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0. INTRODUCTION

It is well-known that an operator in a finite-dimensional vector space is

uniquely determined up to a similarity by its Jordan model.

Given an operator T , two invariant subspaces M and N of T are said to

be similar if there exists an invertible operator X such that XT = TX and XM = N .

Clearly this is an equivalence relation in the lattice of invariant subspaces of T .

Our paper was originally motivated by the following question raised by

Bercovici [2].

Problem 0. Given T ∈ L(H) and M∈ Lat(T ), describe the similarity orbit of M.

Problem 0 is more complicated than it looks like even in the case of

operators on a finite-dimensional space. Using the spectral decomposition it is easy

to reduce the problem to the case of nilpotent operators. However, it turns out that

there is no Jordan type model for invariant subspaces of finite-dimensional nilpotent

operators.

The Jordan model of a nilpotent operator T in a finite-dimensional vector

spaceH is determined by a partition — a nonincreasing sequence of nonnegative integers

designating the sizes of the Jordan blocks of T . If M ⊂ H is an invariant subspace

for T , then, of course, the restriction T |M and the associated quotient operator T̂M

defined on the quotient space H/M are also nilpotent operators. Thus, likewise, the

similarity classes of T |M and T̂M are determined by such partitions.

In general, partitions corresponding to T |M and T̂M do not determine

the similarity orbit of M; this is true only in some special cases.

A natural question to ask is what are the possible triples of partitions cor-

responding to T |M, T̂M and T . This question, which is surprisingly difficult, has been
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studied over the years from different perspectives. In the group theoretical context, they

were studied and solved by Green [6] and Klein [7] in terms of Littlewood-Richardson

sequences (LR-sequences). Later, Azenhas and Marques de Sa [1], Thijsse [12] pro-

vided constructive solutions of the problems from the matrix polynomial point of view.

All of these constructions are rather complicated. For a comprehensive treatment of

Littlewood-Richardson sequences, we refer the readers to [8].

The aim of the present paper is to study systematically invariant sub-

spaces of finite-dimensional nilpotent operators. The paper is organized as follows. In

Section 1 we recall some of the needed facts from linear algebra and set up the nec-

essary notation. In Section 2 we study the case of cyclic T̂M (the Jordan model of

T̂M consists of a single block). Among others we show that in this case the Jordan

model of T |M determines the similarity orbit of M. In Section 3 we study relations

between invariant subspaces and various types of LR-sequences. We provide another

constructive solution of Klein’s result, and at the same time, a better picture of the

relation between Littlewood-Richardson sequences and the structure of the associated

operator T .

In Section 4 we obtain a convexity result about Littlewood-Richardson

sequences. The paper concludes in Section 5 with a study of different equivalence classes

of invariant suspaces, which envile some interesting properties of the lattice of invariant

subspaces of a nilpotent operator on a finite-dimensional vector space.

1. PRELIMINARIES

As usual, we denote by Z, N, R, and C the sets of all integers, positive

intergers, real, and complex numbers, respectively.

A partition is any (finite or infinite) sequence λ = (λ1, λ2, . . .) of non-

negative integers containing only finitely many non-zero terms such that λ1 ≥ λ2 ≥ . . ..

We shall not distinguish between two partitions which differ only by a string of zeros

at the end. Thus, for example, (2, 1), (2, 1, 0) and (2, 1, 0, . . .) are regarded as the same

partition. The number of non-zero terms of a partition λ is called the length of λ.

Denote further |λ| =
∑

i λi .

The conjugate of a partition λ is the partition λ̄ = (λ̄1, λ̄2, . . .), where

λ̄j = card{i : λi ≥ j}.
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A partition λ can be represented by a diagram: a diagram of λ is the set

of all points (i, j) ∈ N2 such that 1 ≤ j ≤ λi. We are going to use the same symbol λ

for both a partition and its diagram. Using λi as the length of the i-th column (or λ̄j

as the length of the j-th horizontal row), a partition can be conveniently drown into a

diagram as follows:

λ = (5, 4, 2, 1)

λ̄ = (4, 3, 2, 2, 1)

Figure 1.1

If λ and µ are partitions, we shall write µ ⊂ λ if the diagram of µ is

contained in the diagram of λ, i.e., µi ≤ λi (and µ̄i ≤ λ̄i) for all i ≥ 1.

By a vector space we mean a finite-dimensional complex vector space;

however, all results with the exception of some examples in the last section will remain

valid for finite-dimensional vector spaces over any field.

Denote by L(H) the set of all linear operators in a vector space H. We

are going to study only nilpotent operators so that in the following by an operator we

always mean a nilpotent operator in a finite-dimensional vector space.

The order of a nilpotent operator T is the smallest interger n such that

Tn = 0 and the multiplicity of T is defined to be the smallest cardinality of a set F such

that H = ∨{TnF : n ≥ 0}. An operator of multiplicity one is called cyclic. Denote by

N (T ) = {x ∈ H : Tx = 0} the kernel of T and by Lat(T ) the lattice of all invariant

subspaces of T . If M ∈ Lat(T ), we denote by T |M the restriction of T to M and by

T̂M : H/M→H/M the quotient operator induced by T , i.e., T̂M(x+M) = Tx+M.

We say that two operators T ∈ L(H) and S ∈ L(H′) are similar (notation: T ∼ S) if

there exists an invertible operator V : H → H′ such that V T = SV .

Let λ be a partition and Hλ be the vector space with a basis {eij : 1 ≤
j ≤ λi}. Define operator Sλ : Hλ → Hλ by Sλeij = ei(j−1) if j ≥ 2 and Sλei1 = 0. The

operator Sλ will be called the standard operator of type λ.

It is well-known that every nilpotent operator T on a finite-dimensional

vector space is similar to a standard operator Sλ (so called the Jordan model of T ).
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We say that T is of type λ if it is similar to Sλ. The following is a simple but useful

fact.

Lemma 1.1. Let T ∈ L(H) be of type λ. Then

λ̄i = dim (N (T ) ∩ T i−1H) = dimN (T i)− dimN (T i−1) = dimT i−1H− dimT iH.

The construction of the Jordan model of an operator T ∈ L(H) is well-

known. However, we will indicate it here for later use.

Let T be a nilpotent operator on H and M ∈ Lat(T ). We define the

“height” of x ∈ H with respect to M to be

h(x,M) = min{k : T kx ∈M}.

Suppose T is a nilpotent operator on H. Obviously the number λ1 =

max{h(x, {0}) : x ∈ H} can be attained for some v1 ∈ H. Set M1 = ∨{T jv1 : j ≥ 0}.
We construct a sequence of vectors {v1, v2, . . .} ⊂ H and subspaces {M1,M2, . . .} ⊂
Lat(T ) inductively: if λi = max{h(x,Mi−1) : x ∈ H} and vi ∈ H satisfies λi =

h(vi,Mi−1) then set Mi = Mi−1 ∨ {T jvi : j ≥ 0}. Now (λ1, λ2, . . .) is the type of T .

The vectors vi ∈ H satisfying h(vi,Mi−1) = λi can be replaced by vectors

wi so that Tλiwi = 0. We omit the details here.

Let M ∈ Lat(T ), M 6= H and set m = max{h(x,M) : x ∈ H}. Then

T−(m−1)M = {x ∈ H : h(x,M) < m} is a proper subspace of H. Thus {x ∈ H :

h(x,M) < m} is a subset of H of the first category (in the unique topology making of

H a topological vector space.)

Corollary 1.2. Let T ∈ L(H) be a nilpotent operator and {M1, . . . ,Mk} ⊂ Lat(T ).

Then there exists x ∈ H such that h(x,Mi) = max{h(y,Mi) : y ∈ H} for each

i = 1, 2, . . . , k.
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2. ADDING ONE BLOCK

The notion of similarity between two invariant subspaces of T was intro-

duced in [3]. We recall the definition below.

Definition 2.1. Let T ∈ L(H), T ′ ∈ L(H′), M ∈ Lat(T ), and M′ ∈ Lat(T ′). Then

(T,M) is similar to (T ′,M′, ) (denoted by (T,M) ∼ (T ′,M′)) if there exists an

invertible operator V : H → H′ such that V T = T ′V and VM = M′.

Clearly if (T,M) ∼ (T ′,M′), then the operators T and T ′ are similar.

Analogously, the restrictions T |M and T ′|M′ are similar, and so are the quotient

operators T̂M and T̂ ′M′ . In general, T ∼ T ′, T |M ∼ T ′M′ and T̂M ∼ T̂ ′M′ will not

guarantee (T,M) ∼ (T ′,M′). We will explore such examples in Section 5. However,

in some cases, this implication is true. For example, if T and T ′ are uniform (that is

all the blocks in the Jordan model of T have the same dimension; in other words, T is

of type (k, k, . . . , k)), see [2]. We shall prove that this is also the case when either T |M
or T̂M is cyclic. These cases are dual to each other, we prove it for the restriction case.

