Corrigendum an Addendum: “On the axiomatic theory of spectrum II”

J.J. Koliha, M. Mbekhta, V. Miiller*, Pak Wai Poon

The main purpose of this paper is to correct the proof of Theorem 15 of [4],
concerned with the stability of the class of quasi-Fredholm operators under finite rank
perturbations, and to answer some open questions raised there.

Recall some notations and terminology from [4].

For closed subspaces M, L of a Banach space X we write M CL (M is essentially
contained in L) if there exists a finite-dimensional subspace F' C X such that M C
L+ FE. Equivalently, dim M/(M N L) = dim(M + L)/L < oc. Similarly we write MEL
if MCL and LCM.

For a (bounded linear) operator T € L(X) write R>®(T) = (\.—, R(T™) and
No(T) = U, N(T™).

An operator T' € L(X) is called semi-regular (essentially semi-regular) if R(T)
is closed and N(T) ¢ R*(T) (N (T)CROO(T), respectively). Further, T' is called
quasi-Fredholm if there exists d > 0 such that R(T9t1) is closed and R(T) + N(T9) =
R(T) + N>*(T) (equivalently, N(T) N R(T%) = N(T) N R>(T)).

The proof of Theorem 15 of [4] relies on the following statement (where d is an
integer whose existence is postulated in the definition of quasi-Fredholm operators):

if T is quasi-Fredholm and F of rank 1 then N(T) N R(T?) C R>®(T + F).
This, however, need not be satisfied.

Counterexample. Let H be the Hilbert space with an orthonormal basis {e1, e2, .. .}.
Define T', F' € L(H) by

Tey =0,Te, =en_1 (n>2), Fey = —e1, Fe, =0 (n#2).

Then T is quasi-Fredholm (with d = 0) and is surjective, F’ has rank 1, and 7'+ F' is
given by
(T+Fley=(T+F)ea=0, (T+ F)e, =en_1(n>3).

It follows that R (T + F') = R(T + F)) is equal to the linear span of {es,es,...}, and
N(T) to the one-dimensional space spanned by e;. Thus N(T') ¢ R*(T + F).

We proceed now to give a correct proof of Theorem 15 of [4].
Theorem. Let 7" € L(X) be a quasi-Fredholm operator and let F' € L£(X) be a
finite-rank operator. Then T + F' is also quasi-Fredholm.

Proof. Clearly it is sufficient to consider only the case of dim R(F) = 1. Thus there
exist z € X and ¢ € X* such that Fz = p(x)z (z € X).
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Since R((T + F)™")=R(T™) for all n by Observation 8 following Table 1 in [4],
R((T + F)™) is closed if and only if R(T™) is closed, and hence it is sufficient to show
only the algebraic condition in the definition of quasi-Fredholm operators for T+ F.

Since T is quasi-Fredholm, there exists d > 0 such that N(T) N R(T¢) c R>(T)
and R(T%), R(T%*+1) are closed. Set M = R(T9) and Ty = T|M. Then N(T}) =
N(T)NR(T?) € R®(T) = R*(T}) and the range R(T}) = R(T*1) is closed. Thus T}
is semi-regular. .

It is sufficient to show that N(T1)CR>*(T + F'). Indeed, then we have

N(T + F) N R((T + F))£N(T) N R(T%) = N(T})CR>®(T + F)

so that N(T 4+ F)N R((T + F))EN(T + F) N R>®(T + F).

This means that N(T'+ F) N R(T + F)") = N(T + F) N R>®(T + F) for some
n>dand T + F'is %uasi—Fredholm.

To prove N(T1)CR>*(T + F') we distinguish two cases:
A. N°(Ty) C ker .

Let 9 € N(11). Since T} is semi-regular, there exist vectors x1,xa,... € R>(1})
such that T'z; = x;_; for all i. By the assumption ¢(z;) = 0, so that Fz; = 0 for all i.
For n € N we have

(T+F)n$n:(T+F)n_ll'n_1:...:(T+F)Qj’1:$0,

so that xg € R((T'+ F)™). Since xo and n were arbitrary, we have N(711) C R*(T+ F).
B. N°(Ty) ¢ ker .

There exists & > 1 such that N(7F) ¢ ker . Choose the minimal k with this
property so that N(TF™!) C ker ¢ and there exists u € N(TF) with ¢(u) = 1.

Set

Y = {z € N(T}) : there is y € M with T "'y =z and T%y € kerp (i =0,...,k—1)}.

We show that dim N (71)/Y < k. Indeed, let 2V, ... 2 +1) ¢ N(T}). Since T} is semi-
regular, there are y(1), ... y*+1) ¢ M such that 71y = 20 (j =1,... k+1).

Then there exists a nontrivial linear combination y = Zfill a;y; such that Ty € ker ¢

for all i = 0,...,k — 1. Consequently Zfill a;z¥9) € Y and dim N(T3)/Y < k. Hence
Y=N(T}) and it is sufficient to show Y C R®(T + F).
Let x € Y. We prove by induction on n the following statement:

There exists x,, € M such that 7"z,, =  and Tz, € kerp (i=0,...,n). (1)

Clearly (1) for n =0,...,k — 1 follows from the definition of Y.

Suppose that (1) is true for some n > k — 1, i.e., there is x,, € M such that
T'z, = x and Tz, € kerp (i = 0,...,n). Since T} is semi-regular, we can find
x;, 1 € M such that Tz}, | = x,. Set x,,41 = 2,1 — @(x],,1)u. Then

Tn—|—1 Tn—|—1

Tpy1=T"xy — o(27,41) u=x.

