
Littlewood-Richardson Sequences Associated with C0-Operators

Wing Suet Li and Vladimı́r Müller

Abstract. We generalize the concept of the Littlewood-Richardson sequence associated

with an invariant subspace of a nilpotent operator on a finite dimensional vector space

to the context of C0-contractions. The similarity invariants of nilpotent operators

(decreasing sequences of sizes of the Jordan blocks) are replaced by the quasisimilarity

invariants of C0-contractions (sequences of inner functions).

0. INTRODUCTION

Let T be a linear operator on a finite dimensional Hilbert space H and let M be

an invariant subspace of T . A natural but surprisingly difficult problem is to describe

relationships between the similarity invariants for T , T |M (T restricted to M), and

the quotient map T̃ : H/M→H/M (or, equivalently, THªM, the compression of T to

HªM). This problem (and the more general one about p-modules) has been treated

by the use of Littlewood-Richardson sequences (to be described below) first by Azenhas

and de Sa [1] and Thijsse [12] (the case of groups was done earlier by Green [7] and

Klein [8]). More recently, the finite matrix case and extensions of the problem to a

certain class of operators on an infinite dimensional Hilbert space were studied in [6]

and [9].

The present paper, which may be considered to be a continuation of [9], is concerned

with relations between the quasisimilarity invariants for T , T |M, and THªM, where T

is a C0-operator on an infinite dimensional separable Hilbert space H.

The paper is organized as follows. We recall some basic facts about operators

of class C0 in Section 1. In Section 2 we describe how to associate a Littlewood-

Richardson sequence to a pair (T,M) where T is an operator of class C0 and M is an
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invariant subspace of T . Conversely, in Section 3, we show that, given a Littlewood-

Richardson sequence, one can construct an operator T of class C0 and a sequence of

nested invariant subspaces {Mk}∞k=0 of T such that the Jordan models of the operators

{T |Mk} correspond to the given Littlewood-Richardson sequence.

1. PRELIMINARIES

By an operator we always mean a bounded linear operator on a separable complex

Hilbert space. Let H be a separable complex Hilbert space, and let L(H) be the set

of all operators on H. For T ∈ L(H), we denote by Lat(T ) the lattice of all (closed)

invariant subspaces of T . For x ∈ H, denote by KT (x) = ∨{Tnx : n ≥ 0} the invariant

subspace of T generated by x, and similarly, KT (x1, . . . , xn) denotes the invariant

subspace of T generated by the vectors x1, . . . , xn ∈ H. Let µT be the multiplicity

of T , which is defined as the smallest cardinality of a subset F ⊂ H with the property

that H = ∨{TnF : n ≥ 0}. An operator of multiplicity one is also called multiplicity-

free. For T ∈ L(H) and M∈ Lat(T ), we denote by T |M the restriction of T to M. If

L is any subspace of H, the orthogonal projection of H onto L is denoted by PL. For

M,N ∈ Lat(T ), and N ⊂ M, the compression of T to the semi-invariant subspace

MªN is TMªN = PMªNT |MªN .

If θ and ψ are inner functions, then we write θ|ψ if ψ = uθ for some inner function

u, and θ ≡ ψ if and only if θ|ψ and ψ|θ. Moreover, θ ∧ ψ is the greatest common inner

divisor and θ ∨ ψ is the least common inner multiple of θ and ψ, respectively.

We recall some facts from the theory of operators of class C0. All results stated

below without proof are proved either in [2] or in [11].

Denote by H∞ the Banach algebra of all bounded analytic functions on the open

unit disk D. A completely nonunitary contraction T is of class C0 if there exists a

nonzero u ∈ H∞ such that u(T ) = 0. For a C0-contraction T there exists an inner

function mT (so called minimal function of T ) such that u(T ) = 0 implies mT |u.

Next we will define the building blocks of C0 operators. Let H2 be the set of all

analytic functions f(z) =
∑∞
n=0 anz

n for z ∈ D such that ‖f‖2
2 =

∑∞
0 |an|2 <∞. The

shift operator S ∈ L(H2) is defined by (Sf)(z) = zf(z) (f ∈ H2, z ∈ D). If φ is an

inner function, then φH2 is invariant for S, and so H(φ) := H2 ª φH2 is invariant for
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S∗. The Jordan block S(φ) ∈ L(H(φ)) is defined by S(φ)∗ = S∗|H(φ), equivalently,

S(φ) = PH(φ)S|H(φ). The operator S(φ) is of class C0 with minimal function φ. Some

of the basic properties of Jordan blocks are listed below.