Lemma 2.2. Let T ∈ L(H), M ∈ Lat(T ) and let {m1,m2, . . . ,mr} ∈ M be a basis

of M satisfying Tmt = mt−1 for 2 ≤ t ≤ r and Tm1 = m0 = 0. Suppose T is of type ν

and T̂M is of type µ. Then there exist vectors v1, v2, . . . , vk in H, where k is the length

of µ such that

{T jvi : 1 ≤ i ≤ k, 0 ≤ j ≤ µi − 1} ∪ {mt : 1 ≤ t ≤ r}

is a basis of H and Tµivi = msi where si =
∑i

t=1(νt − µt) for each i = 1, . . . , k.

Proof. As indicated in the Preliminaries, we can find w ∈ H such that

h(w, {0}) = max{h(x, {0}) : x ∈ H} = ν1 and h(w,M) = max{h(x,M) : x ∈ H} = µ1.

Set s1 = ν1 − µ1. Since Tµ1w ∈ M, T s1(Tµ1w) = T ν1w = 0 and T s1+µ1−1w 6= 0, we

have Tµ1w =
∑s1

j=1 αjmj , for some αj ∈ C, with αs1 6= 0. Obviously

Tµ1(∨{Tw, T 2w, . . . , T s1−1w}) = ∨{m1,m2, . . . ,ms1−1}.

Therefore it is possible to find z ∈ ∨{Tw, T 2w, . . . , T s1−1w} and v1 = (1/αs1)w − z

such that

h(v1, {0}) = h(w, {0}) = ν1, h(v1,M) = h(w,M) = µ1, Tµ1v1 = ms1
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and {T jv1 : 0 ≤ j ≤ µ1 − 1} ∪ {mt : 1 ≤ t ≤ r} is a linearly independent set.

We construct vectors vi inductively. Let i ≤ k and suppose we have

already constructed vectors vt ∈ H (t = 1, . . . , i−1) with Tµtvt = mst
, h(vt,Mt−1) =

νt, h(vt,Mt−1 + M) = µt, where Mt = {T jvs : j ≥ 0, s = 1, . . . , t}, M ∩Mt =

∨{m1, . . . ,mst
}, and the vectors

{T jvt : 1 ≤ t ≤ i− 1, 0 ≤ j ≤ µt − 1} ∪ {mt : 1 ≤ t ≤ r}

form a basis of Mi−1 + M. As Mi−1 + M 6= H, we can find w ∈ H such that

h(w,Mi−1) = max{h(x,Mi−1) : x ∈ H} = νi and h(w,M+Mi−1) = max{h(x,M+

Mi−1) : x ∈ H} = µi. Since Tµiw ∈M+Mi−1, we can write

Tµiw =
r∑

j=1

αjmj +
i−1∑
t=1




µt−1∑

j=0

βtjT
jvt




for some αj , βtj ∈ C. Further, Tµlw ∈M+Ml−1, for l = 1, . . . , i− 1, so that

Tµlw = Tµl−µi(Tµiw)

=
r∑

j=1

αjT
µl−µjmj +

i−1∑
t=1




µt−1∑

j=0

βtjT
j+(µl−µi)vt




∈M+Ml−1.

It follows from the properties of the vectors vt that if βlj 6= 0, then j + (µl − µi) ≥ µl,

or µi ≤ j. Thus, we can express Tµiw as

Tµiw =
r∑

j=1

αjmj + Tµi

i−1∑
t=1




µt−1∑

j=µi

βtjT
j−µivt


 .

Set

z = w −
i−1∑
t=1




µt−1∑

j=µi

βtjT
j−µivt


 .

It is easy to see that

h(z,Mi−1) = h(w,Mi−1) = νi, h(z,M+Mi−1) = h(w,M+Mi−1) = µi,

and Tµiz =
∑r

j=1 αjmj ∈M. Consequently, T νiz =
∑r

j=1 αjT
νi−µimj ∈Mi−1∩M =

∨{m1, . . . ,msi−1}, so that αj must be 0 if j > si−1 +(νi−µi) = si. On the other hand,
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h(z,Mi−1) = νi implies that αsi
6= 0. Furthermore, since Tµi(∨{Tz, . . . , T si−1z}) =

∨{m1, . . . ,msi−1}, we can find a suitable y ∈ ∨{Tz, . . . , T si−1z} such that if vi =

(1/αsi
)z − y, we will have Tµivi = msi

. Thus vi satisfy all the required conditions.

This finishes the induction and completes the proof. Q.E.D.

Theorem 2.3. Let T ∈ L(H), T ′ ∈ L(H′), M ∈ Lat(T ), and M′ ∈ Lat(T ′). Suppose

that T ∼ T ′, T |M ∼ T ′|M′, T̂M ∼ T̂ ′M′ , and the operator T |M is cyclic. Then

(T,M) ∼ (T ′,M′).

Proof. Suppose T is of the type ν and T̂M is of the type µ. Let

v1, v2, . . . , vk be the vectors constructed in the previous lemma, i.e., {mt : 1 ≤ t ≤
r} ∪ {T jvi : 1 ≤ i ≤ k, 0 ≤ j ≤ µi − 1} is a basis of H and Tµi = msi where

si =
∑i

t=1(νt − µt), for i = 1, . . . , k. Let m′
1, . . . ,m

′
r ∈ M′ and v′1, . . . , v

′
k ∈ H′ be

vectors with analogous properties with respect to T ′ and M′. Define V : H → H′ by

V mt = m′
t and V T jvi = T ′jv′i for 1 ≤ t ≤ r, 1 ≤ i ≤ k, and 0 ≤ j ≤ µi − 1. Clearly V

induces a similarity between (T,M) and (T ′,M′).

Corollary 2.4. Let T ∈ L(H), T ′ ∈ L(H′), M∈ Lat(T ), and M′ ∈ Lat(T ′). Suppose

that T ∼ T ′, T |M ∼ T ′|M′, T̂M ∼ T̂ ′M′ , and the operator T̂M : H/M → H/M is

cyclic. Then (T,M) ∼ (T ′M′).

Proof. Let subspaces L ⊂ H and L′ ⊂ H′ be complementary to M and

M′, respectively. Express T and T ′ in the matrix form with respect to the decompo-

sitions H = M⊕ L and H′ = M′ ⊕ L′. By passing to the transposes, we are in the

situation of Theorem 2.3. We leave the details to the interested reader. Q.E.D.

Definition 2.5. An LR-pair is a pair of partitions (µ, ν) satisfying

ν1 ≥ µ1 ≥ ν2 ≥ · · · ≥ νi ≥ µi ≥ νi+1 ≥ · · · .

In terms of diagrams, (µ, ν) is an LR-pair if and only if µ ⊂ ν and every

horizontal row of ν contains at most one point from ν \ µ, i.e., 0 ≤ ν̄j − µ̄j ≤ 1.

Let (µ, ν) be an LR-pair. Denote r = |ν| − |µ| and let {j : µ̄j 6= ν̄j} =

{δ1, δ2, . . . , δr} where δ1 > δ2 > · · · > δr. Denote by δ(µ, ν) the partition (δ1, δ2, . . . , δr)

and δj(µ, ν) = δj . Thus δ(µ, ν) marks all the row numbers where µ and ν are different.
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We shall illustrate LR-pairs via diagrams. The empty squares represent µ, the empty

squares along with the squares with 1 is the diagram of ν.

1

1
1

1

µ = (5, 4, 2, 1)
ν = (6, 4, 4, 1, 1)

µ̄ = (4, 3, 2, 2, 1)
ν̄ = (5, 3, 3, 3, 1, 1)

δ(µ, ν) = (6, 4, 3, 1)

Figure 2.1

Let T be an operator and M∈ Lat(T ). Suppose that the quotient oper-

ator T̂M is cyclic. Denote by µ and ν the types of T |M and T respectively. Our goal

now will be to characterize pairs of partitions which arise in this way.

Proposision 2.6. Let (µ, ν) be an LR-pair and δ(µ, ν) = (δ1, . . . , δr) where r = |ν|−|µ|.
Then there exist a vector space K, T ∈ L(K), M∈ Lat(T ), and v ∈ N (T δ1), such that

T |M is of type µ, and, for each j = 1, . . . , r,

(1) T j−1v ∈M+N (T δj ),

(2) T j−1v 6∈ M+N (T δj−1),

(3) T δj+j−1v ∈ T δjM,

(4) T δj+j−2v 6∈ T δj−1M,

(5) T rv ∈M.

Proof. Let N be a large integer (N > |ν|) and let K be the vector

space with a basis {eij : 1 ≤ i, j ≤ N}. Define T ∈ L(K) by Teij = ei,j−1 if j ≥ 2 and

Tei,1 = 0. Further, define T ∗ ∈ L(K) by T ∗eij = ei,j+1 if j < N and T ∗eiN = 0. Let

M = ∨{eij : 1 ≤ j ≤ µi}. Clearly M∈ Lat(T ) and T |M is of type µ.

