αizi for some complex coefficients αi. We show that z is hypercyclic for (Tn).
Fix k ∈ N with αk 6= 0. Since every non-zero scalar multiple of a hypercyclic vector

is also hypercyclic, we can assume that αk = 1. Let r ∈ N be arbitrary. Then

‖Tnk,r
z − yr‖ ≤

∑

i 6=k

|αi| · ‖Tnk,r
zi‖+ ‖Tnk,r

zk − yr‖

≤
∑

i 6=k

∞∑

j=0

|αi| · ‖Tnk,r
zi,j‖+

∑

j 6=r

‖Tnk,r
zk,j‖+ ‖Tnk,r

zk,r − yr‖

≤
∑

(i,j)≺(k,r)

max{|αi| : i ∈ N} · ‖Tnk,r
zi,j‖+

∑

(k,r)≺(i,j)

max{|αi| : i ∈ N} · ‖Tnk,r
zi,j‖

+ ‖Tnk,r
zk,r − yr‖

<
∑

(i,j)≺(k,r)

max{|αi| : i ∈ N} · ε

2i+j+r
+

∑

(k,r)≺(i,j)

max{|αi| : i ∈ N} · ε

2i+j+r
+

ε

2k+2r

≤
∞∑

i=1

∞∑

j=0

max{|αi| : i ∈ N} ε

2i+j+r
≤ Kε

2r−1
.

Hence z is hypercyclic for (Tn).

Theorem 20. Let (Tn) ⊂ B(X, Y ) be a sequence of operators satisfying condition
(C) for a subsequence (nk). Suppose that there are infinite dimensional subspaces
M1,M2, . . . such that X ⊃ M1 ⊃ M2 ⊃ · · · and supk ‖Tnk

|Mk‖ < ∞. Then there exists
a closed infinite dimensional hypercyclic subspace for (Tn).
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Proof. Without loss of generality we can assume that Tnx → 0 for all x in a dense
subset X0 ⊂ X. It is sufficient to construct a closed infinite dimensional subspace
X1 ⊂ X such that Tnx → 0 (x ∈ X1).

We can find a basic sequence (xn) such that xi ∈ Mi for all i. Let K be the basic
constant of this sequence. Let ε < 1

2K be a positive number. For each n find en ∈ X0

such that ‖xn − en‖ < ε
2n max{1,‖T‖,...,‖Tn‖} . Clearly (en) is a basic sequence with the

basic constant ≤ 2K. Let (yn) be a dense sequence in Y . Choose a subsequence (enk
)

such that ‖Tnk
eni
‖ < 2−(k+i) (i < k) and dist {yk, Tnk

BX} < 2−k. Set X1 =
∨{enk

:
k ∈ N}. Let e ∈ X1 be an arbitrary vector. We can write e =

∑∞
i=1 αieni

for some
complex coefficients αi. We have

‖Tnk
e‖ ≤

k−1∑

i=1

‖Tnk
αieni‖+

∥∥∥
∞∑

i=k

Tnk
αixni

∥∥∥ +
∞∑

i=k

‖Tnk
αi(eni − xni)‖

≤ 2K

k−1∑

i=1

1
2i+k

+ sup
n
‖Tn|Mn‖ ·

∥∥∥
∞∑

i=k

αixni

∥∥∥ + 2K

∞∑

i=k

ε

2i

≤ K

2k−1
+ sup

n
‖Tn|Mn‖ ·

∥∥∥
∞∑

i=k

αixni

∥∥∥ +
Kε

2k−2
→ 0

as k → ∞. Further
⋃

j Tnj BX = Y , and so there is a closed infinite dimensional
subspace consisting of hypercyclic vectors for (Tn).

We give now a negative result — a condition implying that there is no closed
infinite dimensional subspace consisting of hypercyclic vectors.

Recall the quantity jµ(T ) = sup
{
j(T |M) : M ⊂ X, codim M < ∞}

, where j
denotes the minimum modulus, j(S) = inf{‖Sx‖ : ‖x‖ ≤ 1}. The number jµ(T ) can
be called the essential minimum modulus of T .

Lemma 21. Let T1, . . . , Tk ∈ B(X, Y ), let X1 ⊂ X be a closed infinite-dimensional
subspace. Let ε > 0. Then there exists x ∈ X1 of norm one such that ‖Tix‖ >
jµ(Ti)− ε (i = 1, . . . , k).

Proof. For i = 1, . . . , k there is a subspace Mi ⊂ X of finite codimension such that
j(Ti|Mi) > jµ(Ti)− ε. Let x be any vector of norm one in X1 ∩

⋂k
i=1 Mi. Then

‖Tix‖ ≥ j(Ti|Mi) > jµ(Ti)− ε

for all i = 1, . . . , k.

