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J.J. Koliha, M. Mbekhta, V. Müller*, Pak Wai Poon

The main purpose of this paper is to correct the proof of Theorem 15 of [4],
concerned with the stability of the class of quasi-Fredholm operators under finite rank
perturbations, and to answer some open questions raised there.

Recall some notations and terminology from [4].
For closed subspaces M, L of a Banach space X we write M

e⊂L
(
M is essentially

contained in L
)

if there exists a finite-dimensional subspace F ⊂ X such that M ⊂
L + F . Equivalently, dim M/(M ∩L) = dim(M + L)/L < ∞. Similarly we write M

e
=L

if M
e⊂L and L

e⊂M .
For a (bounded linear) operator T ∈ L(X) write R∞(T ) =

⋂∞
n=0 R(Tn) and

N∞(T ) =
⋃∞

n=0 N(Tn).
An operator T ∈ L(X) is called semi-regular (essentially semi-regular) if R(T )

is closed and N(T ) ⊂ R∞(T )
(
N(T )

e⊂R∞(T ), respectively
)
. Further, T is called

quasi-Fredholm if there exists d ≥ 0 such that R(T d+1) is closed and R(T ) + N(T d) =
R(T ) + N∞(T ) (equivalently, N(T ) ∩R(T d) = N(T ) ∩R∞(T )).

The proof of Theorem 15 of [4] relies on the following statement (where d is an
integer whose existence is postulated in the definition of quasi-Fredholm operators):

if T is quasi-Fredholm and F of rank 1 then N(T ) ∩R(T d) ⊂ R∞(T + F ).

This, however, need not be satisfied.

Counterexample. Let H be the Hilbert space with an orthonormal basis {e1, e2, . . .}.
Define T, F ∈ L(H) by

Te1 = 0, T en = en−1 (n ≥ 2), F e2 = −e1, F en = 0 (n 6= 2).

Then T is quasi-Fredholm (with d = 0) and is surjective, F has rank 1, and T + F is
given by

(T + F )e1 = (T + F )e2 = 0, (T + F )en = en−1 (n ≥ 3).

It follows that R∞(T + F ) = R(T + F ) is equal to the linear span of {e2, e3, . . .}, and
N(T ) to the one-dimensional space spanned by e1. Thus N(T ) 6⊂ R∞(T + F ).

We proceed now to give a correct proof of Theorem 15 of [4].

Theorem. Let T ∈ L(X) be a quasi-Fredholm operator and let F ∈ L(X) be a
finite-rank operator. Then T + F is also quasi-Fredholm.

Proof. Clearly it is sufficient to consider only the case of dim R(F ) = 1. Thus there
exist z ∈ X and ϕ ∈ X∗ such that Fx = ϕ(x)z (x ∈ X).
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Since R((T + F )n)
e
=R(Tn) for all n by Observation 8 following Table 1 in [4],

R((T + F )n) is closed if and only if R(Tn) is closed, and hence it is sufficient to show
only the algebraic condition in the definition of quasi-Fredholm operators for T + F .

Since T is quasi-Fredholm, there exists d ≥ 0 such that N(T ) ∩ R(T d) ⊂ R∞(T )
and R(T d), R(T d+1) are closed. Set M = R(T d) and T1 = T |M . Then N(T1) =
N(T )∩R(T d) ⊂ R∞(T ) = R∞(T1) and the range R(T1) = R(T d+1) is closed. Thus T1

is semi-regular.
It is sufficient to show that N(T1)

e⊂R∞(T + F ). Indeed, then we have

N(T + F ) ∩R((T + F )d)
e
=N(T ) ∩R(T d) = N(T1)

e⊂R∞(T + F )

so that N(T + F ) ∩R((T + F )d)
e
=N(T + F ) ∩R∞(T + F ).

This means that N(T + F ) ∩ R((T + F )n) = N(T + F ) ∩ R∞(T + F ) for some
n ≥ d and T + F is quasi-Fredholm.