We shall construct the vector v ∈ K by induction on r. For the trivial

case r = 0, we set v = 0.

If r = 1, let {(c, δ1)} = ν \ µ. Set v = ec,δ1 . Clearly v ∈ N (T δ1), which

implies (1) and (3). Further v 6∈ M + N (T δ1−1). Also, since (c, δ1) 6∈ µ, we have

T δ1−1ec,δ1 = ec,1 6∈ T δ1−1M. Finally Tv = ec,δi−1 ∈M. Thus (1)-(5) are satisfied.

Suppose the statement is true for r − 1 ≥ 1. Let (c, δ1) ∈ ν \ µ. Obvi-

ously (µ, ν \ (c, δ1)) is an LR-pair and δ(µ, ν \ (c, δ1)) = (δ2, . . . , δr). By the induction

hypothesis, there exists w ∈ N (T δ2) such that T r−1w ∈M and, for j = 1, . . . , r − 1,

T j−1w ∈M+N (T δj+1),
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T j−1w 6∈ M+N (T δj+1−1),

T δj+1+j−1w ∈ T δj+1M,

T δj+1+j−2w 6∈ T δj+1−1M.

There are two cases we need to consider. If δ1 = δ2 + 1, we set v = T ∗w.

If δ1 > δ2 + 1, we set v = T ∗w+ ec,δ1 . In both cases v ∈ N (T δ1) and Tec,δ1 ∈M. This

and the induction assumption implies (5) and statements (1)–(4) for j = 2, . . . , r.

For j = 1, (1) and (3) follow from v ∈ N (T δ1), and (4) implies (2).

Indeed, if (2) is not true then v ∈ M +N (T δ1−1) so that T δ1−1v ∈ T δ1−1M. Thus it

is sufficient to show (4). If δ1 > δ2 + 1 then T δ1−1v = T δ1−2w+ ec,1 = ec,1 /∈ T δ1−1M.

If δ1 = δ2 + 1 then T δ1−1v = T δ2−1w /∈ T δ2−1M. But T δ1−1M ⊂ T δ2−1M, so that

T δ1−1v /∈ T δ1−1M. This finishes the proof. Q.E.D.

Lemma 2.7. Let T ∈ L(H) be of type ν, M∈ Lat(T ), and T |M be of type µ. Suppose

v ∈ H satisfies H = M∨{v, Tv, . . . , T r−1v} and T rv ∈M where r = |ν| − |µ|. Denote

δj = min{i : T j−1v ∈M+N (T i)} for each j = 1, . . . , r. Then (µ, ν) is an LR-pair and

(δ1, δ2, . . . , δr) = δ(µ, ν).

Proof. For each j = 1, . . . , r, we have T j−1v ∈ M + N (T δj ) so that

T jv ∈ M + N (T δj−1) and δj+1 ≤ δj − 1 < δj . It is easy to see that M + N (T k) =

M∨{T j−1v : k ≥ δj}. Recall that dim (M∩N (T k))− dim (M∩N (T k−1)) = µ̄k (see

Lemma 1.1). Since dim (M+N (T k)) = dimN (T k) + dimM− dim (M∩N (T k)), we

have
ν̄k = dimN (T k)− dimN (T k−1)

= dim (M∩N (T k))− dim (M∩N (T k−1))

+ dim (M+N (T k))− dim (M+N (T k−1))

= µ̄k + card{j : δj ≤ k} − card{j : δj ≤ k − 1}

=

{
µ̄k + 1, if δj = k for some j,
µ̄k, if δj 6= k for all j.

Thus, (µ, ν) is an LR-pair and (δ1, δ2, . . . , δr) = δ(µ, ν). Q.E.D.

Theorem 2.8. Let µ and ν be partitions. The following are equivalent.

(1) (µ, ν) is an LR-pair.

(2) There exist T ∈ L(H) and M ∈ Lat(T ), such that T |M is of type µ, T

is of type ν, and T̂M is cyclic of order |ν| − |µ|.
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Proof. The implication (2) ⇒ (1) was proved in the previous lemma.

Let (µ, ν) be an LR-pair and let T ∈ L(K),M∈ Lat(T ) and v ∈ K satisfy

the properties of Proposition 2.6. Set H = M∨ {Tnv : n ≥ 0} and denote by ν′ the

type of T |H. By Lemma 2.7, (µ, ν′) is an LR-pair and δ(µ, ν′) = (δ1, . . . , δr) = δ(µ, ν)

so that ν′ = ν. Thus T |H ∈ L(H) is the required operator. Q.E.D.

The next result is a modification of Proposition 2.6.

Proposision 2.9. Let (µ, ν) be an LR-pair and δ(µ, ν) = (δ1, . . . , δr) where r = |ν| −
|µ|. Let T ∈ L(H) be of type ν, M ∈ Lat(T ) and let T |M be of type µ. Let w ∈ H
satisfy T rw ∈M and H = M∨ {w, Tw, . . . , T r−1w}. Then, for each j = 1, . . . , r,

(1) T j−1w ∈M+N (T δj ),

(2) T j−1w 6∈ M+N (T δj−1),

(3) T δj+j−1w ∈ T δjM,

(4) T δj+j−2w 6∈ T δj−1M,

(5) δj = min{k : h(w, T kM) < k + j},
(6) h(w, T δ1M) = δ1 and h(w, T kM) = k+j for δj > k ≥ δj+1, j = 1, . . . , r

(as usually we set δr+1 = 0).

Proof. By Corollary 2.4, (T,M) is determined uniquely up to a simi-

larity. Thus we may assume that T ∈ L(H) is the operator constructed in the previous

theorem so that there exists v ∈ H satisfying T rv ∈ M, H = M∨ {v, Tv, . . . T r−1v}
and properties (1)–(4) of Proposition 2.6 (which are identical with (1)–(4) of the present

proposition with w replaced by v).

The vector w ∈ H can be expressed as w = m +
∑r−1

j=0 αjT
jv for some

m ∈ M, and αj ∈ C. This implies (1) and (3). Similarly v = m1 +
∑r−1

j=0 βjT
jw for

some m1 ∈M, and βj ∈ C which implies (2) and (4).

For j = 1, . . . , r, properties (3) and (4) imply

h(w, T δjM) = h(w, T δj−1M) = δj + j − 1.

Since h(w, T k+1M) ≤ h(w, T kM) + 1 for every k, the function f(k) = h(w, T kM)− k
is nonincreasing, f(δj) = j−1, f(δj−1) = j, and hence (5). Also f(k) = j for δj > k ≥
δj+1 so that h(w, T kM) = k + j. (For j = r we have f(δr+1) = f(0) = r = f(δr − 1)

so that (6) holds in this case too). Q.E.D.
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Remark 2.10. h(w, T kM) in the previous theorem is not determined for k > δ1.

The vector v costructed in Proposition 2.6 satisfies v ∈ N (T δ1). Thus if w = m +
∑r−1

j=0 αjT
jv for some m ∈M and αj ∈ C, α0 6= 0 then T iw = T im for i > δ1, so that

h(w, T kM) = max{δ1, h(m,T kM)}.

3. ADDING TWO BLOCKS AND MORE

Definition 3.1. An LR-triple is a triple of partitions (µ, ν, ρ) such that

(i) (µ, ν) and (ν, ρ) are LR-pairs,

(ii) δ(µ, ν) ⊂ δ(ν, ρ).

We shall illustrate an LR-triple via a diagram. As before, the empty

squares represent µ, the empty squares along with the squares with 1 (resp. 1 and 2)

is the diagram of ν (resp. ρ). Condition (ii) in Definition 3.1 means that “there are

at least as many 1’s as 2’s above each horizontal line”. In particular, if (µ, ν, ρ) is an

LR-triple then ν1 = ρ1. The following is an example of an LR-triple.

1
2

1
1 2

1
2

µ = (5, 4, 2, 1)
ν = (6, 4, 4, 2)
ρ = (6, 5, 4, 3, 1)

µ̄ = (4, 3, 2, 2, 1)
ν̄ = (4, 4, 3, 3, 1, 1)
ρ̄ = (5, 4, 4, 3, 2, 1)

δ(µ, ν) = (6, 4, 3, 2)
δ(ν, ρ) = (5, 3, 1)

Figure 3.1

The following lemma gives a characterization of LR-triples.

Lemma 3.2. Let µ, ν, and ρ be partitions. Then (µ, ν, ρ) is an LR-triple if and only

if (µ, ν) and (ν, ρ) are LR-pairs and

k+1∑

i=1

(ρi − νi) ≤
k∑

i=1

(νi − µi)

for all k ≥ 0.