Theorem 22. Let X, Y be Banach spaces, let (Tn) ⊂ B(X, Y ) be a sequence of
operators, let (an) be a sequence of positive numbers such that limi→∞ ai = 0 and let
X1 ⊂ X be a closed infinite-dimensional subspace. Let δ > 0. Then there exists a
vector x ∈ X1 with ‖x‖ ≤ supi ai + δ and ‖Tnx‖ ≥ an · jµ(Tn) for all n ∈ N.

Moreover, there is a subset X2 dense in X1 with the property that for each x ∈ X2

there exists n0 such that ‖Tnx‖ ≥ anjµ(Tn) (n ≥ n0).
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Proof. Without loss of generality we can assume that a1 ≥ a2 ≥ · · ·. Let ε > 0 satisfy

(1 − ε)2(a1 + δ
2 ) > a1. Find numbers r0 < r1 < · · · such that ark

< (1−ε)3δ
2k+3 . Find

x0 ∈ X1 such that ‖x0‖ = a1 + δ/2 and ‖Tnx0‖ > (1− ε)(a1 + δ/2)jµ(Tn) (n ≤ r0).
Let k ≥ 0 and suppose that x0, . . . , xk have already been constructed. Let Ek =∨{

Tnxi : 0 ≤ i ≤ k, 1 ≤ n ≤ rk+1
}

. Let Mk be a subspace of X of finite codimension
such that

‖e + m‖ ≥ (1− ε) max
{‖e‖, ‖m‖/2

}
(e ∈ Ek,m ∈ Mk),

see [M]. Since the space Lk =
⋂k

i=1

⋂rk+1

n=1 T−1
n Mi < ∞ is of finite codimension, we can

choose xk+1 ∈ X1 ∩ Lk such that ‖xk+1‖ = δ2−(k+2) and

‖Tnxk+1‖ ≥ (1− ε)δ2−(k+2)jµ(Tn) (1 ≤ n ≤ rk+1).

Set x =
∑∞

i=0 xi. Then x ∈ X1 and

‖x‖ ≤
∞∑

i=0

‖xi‖ ≤ a1 + δ/2 +
∞∑

i=1

δ2−(i+1) = a1 + δ.

For n = 1, . . . , r0 we have

‖Tnx‖ =

∥∥∥∥Tnx0 +
∞∑

i=1

Tnxi

∥∥∥∥ ≥ (1− ε)‖Tnx0‖ > a1jµ(Tn) ≥ anjµ(Tn).

Let k ≥ 0 and rk < n ≤ rk+1. Then

‖Tnx‖ =

∥∥∥∥
∞∑

i=0

Tnxi

∥∥∥∥ ≥ (1− ε)

∥∥∥∥
k+1∑

i=0

Tnxi

∥∥∥∥

≥ (1− ε)2

2
‖Tnxk+1‖ ≥ (1− ε)3

2
· δ

2k+2
jµ(Tn) ≥ an · jµ(Tn).

Thus ‖Tnx‖ ≥ anjµ(Tn) for all n ∈ N.
To show the second statement, let u ∈ X1 and ε > 0. Find n0 such that an < ε

for all n ≥ n0. As in the first part, taking x0 = u, construct a vector x ∈ X1 with
‖x− u‖ ≤ ε and ‖Tnx‖ ≥ anjµ(Tn) (n ≥ n0).

Corollary 23. Let X,Y be Banach spaces, let (Tn) ⊂ B(X, Y ) be a sequence of
operators satisfying limn→∞ jµ(Tn) = ∞. Then there is no closed infinite dimensional
hypercyclic subspace for (Tn).

Proof. Let M be a closed infinite dimensional subspace of X. By the previous result for

the numbers αn =
(
jµ(Tn)

)−1/2
, there exists x ∈ M such that ‖Tnx‖ → ∞. Therefore

x is not hypercyclic for (Tn).

We apply the previous results to the sequences of the form (λnTn) where T ∈
B(X) and λn are complex numbers. Denote by σe(T ) the essential spectrum of T ,
σe(T ) = {λ ∈ C : T − λ is not Fredholm}.
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Corollary 24. Let T ∈ B(X) be an operator and let (λn) be a sequence of complex
numbers. Suppose that (λnTn) satisfies condition (C) and supn |λn|dn < ∞ where
d = dist {0, σe(T )}. Then there exists a closed infinite dimensional hypercyclic subspace
for (λnTn).