To prove N(T1)
e⊂R∞(T + F ) we distinguish two cases:

A. N∞(T1) ⊂ ker ϕ.
Let x0 ∈ N(T1). Since T1 is semi-regular, there exist vectors x1, x2, . . . ∈ R∞(T1)

such that Txi = xi−1 for all i. By the assumption ϕ(xi) = 0, so that Fxi = 0 for all i.
For n ∈ N we have

(T + F )nxn = (T + F )n−1xn−1 = . . . = (T + F )x1 = x0,

so that x0 ∈ R((T +F )n). Since x0 and n were arbitrary, we have N(T1) ⊂ R∞(T +F ).

B. N∞(T1) 6⊂ ker ϕ.
There exists k ≥ 1 such that N(T k

1 ) 6⊂ ker ϕ. Choose the minimal k with this
property so that N(T k−1

1 ) ⊂ ker ϕ and there exists u ∈ N(T k
1 ) with ϕ(u) = 1.

Set

Y = {x ∈ N(T1) : there is y ∈ M with T k−1y = x and T iy ∈ ker ϕ (i = 0, . . . , k−1)}.
We show that dim N(T1)/Y ≤ k. Indeed, let x(1), . . . , x(k+1) ∈ N(T1). Since T1 is semi-
regular, there are y(1), . . . , y(k+1) ∈ M such that T k−1y(j) = x(j) (j = 1, . . . , k + 1).
Then there exists a nontrivial linear combination y =

∑k+1
j=1 αjyj such that T iy ∈ ker ϕ

for all i = 0, . . . , k − 1. Consequently
∑k+1

j=1 αjx
(j) ∈ Y and dim N(T1)/Y ≤ k. Hence

Y
e
=N(T1) and it is sufficient to show Y ⊂ R∞(T + F ).

Let x ∈ Y . We prove by induction on n the following statement:

There exists xn ∈ M such that Tnxn = x and T ixn ∈ ker ϕ (i = 0, . . . , n). (1)

Clearly (1) for n = 0, . . . , k − 1 follows from the definition of Y .
Suppose that (1) is true for some n ≥ k − 1, i.e., there is xn ∈ M such that

Tnxn = x and T ixn ∈ ker ϕ (i = 0, . . . , n). Since T1 is semi-regular, we can find
x′n+1 ∈ M such that Tx′n+1 = xn. Set xn+1 = x′n+1 − ϕ(x′n+1)u. Then

Tn+1xn+1 = Tnxn − ϕ(x′n+1)Tn+1u = x.

Clearly ϕ(xn+1) = 0. For 1 ≤ i ≤ k − 1 we have ϕ(T ixn+1) = ϕ(T i−1xn) −
ϕ(x′n+1)ϕ(T iu) = 0 since T iu ∈ N(T k−1

1 ) ⊂ ker ϕ. For k ≤ i ≤ n we have T iu = 0 so
that ϕ(T ixn+1) = ϕ(T i−1xn) = 0 by the induction assumption.

Thus (1) is true for all n and (T + F )nxn = (T + F )n−1Txn = . . . = Tnxn = x.
Thus x ∈ R((T + F )n) for all n and consequently Y ⊂ R∞(T + F ).

This finishes the proof of the theorem.
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As a corollary we obtain the corresponding result for essentially semi-regular op-
erators, see [2]. Recall the numbers kn(T ) defined for an operator T ∈ L(X) and n ≥ 0
by

kn(T ) = dim[R(T ) + N(Tn+1)]/[R(T ) + N(Tn)]

= dim[N(T ) ∩R(Tn)]/[N(T ) ∩R(Tn+1)],

see [4] and [1].

Corollary. If T, F ∈ L(X), T is essentially semi-regular and F of finite rank then
T + F is essentially semi-regular.

Proof. By the previous theorem T + F is quasi-Fredholm so that ki(T + F ) = 0 for
all i sufficiently large. Also ki(T ) < ∞ implies ki(T + F ) < ∞ for all i. Thus T + F is
essentially semi-regular.

This finishes the ‘corrigendum’ part of the paper. For the ‘addendum’ part, we
give counterexamples that will complete Table 2 of [4] answering thus question posed
in that paper.

Recall the classes defined in [4]:

R11 = {T ∈ L(X) : T is semi-regular},
R12 = {T ∈ L(X) : T is essentially semi-regular},
R13 = {T ∈ L(X) : R(T ) is closed and kn(T ) < ∞ for all n ∈ N},
R14 = {T ∈ L(X) : T is quasi-Fredholm},
R15 = {T ∈ L(X) : there is d ∈ N with R(T d+1) closed and kn(T ) < ∞ (n ≥ d)}.