Proof. Let (µ, ν, ρ) be an LR-triple and k ≥ 1. Denote δ(µ, ν) =

(δ1, . . . , δr) and δ(ν, ρ) = (ε1, . . . , εp) with r = |ν| − |µ| and p = |ρ| − |ν|. Then

k+1∑

i=1

(ρi − νi) = card{j : εj > νk+1} ≤ card{j : δj > νk+1}.
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If δj > νk+1 then (c, δj) ∈ ν \ µ for some c ≤ k. Consequently δj > µk and

k+1∑

i=1

(ρi − νi) ≤ card{j : δj > µk} =
k∑

i=1

(νi − µi)

for all k ≥ 1. The inequality for k = 0 follows from the fact that ρ1 = ν1.

Conversely, suppose

k+1∑

i=1

(ρi − νi) ≤
k∑

i=1

(νi − µi)

for all k ≥ 0. Let s ∈ N. If s > ν1, then card{j : εj > s} = 0 since ν1 = ρ1. Now let

νk ≥ s > νk+1 for some k ≥ 1. Observe that

card{j : εj > s} =
k∑

i=1

(ρi − νi) + max{ρk+1 − s, 0}.

Here we have two cases to consider. If µk > s then

card{j : δj > s} =
k∑

i=1

(νi − µi) ≥
k+1∑

i=1

(ρi − νi) ≥ card{j : εj > s}.

Otherwise, if µk ≤ s, then

card{j : δj > s} =
k−1∑

i=1

(νi − µi) + (νk − s)

≥
k∑

i=1

(ρi − νi) + max{ρk+1 − s, 0} = card{j : εj > s}.

Hence, δ(ν, ρ) ⊂ δ(µ, ν). Q.E.D.

Theorem 3.3. Let (µ, ν, ρ) be an LR-triple, T ∈ L(H), M,L ∈ Lat(T ), and M⊂ L.

Suppose T |M, T |L, and T are of types µ, ν, and ρ respectively, and that the operators

T̂L : H/L → H/L and T̂ : L/M → L/M induced by T are cyclic. Denote p =

|ρ| − |ν|. Then there exists z ∈ H such that H = L∨{z, Tz, . . . , T p−1z} and T pz ∈M.

Furthermore, if we denote L̃ = M∨ {z, Tz, . . . , T p−1z} and ν̃ is the type of T |L̃, then

δ(µ, ν̃) ⊂ δ(µ, ν).

Proof. Denote r = |ν| − |µ|, δ(µ, ν) = (δ1, . . . , δr), and δ(ν, ρ) =

(ε1, . . . , εp). By Theorem 2.8 and Proposition 2.9, there exist vectors v, w ∈ H such
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that L = M∨ {v, Tv, . . . , T r−1v}, T rv ∈ M, H = L ∨ {w, Tw, . . . , T p−1w}, T pw ∈ L,

and
T j−1w ∈ L+N (T εj ), j = 1, . . . , p,

T j−1v ∈M+N (T δj ) and T j−1v /∈M+N (T δj−1), j = 1, . . . , r.

Clearly also

T j−1v 6∈ M ∨N (T δj−1) ∨ {T jv, T j+1v, . . . , T r−1v}

since T kv ∈M+N (T δk+1) ⊂M+N (T δj−1) for k ≥ j.

Claim. T jw ∈M+T cL+N (T εj+1) for all 0 ≤ c ≤ j ≤ p. (Here we use the convention

that εp+1 = 0).

We prove the Claim by induction on c. For c = 0, the Claim reduces to

T jw ∈ L+N (T εj+1). Suppose the Claim holds for 0 ≤ c− 1 ≤ j ≤ p. We prove it for

c.

Fix j satisfying c ≤ j ≤ p. By the induction assumption we can express

T jw = m+
r−1∑

k=c−1

αkT
kv + z (3.1)

for some m ∈ M, αk ∈ C, and z ∈ N (T εj+1). To complete the induction step, it

suffices to show that αc−1 = 0. Suppose on the contrary αc−1 6= 0.

Since c − 1 ≤ j − 1 ≤ p, by the induction assumption we have also

T j−1w ∈ M + T c−1L +N (T εj ) so that T jw ∈ M + T cL +N (T εj−1). Together with

(3.1) and the inequalities εj − 1 ≤ εc − 1 ≤ δc − 1 this gives

T c−1v ∈{T jw} ∨M∨ {T cv, . . . , T r−1v} ∨ N (T εj+1)

⊂M∨ {T cv, . . . , T r−1v} ∨ N (T εj−1)

⊂M∨ {T cv, . . . , T r−1v} ∨ N (T δc−1),

a contradiction. Hence αc−1 = 0 and T jw ∈ M + T cL + N (T εj+1). This proves the

Claim.

In particular, for j = c = p, we have T pw ∈ M + T pL. Write T pw =

m + T pl for some m ∈ M and l ∈ L. Set z = w − l. Then T pz = m ∈ M and

L ∨ {z, Tz, . . . , T p−1z} = L ∨ {w, Tw, . . . , T p−1w} = H.

Let L̃ = M∨ {z, Tz, . . . , T pz} and let ν̃ be the type of T |L̃. We observe

that T kz ∈ M + N (T δk+1) (k = 0, 1, . . .). Indeed, by the Claim for c = j = k, we
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have T kz = T kw − T kl ∈M+ T kL+N (T εk+1) ⊂M+N (T δk+1). Lemma 2.7 implies

now δ(µ, ν̃) ⊂ δ(µ, ν). Q.E.D.

Remark 3.4. The previous theorem means that if (µ, ν, ρ) is an LR-triple then one

can construct T ∈ L(H), M,L ∈ Lat(T ), such that M ⊂ L, operators T |M, T |L
and T have types µ, ν, ρ and the operator T̂M : H/M→ H/M has the Jordan model

consisting of two blocks of dimensions |ν| − |µ| and |ρ| − |ν|. Indeed, using Theorem

2.8 twice, we can obtain spaces M⊂ L ⊂ H and an operator T ∈ L(H) satisfying the

conditions of the previous theorem.

We generalize this result to n-tuples of partitions.

Definition 3.5. An LR-sequence is a sequence µ(0), µ(1), . . . of partitions with the

property that (µ(i), µ(i+1), µ(i+2)) is an LR-triple for every i ≥ 0.

We identify a finite sequence µ(0), µ(1), . . . , µ(n) of partitions with an in-

finite sequence µ(0), . . . , µ(n), µ(n), µ(n), . . . .

Theorem 3.6. Let µ(0), µ(1), . . . , µ(n) be an LR-sequence. Then there exist an operator

T ∈ L(H) and invariant subspaces M0 ⊂ M1 ⊂ . . . ⊂ Mn = H, such that each

T |Mi is of the type µ(i) and the operator T̂M0 : H/M0 → H/M0 is of the type

(|µ(1)| − |µ(0)|, |µ(2)| − |µ(1)|, . . . , |µ(n)| − |µ(n−1)|).

Proof. We proceed the proof by induction on n. The case n = 2 is

shown in the previous remark.

Suppose the statement is true for n− 1 ≥ 2. Let M0 ⊂M1 ⊂ . . .Mn−1

and T ∈ L(Mn−1) satisfy the conditions of the theorem. Using Theorem 2.8, we can

find a space H = Mn ⊃ Mn−1, a vector v ∈ H, and an extension of T to H such

that H = Mn−1 ∨ {v, Tv, . . . , T r−1v} where r = |µ(n)| − |µ(n−1)| = dim (H/Mn−1),

T rv ∈ Mn−1, and finally, T ∈ L(H) is of type µ(n). The only problem is that T rv is

an element of Mn−1 and not necessarily of M0 as desired.

We prove the following statement, which will allow us to put T rv into

M0, by the downward induction:

(3.2) For each 0 ≤ s ≤ n−1 there exists vs ∈ H, such that H = Mn−1∨{Tnvs :

n ≥ 0}, T rvs ∈ Ms and δ(µ(s), µ̃(s+1)) ⊂ δ(µ(s), µ(s+1)), where µ̃(s+1) is

the type of T |M̃s+1, and M̃s+1 = Ms ∨ {vs, T vs, . . . , T
r−1vs}.
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Clearly (3.2) is true for s = n − 1. Suppose it is true for s ≥ 1. We

prove that (µ(s−1), µ(s), µ̃(s+1)) is an LR-triple. Indeed, (µ(s), µ̃(s+1)) is an LR-pair by

Lemma 2.7 and, by the induction assumption,

δ(µ(s), µ̃(s+1)) ⊂ δ(µ(s), µ(s+1)) ⊂ δ(µ(s−1), µ(s)).

By Theorem 3.3 for spaces Ms−1 ⊂ Ms ⊂ M̃s+1, we can find a vector

vs−1 ∈ M̃s+1 ⊂ H such that T rvs−1 ∈Ms−1 and Ms∨{vs−1, T vs−1, . . . , T
r−1vs−1} =

M̃s+1 so that

Mn−1 ∨ {vs−1, T vs−1, . . . , T
r−1vs−1} ⊃ Mn−1 + M̃s+1 = H.