Proposition 1.1. ([2], p. 38) Let φ ∈ H∞ be an inner function.

(i) If θ is an inner divisor of φ then

θH2 ª φH2 = ran θ(S(φ)) = ker(φ/θ)(S(φ)).

(ii) For any inner function u ∈ H∞, the operator S(φ)|ranu(S(φ)) is unitarily equiv-

alent to S(φ/(u ∧ φ)).

Recall that a model function is a sequence of inner functions Φ = {φj : j ≥ 1}
such that φj+1|φj for all j ≥ 1. For a model function Φ, set H(Φ) :=

⊕∞
j=1H(φj)

and the Jordan model operator associated with the model function Φ is defined as

S(Φ) :=
⊕∞

j=1 S(φj) on H(Φ). We say that operators T ∈ L(H) and T ′ ∈ L(H′) are

quasisimilar (shortly T ∼ T ′) if there exist quasiaffinities X : H → H′ and Y : H′ → H
such that XT = T ′X and Y T ′ = TY . All operators in the class C0 can be classified

up to quasisimilarity by Jordan model operators.

Theorem 1.2. ([4]) Every operator T of class C0 is quasisimilar to a unique Jordan

model operator.

The unique Jordan model operator given above is called the Jordan model of T . In

addition, if T ∼ S(Φ), we will also call Φ to be the model function associated with T .

We need the following result about the relationship between multiplicity and the

Jordan model of T .

Proposition 1.3. (see [2], p.55) Let T ∈ L(H) be a C0 operator with Jordan model
⊕∞

j=1 S(φj). Then µT ≤ n if and only if φn+1 ≡ 1. Furthermore, for each j ≥ 1,

φj = ∧{
u : µ

T |u(T )H < j
}
.

Next result is about the continuity of Jordan models relative to an increasing

sequence of invariant subspaces (cf. [2, p. 195]).
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Theorem 1.4. Let T ∈ L(H) be an operator of class C0 with model function Θ =

{θj : j ≥ 1} and let {Mk : k ≥ 0} be a sequence of invariant subspaces of T such

that Mk ⊂ Mk+1 for all k ≥ 0 and ∨∞k=0Mk = H. Suppose that the model function

associated with each T |Mk is Φ(k) = {φ(k)
j : j ≥ 1}. Then θj = ∨{φ(k)

j : k ≥ 0} for

all j.

We also need the following identities involving the model functions of T , the re-

striction of T to certain invariant subspace, and the compression of T to the orthogonal

complement of the invariant subspace. Part (iii) is from [5].

Proposition 1.5. Let T be an operator of class C0 and M ∈ Lat(T ). Suppose that

the Jordan models associated with T |M, THªM and T are
⊕∞

j=1 S(φj),
⊕∞

j=1 S(ψj),

and
⊕∞

j=1 S(θj), respectively. Then, for all j, k ≥ 1,

(i) φj |θj , ψj |θj ,
(ii) (θ1θ2 · · · θj)|(φ1φ2 · · ·φj · ψ1ψ2 · · ·ψj),

(iii) (φ1φ2 · · ·φj · ψ1ψ2 · · ·ψk)|(θ1θ2 · · · θj+k),

(iv)
(∏∞

n=1 φn

)
·
(∏∞

n=1 ψn

)
=

∏∞
n=1 θn if

∏∞
n=1 θn converges.

Recall from [2] that an operator T of class C0 with Jordan model
⊕∞

j=1 S(θj) has

property (P) if ∧{θj : j ≥ 1} ≡ 1. In this case we also say that the model function

Θ = {θj : j ≥ 1} has property (P). The following corollary is a direct consequence of

Proposition 1.5.

Corollary 1.6. Let T ∈ L(H) be an operator of class C0 with model function Θ =

{θj : j ≥ 1} and property (P). Let M ∈ Lat(T ) and let Φ = {φj : j ≥ 1} be the model

function of T |M. Assume that THªM is multiplicity-free. Then the Jordan model of

THªM is S
(∏∞

j=1
θj
φj

)
.