Further, for i = 11, . . . , 15, set σi(T ) = {λ ∈ C : T − λ /∈ Ri}.

Example 1. In general, σ13 and σ15 are not closed. Consequently, R13 is not stable
under small commuting perturbations:

Consider the operator defined in Example 14 of [4],

S =
∞⊕

n=1

Sn

where Sn ∈ L(Hn), Hn is an n-dimensional Hilbert space with an orthonormal basis
en1, . . . , enn and Sn is the shift operator, that is, Snen1 = 0, Sneni = en,i−1 (2 ≤ i ≤ n).
Then S ∈ R13 ⊂ R15, see Example 14 of [4].

Let ε 6= 0, |ε| < 1. Then Sn− ε is invertible for all n ∈ N so that S− ε is injective.
For n ∈ N set xn =

∑n
i=1 εi−1eni. Then ‖xn‖ ≥ 1 and

‖(S − ε)xn‖ = ‖ − εnenn‖ = |εn|.

Thus S − ε is not bounded below and R(S − ε) is not closed. Hence S − ε /∈ R13 and
σ13(S) is not closed.
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Further, for each k ∈ N, we have

‖(S − ε)kxn‖ = |εn| · ‖(S − ε)k−1enn‖ ≤ |εn| · ‖(S − ε)k−1‖ ≤ |εn| · (1 + |ε|)k−1

so that limn→∞ ‖(S − ε)kxn‖ = 0 for all k ∈ N and R((S − ε)k) is not closed. Conse-
quently, S − ε /∈ R15 and σ15(S) is not closed.

Example 2. The class R13 is not stable under commuting compact perturbations:

Consider the operator S from the previous example and let K =
⊕∞

n=1(1/n)In

where In denotes the identity operator on Hn. Clearly K is compact, KS = SK,
S + K is injective and, as above, S + K is not bounded below. Thus R(S + K) is not
closed and S + K /∈ R13.

Example 3. R13 is not stable under commuting quasinilpotent perturbations:

For k ∈ N let H(k) be the Hilbert space with an orthonormal basis e
(k)
ni (n ∈

N, i = 1, . . . , max{k, n}). Let S(k) ∈ L(H(k)) be the shift to the left,

S(k)e
(k)
ni =

{
e

(k)
n,i−1 (i ≥ 2),

0 (i = 1).

Set S =
⊕∞

k=1 S(k). Clearly S is a direct sum of finite-dimensional shifts where n-
dimensional shift appears (2n− 1)-times (once in each S(1), . . . , S(n−1) and n times in
S(n)). Thus S ∈ R13.

Define Q(k) ∈ L(H(k)) by Q(k)e
(k)
ni = (1/n)e(k)

n+1,i for all n, i. Let Q =
⊕∞

k=1 Q(k).

Clearly SQ = QS and Q is a quasinilpotent since ‖Qj‖1/j = (1/j!)1/j → 0.
We prove that S −Q /∈ R13. Set

x(k) =
∞∑

n=1

1
(n− 1)!

e(k)
nn ∈ H(k).

Then

(S −Q)x(k) =
∞∑

n=2

1
(n− 1)!

e
(k)
n,n−1 −

∞∑
n=1

1
n!

e
(k)
n+1,n = 0.

Further x(k) /∈ R(S(k)) + R(Q(k)) so that x(k) /∈ R
(
S(k) −Q(k)

)
. It is easy to see that

each linear combination of x(k)’s has the same property with respect to S and Q so
that these vectors are linearly independent modulo R(S −Q). Thus

k0(S −Q) = dim N(S −Q)/
(
N(S −Q) ∩R(S −Q)

)
= ∞

and S −Q /∈ R13.

Consequently, the complete version of Table 2 of [4] is:

4



(A) (B) (C) (D) (E) (F)

σi 6= ∅ σiclosed small commut. finite dim. commut.comp. commut.
perturbations perturbations perturbations quasinilp. pert.

R11 yes yes yes no no yes
semi-reg

R12 yes yes yes yes yes yes
ess.s-reg.

R13 yes no no yes no no

R14 no yes no yes no no
qϕ

R15 no no no yes no no
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