Further, by Theorem 3.3, δ(µ(s−1), µ̃(s)) ⊂ δ(µ(s−1), µ(s)) where µ̃(s) is the type of

T |M̃s and M̃s = Ms−1 ∨ {vs−1, T vs−1, . . . , T
r−1vs−1}.

Hence (3.2) is true for s− 1. By induction we can obtain (3.2) for s = 0

which finishes the proof. Q.E.D.

Definition 3.7. Let T ∈ L(H) and M∈ Lat(T ). Let {v1, v2, . . .} be a sequence of vec-

tors ofH. Denote byMi the smallest invariant subspace of T containing {v1, v2, . . . , vi}.
(We setM0 = {0}). The sequence {v1, v2, . . .} is called maximal for (T,M) if it satisfies

h(vi,Mi−1 + T kM) = max
x∈H

h(x,Mi−1 + T kM)

for every k ≥ 0.

If {v1, v2, . . .} is a maximal sequence for (T,M), then, for every k =

0, 1, . . ., the sequence (h(vi,Mi−1 + T kM))∞i=1 is the type of the operator T̂T kM :

H/T kM→H/T kM induced by T . Therefore the numbers h(vi,Mi−1 +T kM) do not

depend on the choice of the maximal sequence {v1, v2, . . .}. We denote by g
T,M(i, k) =

h(vi,Mi−1 + T kM). We write g(i, k) instead of gT,M(i, k) if no ambiguity can arise.

Clearly g(i, 0) ≤ g(i, 1) ≤ g(i, 2) ≤ · · · and g(1, k) ≥ g(2, k) ≥ · · · for all i, k.

Proposition 3.8. Let T ∈ L(H), M∈ Lat(T ) and let {vi} be a maximal sequence for

(T,M). Denote M0 = {0} and Mi = ∨{Tnvt : 1 ≤ t ≤ i, n ≥ 0}. Let µ(i) be the type

of T |(M+Mi). Then, for all i, k ≥ 0,

(1) if x ∈ H, l ≥ 0 and T lx ∈ T kM+Mi then T lx ∈ T kM+ T lMi,
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(2) max{k, g(i+ 1, k)} ≥ h(vi+1, T
k(M+Mi)) ≥ g(i+ 1, k),

(3)

g(i+ 1, k) =




h(vi+1, T

k(M∨Mi)) if k < δ1(µ(i), µ(i+1)),
k if δ1(µ(i), µ(i+1)) ≤ k ≤ s,
s if k ≥ s,

where s = min{k : T kM⊂Mi},
(4) dim (T kM∩Mi+1)− dim (T kM∩Mi) = g(i+ 1,K)− g(i+ 1, k) where

K is a positive integer satisfying TKM = {0},
(5) for j ≥ 1,

δj(µ(i), µ(i+1)) = min{k : g(i+ 1, k) < k + j}.

Proof. (1) For i = 1 the statement is clear. Suppose the statement is

true for i−1 ≥ 0 and let T lx ∈ T kM+Mi. Then we can write T lx = z+
∑s−1

j=0 αjT
jvi

where z ∈ T kM + Mi−1, αj ∈ C and s = h(vi, T
kM + Mi−1). If αj = 0 for every

j < s then T lx ∈ T kM + Mi−1 so that we can use the induction assumption. Let

s0 = min{j : αj 6= 0} < s. Then

h(x, T kM+Mi−1) = l + s− s0 ≤ s = h(vi, T
kM+Mi−1).

Thus s0 ≥ l. Set y = x − ∑s−1
j=s0

αjT
j−lvi so that T ly = z ∈ T kM + Mi−1. By the

induction assumption T ly ∈ T kM+ T lMi−1 so that T lx ∈ T kM+ T lMi.

(2) Fix i, k. The second inequality is clear because T k(M + Mi) ⊂
T kM+Mi. Let l = max{k, g(i+ 1, k)}. Then T lvi+1 ∈ T kM+Mi so that T lvi+1 ∈
T kM+ T lMi. Thus h(vi+1, T

k(M+Mi)) ≤ l.

(3) If k < δ1(µ(i), µ(i+1)) = δ1, then, by Proposition 2.9, h(vi+1, T
k(M+

Mi)) > k so that g(i+ 1, k) = h(vi+1, T
k(M+Mi)) by (2).

Further T δ1vi+1 ∈ T δ1(M+Mi) so that, for k ≥ δ1, T kvi+1 ∈ T k(M+

Mi) and

g(i+ 1, k) =h(vi+1, T
kM+Mi) = max{h(x, T kM+Mi) : x ∈ H}

= max{h(x, T kM+Mi) : x ∈M+Mi}.
If we consider the operator T̂ : (M + Mi)/Mi → (M + Mi)/Mi induced by T and

denote s = min{k : T̂ k = 0} = min{k : T kM⊂Mi} then

max{h(x, T kM+Mi) : x ∈M+Mi} =

{
k if (k ≤ s),
s if (k ≥ s),
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so that (3) holds.

(4) We have

T kM+Mi+1 = (T kM+Mi) ∨ {T jvi+1 : 0 ≤ j < h(vi+1, T
kM+Mi)}

so that

dim (T kM+Mi+1)− dim (T kM+Mi) = h(vi+1, T
kM+Mi) = g(i+ 1, k).

Similarly

dimMi+1 − dimMi = g(i+ 1,K),

where K is a positive integer big enough (TKM = {0}). Thus

dim (T kM∩Mi+1)− dim (T kM∩Mi)

=dimT kM+ dimMi+1 − dim (T kM+Mi+1)

− dimT kM− dimMi + dim (T kM+Mi)

=g(i+ 1,K)− g(i+ 1, k).

(5) Since, by Proposition 2.9 (5),

δj(µ(i), µ(i+1)) = min{k : h(vi+1, T
k(M+Mi)) < k + j},

it is sufficient to show that

h(vi+1, T
k(M+Mi)) < k + j ⇐⇒ g(i+ 1, k) < k + j.

The implication “⇒” follows from h(vi+1, T
k(M+Mi)) ≥ g(i+1, k). If h(vi+1, T

k(M+

Mi)) ≥ k + j then, by (2), h(vi+1, T
k(M+Mi)) = g(i+ 1, k). Q.E.D.

Theorem 3.9. The sequence (µ(i)) of partitions defined in the previous proposition is

an LR-sequence which does not depend on the choice of a maximal sequence {vj}.

Proof. Clearly (µ(i), µ(i+1)) is an LR-pair by Lemma 2.7. Further, by

Proposition 3.8 (5) and inequality g(i + 2, k) ≤ g(i + 1, k) we have δ(µ(i+1), µ(i+2)) ⊂
δ(µ(i), µ(i+1)) so that (µ(i), µ(i+1), µ(i+2)) is an LR-triple.

Clearly µ(0) is the type of T |M so that it does not depend on {vj}.
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Suppose that µ(i−1) does not depend on the choice of {vj} for some i−1 ≥
0. Since the function g does not depend on the choice of {vj}, statement (5) of the

previous proposition implies that µ(i) is indepentent of {vj}. Q.E.D.

Definition 3.10. Let T ∈ L(H), M∈ Lat(T ), and let {vj} be a maximal sequence for

(T,M). Let µ(i) be the type of T |(M+Mi), where Mi = ∨{Tnvt : 1 ≤ t ≤ i, n ≥ 0}.
Then the sequence (µ(i)) is called the LR-sequence of (T,M).

Clearly µ(i) is constant for i big enough.

Remark 3.11. There is another standard way to assign an LR-sequence to a pair

(T,M) which was intensively studied, see [6]. For each k ≥ 0 denote by λ(k) the

type of the operator T̂T kM : H/T kM → H/T kM. Then the conjugated partitions

λ(0), λ(1), . . . , λ(n) where n is the order of T |M form an LR-sequence (in the sense of

Definition 3.5). This sequence is different from the sequence (µ(i)) defined above (even

the numbers of partitions do not agree). However, sequences (λ(k)) and (µ(i)) determine

each other via Proposition 3.8 (4) and (5).

Theorem 3.12. Let T ∈ L(H), T ′ ∈ L(H′), M ∈ Lat(T ), M′ ∈ Lat(T ′). The

following statements are equivalent:

(1) g
T,M = g

T ′,M′ ,

(2) operators T̂T kM : H/T kM→H/T kM and T̂ ′
T ′kM′ : H′/T ′kM′ →

H′/T ′kM′ are similar for every k = 0, 1, . . . ,

(3) (T,M) and (T ′,M′) have the same LR-sequences.

Proof. Clearly (1) and (2) are equivalent. The implication (1) ⇒ (3)

follows from Proposition 3.8 (5).

To show (3) ⇒ (1), suppose the LR-sequence (µ(i)) of (T,M) is given.