Proof. Since THªM is multiplicity-free, we set the Jordan model of THªM to

be S(α). From Proposition 1.5 (ii) and (iii), we immediately have, for each j ≥ 1,

(θ1 · · · θj)|(φ1 · · ·φj ·α) and (α·φ1 · · ·φj)|(θ1 · · · θjθj+1). Thus
(
θ1
φ1
· · · θjφj

)
|α and α|θj+1 ·(

θ1
φ1
· · · θjφj

)
. Since ∧{θj : j ≥ 1} ≡ 1, we have α ≡ ∏∞

j=1
θj
φj

. Q.E.D.

The above corollary is false if T does not have property (P). Indeed, if ∧{θj : j ≥
1} = θ0 and θ0 6≡ 1, then T ⊕ S(θ0) ∼ T .

Finally, we need to recall some facts about maximal vectors.
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Let T ∈ L(H) be of class C0 and M ∈ Lat(T ). Recall that a vector x is said to

be maximal for T if u(T )x = 0 implies u(T ) = 0. For each nonzero vector x ∈ H write

hT (x,M) = ∧{
u ∈ H∞ : u is inner and u(T )x ∈ M}

. A vector x is called (T,M)

- maximal if hT (y,M)|hT (x,M) for all y ∈ H. Equivalently, PHªMx is maximal for

THªM.

Our next result is a consequence of the “splitting principle”(cf. [2]); it can be also

viewed as a special case of Proposition 1.17 of [3].

Proposition 1.7. Let T ∈ L(H) be an operator of class C0 and let
⊕∞

j=1 S(θj) be the

Jordan model of T . Suppose that {xj : j ≥ 1} is a sequence of vectors in H satisfying

the following two conditions:

(i) x1 is maximal for T ,

(ii) for each j ≥ 2, xj is (T,Mj−1)-maximal where Mj−1 = KT (x1, . . . , xj−1).

Then θ1 = mT and θj = hT (xj ,Mj−1) for each j ≥ 2.

For a given M ∈ Lat(T ), the set of all (T,M)-maximal vectors is a dense Gδ set

in H. This fact together with the Baire category theorem gives the first part of the

next lemma; the second part is from [6].

Lemma 1.8. Let T ∈ L(H) be an operator of class C0 and {Mα}α∈A a collection

of invariant subspaces of T . Suppose that either of the following two conditions is

satisfied:

(i) the set {Mα : α ∈ A} is countable,

(ii) the set {Mα : α ∈ A} is totally ordered by inclusion.

Then the set
{
x ∈ H : x is (T,Mα)−maximal for all α ∈ A}

is a dense Gδ set.

2. LITTLEWOOD-RICHARDSON SEQUENCES OF C0 OPERATORS

Classical Littlewood-Richardson sequences are certain sequences of partitions where

by a partition we mean a finite decreasing sequence of nonnegative integers. We refer

the interested readers to I. Macdonal’s book [10]. Here we will generalize Littlewood-

Richardson sequences to sequences of model functions. If all the inner functions in the

model functions are of the form z 7→ zn, our definition coincides with the classical one.
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As in [9], we define Littlewood-Richardson sequences in terms of Littlewood-Richardson

pairs and triples. This definition is equivalent to that in [6].

Definition 2.1. Let Φ = {φj : j ≥ 1}, Ψ = {ψj : j ≥ 1}, and Θ = {θj : j ≥ 1} be

model functions.

(i) (Φ,Ψ) is a Littlewood-Richardson pair if ψj+1|φj and φj |ψj for all j ≥ 1.

(ii) (Φ,Ψ,Θ) is a Littlewood-Richardson triple if both (Φ,Ψ) and (Ψ,Θ) are Littlewood-

Richardson pairs and

θ1 · · · θj
ψ1 · · ·ψj

∣∣∣ψ1 · · ·ψj−1

φ1 · · ·φj−1
, for all j ≥ 1. (2.1)

(In particular for j = 1 this means θ1 = ψ1.)

(iii) A sequence of model functions (Φ(k))∞k=0 is a Littlewood-Richardson sequence if

(Φ(k−1),Φ(k),Φ(k+1)) is a Littlewood-Richardson triple for each k ≥ 1.

Remark 2.2.

(i) If (Φ,Ψ) is a Littlewood-Richardson pair, then
∏
j≥1(ψjφj ) is an inner function and(∏∞

j=1
ψj
φj

)
|ψ1.