Proof. Since (λnTn) satisfies condition (C), the range of T is dense. Without loss of
generality we can assume that the numbers λn are non-zero.

Choose µ ∈ σe(T ) with |µ| = d. Thus T − µ is not Fredholm. We show that T − µ
is not upper semi-Fredholm. This is clear if d = 0 since the range of T is dense. If
d > 0 then µ ∈ ∂σe(T ) and T − µ is not upper semi-Fredholm by [HW].

By [LS], there is a compact operator K ∈ B(X) such that dim ker(T−µ−K) = ∞.
Set M0 = ker(T − µ−K). For each n we have Tn = (T −K)n + Kn for some compact
operator Kn. Find subspaces M ′

n ⊂ X of finite codimension such that ‖Kn|M ′
n‖ ≤

|λn|−1. Set Mn = M0 ∩
⋂

i≤n M ′
i . Then M1 ⊃ M2 ⊃ · · · and dim Mn = ∞ for all n.

For z ∈ Mn, ‖z‖ = 1 we have (T −K)z = µz and

‖λnTnz‖ ≤ ‖λn(T −K)nz‖+ ‖λnKn‖ ≤ |λnµn|+ 1 = |λn|dn + 1.

Thus supn ‖λnTn|Mn‖ < ∞. The statement now follows from the previous lemma.

Corollary 25. Let T : X → X, suppose that (λnTn) satisfies condition (C) and T
is not Fredholm. Then there is an infinite dimensional closed hypercyclic subspace for
(λnTn).

Proof. We have d = dist {0, σe(T )} = 0, and so the statement follows from the previous
corollary.

Corollary 26. Let T ∈ B(X) and suppose that (Tn) satisfies condition (C). The
following conditions are equivalent:
(i) there exists a closed infinite-dimensional hypercyclic subspace for (Tn);

(ii) the essential spectrum of T intersects the closed unit ball.

Proof. Write d = dist {0, σe(T )}.
(ii)⇒(i): If d ≤ 1 then Corollary 24 implies (i).

(i)⇒(ii): Let d > 1. Then T is Fredholm.
Recall the following standard construction from operator theory, see [S], [BHW]:

let `∞(X) be the space of all bounded sequences of elements of X; with the naturally
defined algebraic operations and sup-norm it is a Banach space. Let X̃ = `∞(X)/m(X)
where m(X) is the subspace of all precompact sequences. Let T̃ : X̃ → X̃ be the opera-
tor induced by T . It is well-known that T̃ is invertible and σ(T̃ ) = σe(T ). By the spec-
tral radius formula we have d = dist {0, σ(T̃ )} = r(T̃−1)−1 = limn→∞ ‖T̃−n‖−1/n =
limn→∞ j(T̃n)1/n where r denotes the spectral radius. By [F], jµ(Tn) ≤ 2j(T̃n) ≤
4jµ(Tn) for all n. Thus 1 < d = limn→∞ jµ(Tn)1/n and limn→∞ jµ(Tn) = ∞.

By Corollary 23, there is no closed infinite-dimensional hypercyclic subspace for
(Tn).
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(Sèminaire d’Initiation à l’Analyse), Publ. Math. Univ. Pierre et Marie Curie, 94
(1989).

[GS] G. Godefroy, J.H. Shapiro, Operators with dense, invariant, cyclic vector manifolds,
J. Funct. Anal. 98 (1991), 229–269.

[HW] R. Harte, T. Wickstead, Upper and lower Fredholm spectra II, Math. Z. 154 (1977),
253–256.

[H] D.A. Herrero, Limits of hypercyclic and supercyclic operators, J. Funct. Anal. 99
(1991), 179–190.

[K] C. Kitai, Invariant closed sets for linear operators, Dissertation, University of
Toronto, Toronto, 1982.

[LS] A. Lebow, M. Schechter, Semigroups of operators and measures of noncompactness,
J. Funct. Anal. 7 (1971), 1–26.

[LMo] F. León, A. Montes, Spectral theory and Hypercyclic Subspaces, Trans. Amer.
Math. Soc. 353 (2000), 247–267.

A . Montes, Banach spaces of hypercyclic vectors, Michigan Math. J. 43 (1996),
419–436.

[M] V. Müller, Local behaviour of the polynomial calculus of operators, J. reine angew.
Math. 430 (1992), 61–68.

[S] B.N. Sadovskii, Limit-compact and condensing operators, Uspekhi Mat. Nauk 27
(1972), 81–146 (Russian), English transl. Russian Math. Surveys 27 (1972), 85–155.

Dpto. de Matemáticas, Facultad
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