Fix k ≥ 0. Let {vi} be a maximal sequence for (T,M) and let Mi =

∨{Tnvt : 1 ≤ t ≤ i, n ≥ 0}. We prove by induction on j that the LR-sequence (µ(i))

determines the following quantities:

(a) dim (T kM∩Mj),

(b) g(j + 1, k).

Clearly (a) is determined for j = 0. By Propositions 3.8 (3) and 2.9 (6),

(a) determines (b) for every j. On the other hand g(j + 1, k) determine dim (T kM∩
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Mj+1) by Proposition 3.8 (4). Thus g(j+1, k) is determined for all j, k ≥ 0, and hence

(3) ⇒ (1).

4. ADMISSIBLE TRIPLES

For each T ∈ L(H) and M ∈ Lat(T ), one can associate a triple (α, β, γ)

such that the type of T |M is α, of T̂M is β, and of T is γ. In this section will study

the structure of all the triples (α, β, γ) that arise in this way.

Definition 4.1. A triple (α, β, γ) of partitions is called admissible if there exist an

operator T and M ∈ Lat(T ) such that T |M, T̂M, and T , are of types α, β, and γ,

respectively.

Fix n ≥ 1. We restrict our attention in this section to operators T of

multiplicity ≤ n. In other words the type of T is a partition γ = (γ1, . . . , γn). If

M∈ Lat(T ) then the same is true for operators T |M and T̂M.

Theorems 3.6 and 3.9 give a characterization of admissible triples in terms

of LR-sequences: a triple (α, β, γ) is admissible if and only if there exists an LR-sequence

(µ(0), µ(1), . . . , µ(n)) such that α = µ(0), β = (|µ(1)| − |µ(0)|, |µ(2)| − |µ(1)|, . . . , |µ(n)| −
|µ(n−1)|), and γ = µ(n).

One can generalize the notion of partitions to real numbers. A generalized

partition is a sequence of nonincreasing nonnegative numbers. If a = (a1, a2, . . . , an)

and b = (b1, b2, . . . , bn) are generalized partitions, we say a ⊂ b if and only if ai ≤ bi

for every i. It is obvious that the set of all generalized partitions is a cone in R(n) with

the usual addition and multiplication by scalars on R(n), and these operations coincide

with the usual definitions of addition and multiplication by integers for partitions.

For the rest of this section, we will freely exchange the notations c =

(c(i)j ) ∈ Rn(n+1) and c = (c(0), c(1), · · · , c(n)) ∈ Rn × Rn × · · · × Rn, where c(i) =

(c(i)1 , c
(i)
2 , . . . , c

(i)
n ). Let C be the set of all points c = (c(i)j ) of Rn(n+1) such that, for all

i, j,

(4.1) c
(i−1)
j−1 ≥ c

(i)
j ≥ c

(i−1)
j

and

(4.2)
j−1∑

k=1

(c(i)k − c
(i−1)
k ) ≥

j∑

k=1

(c(i+1)
k − c

(i)
k ).
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Condition (1) implies that c(i) = (c(i)1 , c
(i)
2 , . . . , c

(i)
n ) are generalized partitions for each

i and c(0) ⊂ c(1) ⊂ · · · ⊂ c(n).

Clearly LR-sequences are precisely the points of C with integer coordi-

nates.

Lemma 4.2. C is a cone in Rn(n+1), i.e., if x, y ∈ C, r ≥ 0, then x + y ∈ C, and

rx ∈ C.

When C is restricted to points of integer coordinates, we have the follow-

ing useful fact about LR-sequences.

Corollary 4.3.

(i) If (λ(0), λ(1), . . . , λ(n)) and (µ(0), µ(1), . . . , µ(n)) are LR-sequences then

(λ(0) + µ(0), λ(1) + µ(1), . . . , λ(n) + µ(n)) is an LR-sequence.

(2) Ifk ∈ Nand (λ(0), . . . , λ(n)) is a sequence of partitions then (λ(0), . . . , λ(n))

is an LR-sequence if and only if (kλ(0), . . . , kλ(n)) is an LR-sequence.

Denote P = {(x(i)
j ) : x(i)

j ≥ 0 for all 0 ≤ i ≤ n, 1 ≤ j ≤ n and
∑

i,j x
(i)
j ≤

1}. Clearly C =
⋃

r≥0 r(P ∩ C) and P ∩ C is a compact polyhedral set (i.e., P ∩ C is

determined by a finite number of linear inequalities). Denote by E the set of all vertices

(i.e., extremal points) of P ∩C. It is well-known that P ∩C coincide with conv (E), the

convex hull of E and the set E is finite. Clearly all points of E have rational coordinates

since they are intersections of hyperplanes with rational coefficients.

An admissible triple (α, β, γ) can be regarded as the point

(α1, α2, . . . , αn, β1, β2, . . . , βn, γ1, γ2, . . . , γn) ∈ R3n.

Define the linear mapping Ψ : Rn(n+1) → R3n by

Ψ((c(i)j )) =
(
c
(0)
1 , c

(0)
2 , . . . , c(0)

n ,

n∑

j=1

(c(1)
j − c

(0)
j ),

n∑

j=1

(c(2)
j − c

(1)
j ), . . . ,

n∑

j=1

(c(n)
j − c

(n−1)
j ), c(n)

1 , c
(n)
2 , . . . , c(n)

n

)
.

We summarize some of the properties of C and Ψ in the following state-

ment.
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Proposition 4.4.

(1) Ψ(C) =
⋃

r≥0 r ·Ψ(P ∩ C),

(2) Ψ(P ∩ C) = conv{Ψe, e ∈ E} so that Ψ(P ∩ C) is a polytop,

(3) all points {Ψe : e ∈ E} have rational coordinates,

(4) a triple x = (α, β, γ) ∈ R3n is admissible if and only if x = Ψy for some

y ∈ C ∩ Zn(n+1).

Together with Corollary 4.3, it is easy to see that the set of all the ad-

missible triples is a “cone”.

Corollary 4.5. If (α, β, γ) and (α′, β′, γ′) are admissible triples then (α + α′, β +

β′, γ + γ′) is admissible. If k ∈ N and (α, β, γ) is a triple of partitions then (α, β, γ) is

admissible if and only if (kα, kβ, kγ) is admissible.

Theorem 4.6. A triple of partitions (α, β, γ) is admissible if and only if it lies in Ψ(C).

Proof. Clearly admissible triples lie in Ψ(C). Conversely, let (α, β, γ) ∈
Ψ(C)∩Z3n. Then (α, β, γ) =

∑
e∈E te · (Ψe) for some rational coefficients te. For each

e ∈ E there exists a positive integer re such that re · e ∈ Zn(n+1), so that Ψ(re · e) is

admissible. Thus (α, β, γ) =
∑

e∈E
te

re
Ψ(re ·e). Let q be the common denominator of te

re
,

that is for all e ∈ E, te

re
= pe

q for some integers pe. Then q ·(α, β, γ) =
∑

e∈E pe ·Ψ(re ·e)
so that q · (α, β, γ) is admissible and so is (α, β, γ). Q.E.D.

Corollary 4.7. There exists a finite set of admissible triples {(α(s), β(s), γ(s))}s such

that a triple of partitions (α, β, γ) is admissible if and only if (α, β, γ) =
∑

s as ·
(α(s), β(s), γ(s)) for some rational coefficients as.

Proof. It is sufficient to take the set {Ψ(re ·e), e ∈ E} from the previous

proof. Q.E.D.

Corollary 4.8. For each n ≥ 1, there exist a finite number of linear inequalities with

integer coefficients such that a triple of partitions of length at most n is admissible if

and only if it satisfies all of them.

Proof. The set Ψ(P ∩C) is a polytop so it is defined by a finite number

of hyperplanes (see [9]). The hyperplanes have rational coefficients since the vertices of
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Ψ(P ∩C) have rational coordinates. Since Ψ(C) is a cone, Ψ(C) =
⋃

r≥0 r ·Ψ(P ∩C),

Ψ(C) is bounded by those hyperplanes which pass through the origin. Since an equation

of a hyperplane passing through the origin can be multiplied by a suitable integer to

obtain integer coefficients, the proof is finished. Q.E.D.

Remark 4.9. (i) Explicit form of inequalities determining admissible triples for n ≤ 4

was obtained in [12].

(ii) In [4], Gohberg and Kaashoek raised the question whether it is possible

to characterize addmissible triples by hyperplanes. Corollary 4.8 gives an affirmative

answer. The considerations of this section show in principle, how these hyperplanes

can be obtained, however, it would be interesting to know these hyperplanes explicitly.

5. EQUIVALENCES OF INVARIANT SUPSPACES

In this section we study equivalence relations between invariant sub-

spaces.