Clearly ¢(x,41) = 0. For 1 < i < k—1 we have o(Tx,11) = o(T tx,) —
ol 1)e(Tiu) = 0 since TPu € N(TF™*) C kerp. For k < i < n we have T%u = 0 so
that ©(T%z,41) = (T 1z,) = 0 by the induction assumption.

Thus (1) is true for all n and (T + F)"z,, = (T + F)" Tz, = ... = T"z,, = .
Thus x € R((T + F)") for all n and consequently Y C R>*(T + F).

This finishes the proof of the theorem.
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As a corollary we obtain the corresponding result for essentially semi-regular op-
erators, see [2]. Recall the numbers k,,(T") defined for an operator 7' € £(X) and n > 0
by

kin(T) = dim[R(T) + N(T"H)]/[R(T) + N(T™)]

= dim[N(T) N R(T™)]/[N(T) N R(T™*1Y)),
see [4] and [1].

Corollary. If T, F € L(X), T is essentially semi-regular and F' of finite rank then
T + F' is essentially semi-regular.

Proof. By the previous theorem 7'+ F' is quasi-Fredholm so that k;(T" + F') = 0 for
all i sufficiently large. Also k;(1") < oo implies k;(T + F') < oo for all i. Thus T+ F' is
essentially semi-regular.

This finishes the ‘corrigendum’ part of the paper. For the ‘addendum’ part, we
give counterexamples that will complete Table 2 of [4] answering thus question posed
in that paper.

Recall the classes defined in [4]:

Ry = {T e L(X
Rio ={T € L(X) : T is essentially semi-regular},

(X): T is semi-regular},
(X) :

Ris ={T € L(X): R(T) is closed and k,,(T") < oo for all n € N},
(X):
(X):

R14:{T€£X
R15:{T€,CX

T is quasi-Fredholm},
there is d € N with R(T%"1) closed and k,(T) < oo (n > d)}.

Further, for i = 11,...,15,set 0,(T) ={ A€ C: T — X\ ¢ R;}.
Example 1. In general, 013 and o5 are not closed. Consequently, R;3 is not stable

under small commuting perturbations:

Consider the operator defined in Example 14 of [4],

S:éSn

n=1

where S,, € L(H,,), H, is an n-dimensional Hilbert space with an orthonormal basis
€nl,- - -, Enn and Sy, is the shift operator, that is, Spep1 =0, Spen; = €,,i-1 (2 < i < n).
Then S € Ry3 C Ry5, see Example 14 of [4].

Let € # 0, |e| < 1. Then S,, — ¢ is invertible for all n € N so that S — ¢ is injective.

For n € N set z,, = > 1, €7 te,;. Then ||z,|| > 1 and

IS = &)znll = [| = " ennll = l€"].

Thus S — ¢ is not bounded below and R(S — ¢) is not closed. Hence S — ¢ ¢ Ry3 and
013(.9) is not closed.



Further, for each £ € N, we have
1(S —&)*znll = [€"] - I(S — )" tennll < [e"]- (S — &) M| < [e™] - (1 +Je)*

so that lim,, .. ||(S — &)*z,,|| = 0 for all k € N and R((S — ¢)*) is not closed. Conse-
quently, S — e ¢ Ry5 and 015(5) is not closed.

Example 2. The class R;3 is not stable under commuting compact perturbations:

Consider the operator S from the previous example and let K = @) ,(1/n)I,
where I,, denotes the identity operator on H,,. Clearly K is compact, KS = SK,
S + K is injective and, as above, S + K is not bounded below. Thus R(S + K) is not
closed and S + K ¢ R;s.

Example 3. R;3 is not stable under commuting quasinilpotent perturbations:

For k € N let H®) be the Hilbert space with an orthonormal basis eg? (n €
N,i=1,...,max{k,n}). Let S®*) € £L(H®) be the shift to the left,

G(k) (k) _ {eﬁle (i >2),
"o (i=1)

Set S = @, S (k). Clearly S is a direct sum of finite-dimensional shifts where n-

dimensional shift appears (2n — 1)-times (once in each S, ..., S~ and n times in
S(™)). Thus S € Rys.

Define Q%) € L(H™®) by Q(k)eg? = (l/n)egﬁ)_l,i.for .all n,i. LetAQ =D, QM.
Clearly SQ = QS and Q is a quasinilpotent since ||Q7|*/7 = (1/41)/7 — 0.
We prove that S — @Q ¢ Ry3. Set

oo

1
(k) — (k) (k)
x —E (n—l)!e""GH .
n=1
Then
k) _ (k) (k) _

Further 2(®) ¢ R(S™) + R(Q™®) so that z(*) ¢ R(S*®) — Q). It is easy to see that
each linear combination of z(¥)’s has the same property with respect to S and Q so
that these vectors are linearly independent modulo R(S — Q). Thus

ko(S — Q) = dim N(S — Q)/(N(S — Q) NR(S — Q))

oo
and S—Q¢ R13.

Consequently, the complete version of Table 2 of [4] is:
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(A) | (B) (©) (D) (E) (F)
g; 7é @ Ojclosed | small commut. | finite dim. |commut.comp. commut.
perturbations | perturbations | perturbations | quasinilp. pert.
Ry
. yes yes yes no no yes
semi-reg
F yes yes yes yes yes yes
€ss.s-reg.
Ris yes no no yes no no
R14
no yes no yes no no
qp
Ri5 no no no yes no no
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