Definition 5.1. Let T and T ′ be operators on H and H′, Γ and Γ′ be sublattices of

Lat(T ) and Lat(T ′) respectively. Suppose that L ∈ Γ implies TL, T−1L ∈ Γ. We say Γ

and Γ′ are (T, T ′)-(lattice) isomorphic if there exists a surjective mapping φ : Γ → Γ′

such that, for every L,L1 ∈ Γ,

(i) φ(L+ L1) = φ(L) + φ(L1),

(ii) φ(L ∩ L1) = φ(L) ∩ φ(L1),

(iii) φ(TL) = T ′φ(L),

(iv) φ(T−1(L)) = T ′−1φ(L),

(v) dimφ(L) = dimL.

Clearly a (T, T ′) isomorphism is one-to-one and T ′L′, T−1L′ ∈ Γ′ if L′ ∈
Γ. If T and T ′ are similar, then it is easy to see that the similarity induces a (T, T ′)-

isomorphism between Lat(T ) and Lat(T ′).

Let M be an invariant subspace of T ∈ L(H). Denote by LT,M the

smallest lattice of invariant subspaces of T such that

(i) M∈ LT,M, and

(ii) if L ∈ LT,M, then TL ∈ LT,M and T−1L ∈ LT,M.
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Recall that if M ∈ Lat(T ) and M′ ∈ Lat(T ′), we say that (T,M) ∼
(T ′,M′) if and only if there exists an invertible operator V : H → H′ such that

V T = T ′V and VM = M′. We will define a weaker equivalence relation on the

collection of (T,M) via lattice isomorphisms.

Definition 5.2. Let T ∈ L(H), T ′ ∈ L(H′), M ∈ Lat(T ), and M′ ∈ Lat(T ′). Then

(T,M)
dim∼ (T ′,M′) if there exists a (T, T ′)-lattice isomorphism φ : LT,M → LT ′,M′

such that φ(M) = M′.

Clearly (T,M) ∼ (T ′,M ′) implies (T,M)
dim∼ (T ′,M ′).

It is usually rather difficult to describe the lattice LT,M (we give an ex-

ample that it can be infinite). Therefore we introduce the following weaker equivalences

which were already implicitly used in the previous sections.

Definition 5.3. Let T ∈ L(H), T ′ ∈ L(H′), M∈ Lat(T ) and M′ ∈ Lat(T ′). We write

(T,M)
LR∼ (T ′,M′) if (T,M) and (T ′,M′) have the same LR-sequences (see Theorem

3.12). We write (T,M)
J∼ (T ′,M′) if T ∼ T ′, T |M ∼ T ′|M′ and T̂M ∼ T̂ ′M′ .

Lemma 5.4. Let T ∈ L(H), T ′ ∈ L(H′), M ∈ Lat(T ) and M′ ∈ Lat(T ′). The

following are equivalent:

(1) (T,M) ∼ (T ′,M′).

(2) dim (T iH+ T jM) = dim (T ′iH+ T ′jM′) for all i, j ≥ 0

(3) dim (T iH) = dim (T ′iH) and dim (T iH ∩ T jM) = dim (T ′iH ∩ T ′jM′)

for all i, j ≥ 0.

Proof. It is easy to see that (2) and (3) are equivalent. By Theorem

3.12, (T,M)
LR∼ (T ′,M′) if and only if T̂T jM ∼ T̂ ′T ′jM′ for every j ≥ 0. The Jordan

model of T̂T jM : H/T jM→H/T jM is determined by the dimensions of the ranges

dim
(

(T̂T jM)i(H+ T jM)
)

= dim (T iH+ T jM)− dim (T jM)

=dim (T iH)− dim (T iH ∩ T jM).

Q.E.D.

Our next theorem follows immediately from the definitions of each equiv-

alence relation.
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Theorem 5.5. (T,M) ∼ (T ′,M′) ⇒ (T,M)
dim∼ (T ′,M′) ⇒ (T,M)

LR∼ (T ′,M′) ⇒
(T,M)

J∼ (T ′,M′).

However none of the implications in the previous theorem can be reversed

as the following examples illustrate. Recall that an operator T ∈ L(H) is said to

be the standard operator of type (λ1, λ2, . . .), if H is the vector space with a basis

{eij : 1 ≤ j ≤ λi} and Teij = ei,j−1 if j ≥ 2 and Tei1 = 0.

Example 5.6. (T,M)
J∼ (T,M′) 6⇒ (T,M)

LR∼ (T,M′).

Construction: Let T be the standard operator of type (3,2,1) and M =

∨{e11, e21, e22} and M′ = ∨{e11, e12, e31}, see Figure 5.1.

e13

↓
e12 e22

↓ ↓
e11 e21 e31

(T,M)

e13

↓
e12 e22

↓ ↓
e11 e21 e31

(T,M′)

Figure 5.1

Clearly M,M′ ∈ Lat(T ), T |M ∼ T |M′ since both restrictions are of

type (2,1), and operators T̂M : H/M → H/M and T̂ ′M′ : H/M′ → H/M′ are also

similar since they are also of type (2,1). Thus (T,M)
J∼ (T,M′).

On the other hand, (T,M) and (T,M′) are not LR-equivalent since we

have dim (T 2H ∩ TM) = 0 and dim (T 2H ∩ TM′) = 1.

In some cases, however,
J∼ implies ∼.

Theorem 5.7. Let (T,M)
J∼ (T ′,M′) and let one of the following conditions be

satisfied.

(1) T is uniform,

(2) T |M is cyclic,

(3) T̂M : H/M→H/M is cyclic.

Then (T,M) ∼ (T ′,M′).

Proof. (i) was proved in [3], (ii) and (iii) in Theorem 2.3 and Corollary

2.4. Q.E.D.
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However, as we will see in the next example, it is not possible to combine

conditions (a) and (b) (or (a) and (c)) of the previous theorem.

Example 5.8. There exist pairs (T,M)
J∼ (T,M′) which are not LR-equivalent and

T̂M : H/M→ H/M is uniform.

Construction: Let T ∈ L(H) be the standard operator of type (4,3,2,1).

Let M = ∨{e11, e12, e21, e22, e23, e41} and M′ = ∨{e11, e12, e21, e31, e13 +e32, e22 +e41},
see Figure 5.2.

e14

↓
e13 e23

↓ ↓
e12 e22 e32

↓ ↓ ↓
e11 e21 e31 e41

(T,M)

e14

↓
e13 e23

↓ ↓
e12 e22 e32

↓ ↓ ↓
e11 e21 e31 e41

(T,M′)

Figure 5.2

Then T |M is of type (3,2,1) and so is T |M′. Indeed, the Jordan model

of T |M′ can be described as: e13 + e32
T−→ e12 + e31

T−→ e11, e22 + e41
T−→ e21, e31. So

T |M ∼ T |M′.

Similarly T̂M : H/M→ H/M is of type (2,2) and so is T̂ ′M′ : H/M′ →
H/M′ (e14 +M′ → e13 +M′ →M′, e23 +M′ → e22 +M′ →M′). Thus (T,M)

J∼
(T,M′) and T̂M is uniform. Further (T,M) and (T,M′) are not LR-equivalent since

T 3H ∩ T 2M = {0} and T 3H ∩ T 2M′ = ∨{e11}.

Similar example can be done for uniform T |M (we can use duality as in

Corollary 2.4.).

Example 5.9. (T,M)
LR∼ (T,M′) 6⇒ (T,M)

dim∼ (T,M′).

Construction: Let T be the standard operator of type (5,4,2,1). Set

M = ∨{e11, e21, e12 + e31, e22 + e41} and M′ = ∨{e11, e21, e12 + e41, e22 + e31}, see

Figure 5.3.
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e15

↓
e14 e24

↓ ↓
e13 e23

↓ ↓
e12 e22 e32

↓ ↓ ↓
e11 e21 e31 e41

(T,M)

e15

↓
e14 e24

↓ ↓
e13 e23

↓ ↓
e12 e22 e32

↓ ↓ ↓
e11 e21 e31 e41

(T,M′)

Figure 5.3

Clearly TM ⊂ M and TM′ ⊂ M′. Then (T,M) and (T,M′) are not

dim-equivalent since T (TH ∩M) ∩ T 4H = ∨{e11} and T (TH ∩M′) ∩ T 4H = {0}.
We prove (T,M)

LR∼ (T,M′), i.e., dim (T iH ∩ T jM) = dim (T iH ∩ T jM′) for every

i, j ≥ 0. This is clear for j ≥ 2 since then T jM = T jM′ = {0}. Also for j = 1 we have

TM = TM′ = ∨{e11, e21}. Let j = 0. For i = 0, 1, . . . , 4, we have

dim (H ∩M) = dimM = 4 = dim (H ∩M′),

dim (TH ∩M) = 3 = dim (TH ∩M′),

dim (T 2H ∩M) = 2 = dim (T 2H ∩M′),

dim (T 3H ∩M) = 2 = dim (T 3H ∩M′),

dim (T 4H ∩M) = 1 = dim (T 4H ∩M′)

.

For i ≥ 5 we have T iH = {0}. Thus (T,M)
LR∼ (T,M′).

Example 5.10. (T,M)
dim∼ (T,M′) 6⇒ (T,M) ∼ (T,M′).

Construction: Let T be the standard operator of type (7,6,5,4,3). Let

q1, q2 be two distinct transcendental numbers. For i = 1, 2, set

Mi = ∨{e11, e21, e22 + e31, e13 + e23 + e42, e12 + e22 + e41,

qie14 + e24 + e53, qie13 + e23 + e52, qie12 + e22 + e51}

as indicated in the figure below.
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e17

↓
e16 e26

↓ ↓
e15 e25 e35

↓ ↓ ↓
e14 e24 e34 e44

↓ ↓ ↓ ↓
e13 e23 e33 e43 e53

↓ ↓ ↓ ↓ ↓
e12 e22 e32 e42 e52

↓ ↓ ↓ ↓ ↓
e11 e21 e31 e41 e51

(T,Mi)

Figure 5.4

(a) We show first that (T,M1) 6∼ (T,M2). Note that, T 6H = ∨{e11},
T (Mi ∩ T 4H) = ∨{e21}, T 2(Mi ∩ T 2H) = ∨{e11 + e21}, and T 3Mi = ∨{qie11 + e21}
for i = 1, 2.

Suppose V : H → H is an invertible operator satisfying V T = TV and

VM1 = M2. Then V (T 6H) = T 6H, V (T (M1∩T 4H)) = T (M2∩T 4H) so that V e11 =

αe11, V e21 = βe21 for some α, β ∈ C. Further V (T 2(M1 ∩ T 2M)) = T 2(M2 ∩ T 2M),

we must have V (e11 + e21) = αe11 + βe21 ∈ ∨{e11 + e21}. Thus β = α. Finally from

V (T 3M1) = T 3M2 we deduce that V (q1e11 + e21), must be a multiple of q2e21 + e21.

But V (q1e11 + e21) = αq1e11 + αe21, which implies that q1 = q2, a contradiction.

(b) We show now that (T,M1)
dim∼ (T,M2). Denote by Q the field of

rational numbers and by Qi = Q[qi] the field generated by the rational numbers and

qi (i = 1, 2). Obviously Q1 and Q2 are isomorphic and the isomorphism ψ : Q1 → Q2

satisfies

ψ




∞∑

j=−∞
rjq

j
1


 =

∞∑

j=−∞
rjq

j
2

for all rj ∈ Q (rj = 0 for all but a finitely many j’s).

Consider vector spaces Q25
1 and Q25

2 over Q1 and Q2, respectively. Clearly

ψ extends naturally to an isomorphism ψ25 : Q25
1 → Q25

2 between these vector spaces.
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In particular, if L is a subspace of Q25
1 then ψ25L is a subspace of Q25

2 and

dimQ2
(ψ25L) = dim Q1

(L),

where dim Qi
denotes the dimension over the field Qi. Identify now H with C25 using

the basis {eij}. Let Yi (i = 1, 2) be the set of subspaces L of H (= C25) such that

dim CL = dim Qi
(L∩Q25

i ). In other words, L ∈ Yi if and only if L has a basis consisting

of elements from Q25
i . By standard linear algebra methods L ∈ Yi if and only if L is

the set of all solutions of a finite number of linear equations with coefficients from Qi.

Clearly M1 ∈ Y1 and M2 ∈ Y2. Using the above characterization of Y1

and Y2 we show easily that L,L′ ∈ Yi implies L + L′ ∈ Yi, L ∩ L′ ∈ Yi, TL ∈ Yi,

T−1L ∈ Yi. Thus LT,M1 ⊂ Y1, LT,M2 ⊂ Y2. For L ∈ Y1 we have

dim CL = dim Q1
(L ∩Q25

1 ) = dim Q2
ψ25(L ∩Q25

1 ).

Define φ : Y1 → Y2 by φ(L) = ψ25(L ∩Q25
1 ). It is easy to see that φ is a (T,T)-lattice

isomorphism between Y1 and Y2 and φ(M1) = M2. Hence the restriction of φ to

LM,T is a (T,T)-lattice isomorphism betweent LM2,T and LM2,T . Thus we conclude

that (T,M1)
dim∼ (T,M2).

It is easy to see that for the operator T from the previous example

there exist uncountably many subspaces Mα ∈ Lat(T ) (α transcendental) such that

(T,Mα1) 6∼ (T,Mα2) if α1 6= α2. Thus the number of ∼-equivalence classes is contin-

uum.

Obviously for given operator T there are only finitely many non-
J∼-

equivalent or non-
LR∼ -equivalent subspaces M∈ Lat(T ). We show that the number of

dim∼ -equivalence classes is infinite.

Lemma 5.11. Suppose Γ is a lattice of subspaces of a vector space H, let a, b, c be

linearly independent vectors inH such that ∨{a}, ∨{b}, ∨{c}, ∨{a+c} and ∨{b+c} ∈ Γ.

Then ∨{a− kb} ∈ Γ (k = 0, 1, . . .), so that Γ is infinite.

Proof. We prove the statement by induction on k. The statement is

clear for k = 0. Suppose ∨{a− kb} ∈ Γ. Then

(∨{a− kb, c}) ∩ (∨{a+ c, b}) = ∨{a− kb+ c} ∈ Γ

28



and

(∨{a− kb+ c, b+ c}) ∩ (∨{a, b}) = ∨{a− (k + 1)b} ∈ Γ.

Thus ∨{a− kb} ∈ Γ for every k = 0, 1, . . .. Q.E.D.

Example 5.12.

(1) There exist an operator T in a finite-dimensional space H and M ∈
Lat(T ) such that the lattice LT,M is infinite.

(2) There exist subspaces Mk ∈ Lat(T ) (k = 1, 2, . . .) such that the pairs

(T,Mk) are mutually non
dim∼ -equivalent.

Construction: Let T ∈ L(H) be the standard operator of type (11, 10,

9, 7, 6, 5). Let u = e14 + e34 + e43, v = e25 + e35 + e54. Let

M0 = ∨{e11, e21, e31, e22, e32, e33, e51, u, Tu, T
2u, T 3u, v, Tv, T 2v, T 3v, T 4v}.

e1,11

↓
e1,10 e2,10

↓ ↓
e19 e29 e39

↓ ↓ ↓
e18 e28 e38

↓ ↓ ↓
e17 e27 e37 e47

↓ ↓ ↓ ↓
e16 e26 e36 e46 e56

↓ ↓ ↓ ↓ ↓
e15 e25 e35 e45 e55 e65

↓ ↓ ↓ ↓ ↓ ↓
e14 e24 e34 e44 e54 e64

↓ ↓ ↓ ↓ ↓ ↓
e13 e23 e33 e43 e53 e63

↓ ↓ ↓ ↓ ↓ ↓
e12 e22 e32 e42 e52 e62

↓ ↓ ↓ ↓ ↓ ↓
e11 e21 e31 e41 e51 e61

(T,M0)

Figure 5.5
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Then
T 10H = ∨{e11},

T (M0 ∩ T 8H) = ∨{e21},
T 2(M0 ∩ T 6H) = ∨{e31},
T 3(M0 ∩ T 4H) = ∨{e11 + e31},
T 4(M0 ∩ T 2H) = ∨{e21 + e31}.

(5.1)

The previous lemma for a = e11, b = e21 and c = e31 gives that the lattice LT,M0 is

infinite.

For k = 0, 1, . . ., set wk = e16 − ke26 + e6,5. Denote Mk = M0 ∨ {T jwk :

j ≥ 0}. Then (5.1) remains true with M0 replaced by Mk and T 5Mk = ∨{e11−ke21}.
Suppose k 6= l and (T,Mk)

dim∼ (T,Ml). Let φ : LT,Mk
→ LT,Ml

be a (T,T)-lattice

isomomorphism satisfying φ(Mk) = φ(Ml). Since (5.1) is true for M0 replaced by

either Mk or Ml, Lemma 5.11 and (5.1) imply φ(∨{e11 − je21}) = ∨{e11 − je21} for

every j. Thus for j 6= k, φ({0}) = φ(∨{e11−ke21}∩∨{e11−je21}) = φ(T 5Mk∩∨{e11−
je21}) = T 5Mj ∩ (∨{e11 − je21}) = ∨{e11 − je21}, which is a contradiction with the

assumption that φ preserves dimensions.

We conclude with a conjecture.

Conjecture 5.13. The number of dim-equivalence classes is countable.

Acknowledgements. The first named author is supported by grant DMS-

9303702 from the National Science Foundation. The second named author wishes to

express his gratitude to the School of Mathematics of Georgia Institute of Technology

for its kind hospitality while this paper was written. He was partially supported by

grant 201/96/0411 of GA ČR.
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