(ii) If (Φ(k))∞k=0 is a Littlewood-Richardson sequence and Φ(k) = {φ(k)
j : j ≥ 1}, then

(ii) in Definition 2.1 implies that φ(i)
k = φ

(k)
k for all i ≥ k.

(iii) If (Φ(k))∞k=0 is a Littlewood-Richardson sequence and Φ(0) has property (P ) then

Φ(k) has property (P ) for all k.

Let T ∈ L(H) be an operator of class C0 and let M be an invariant subspace of T .

Our goal in this section is to associate a Littlewood-Richardson sequence with T and M
in the following way: we construct a chain of invariant subspaces M = M0 ⊂M1 ⊂ . . .

such that ∨k≥1Mk = H and the model functions Φ(k) of T |Mk form a Littlewood-

Richardson sequence. Note that another, entirely different approach how to associate a

Littlewood-Richardson sequence to a pair (T,M) was given in [6]. Our approach here

is analogous to that in [9].

Proposition 2.3. Let T ∈ L(H) be an operator of class C0 with model function

Ψ = {ψj : j ≥ 1}. Let M ∈ Lat(T ), and let Φ = {φj : j ≥ 1} be the model function of

T |M. Suppose that THªM is multiplicity-free. Then (Φ,Ψ) is a Littlewood-Richardson

pair.
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Moreover, if T has property (P) then the Jordan model of THªM is S
(∏∞

j=1
ψj
φj

)
.

Proof. Since THªM is multiplicity-free, there exists x ∈ H such that H = M∨
KT (x). For every inner function u we have u(T )H = u(T )M∨KT (u(T )x) so that

µ
(
T |u(T )M) ≤ µ

(
T |u(T )H) ≤ µ

(
T |u(T )M)

+ 1.

By Proposition 1.3, we have ψj = ∧{
u : µ

(
T |u(T )H)

< j
}

and

φj = ∧{
u : µ

(
T |u(T )M)

< j
}
.

Therefore φj |ψj and ψj+1|φj for all j.

If T has property (P) then the Jordan model of THªM is S
(∏∞

j=1(ψjφj )
)

by Corol-

lary 1.6. Q.E.D.

Our next goal is to show that if µTHªM = 2, then one can find L ∈ Lat(T ) such

that M⊂ L and the model functions of T |M, T |L and T form a Littlewood-Richardson

triple.

For the rest of the section, fix an operator T ∈ L(H) of class C0 with minimal

function mT . Write mT as

mT (z) = γ
∏

λ∈D

(bλ(z))n(λ) exp

(∫

T

z + ζ

z − ζ
dν(ζ)

)
,

where |γ| = 1, bλ(z) = λ̄
λ ( λ−z

1−λ̄z ) if λ 6= 0 and b0(z) = z, n : D → {0, 1, 2 . . .} is the

Blaschke function for θ: that is, n satisfies
∑
λ∈D n(λ)(1 − |λ|) < ∞, and finally ν is

a positive singular measure on T = {z : |z| = 1}.
Let u be an inner divisor of mT . Then

u(z) = γu
∏

λ∈D

(bλ(z))nu(λ) exp

(∫

T

z + ζ

z − ζ
dνu(ζ)

)
,

where |γu| = 1, 0 ≤ nu(λ) ≤ n(λ) (λ ∈ D) and νu is a positive measure satisfying

0 ≤ νu ≤ ν.

Thus we can associate with each inner divisor u of mT the function fu : D → [0,∞)

defined by
fu|D = nu,

fu|T =
dν

dνu
(the Radon−Nikodym derivative).
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The function fu is integer-valued on D,
∑
λ∈D fu(λ)(1 − |λ|) < ∞ and fu|T ∈ L1(ν),

0 ≤ fu|T ≤ 1; it is defined for all λ ∈ D and a.e.(ν) on T.

If u and v are inner divisors of mT then

u|v ⇐⇒ fu(z) ≤ fv(z),

fuv(z) = fu(z) + fv(z),

fu∧v(z) = min{fu(z), fv(z)}
a.e.(ν); by a.e.(ν) we mean that the relation is true for each z ∈ D and almost every

z ∈ T.

Let b(z) =
∏
λ∈D(bλ(z))min{n(λ),1} and denote by e(z) = exp

(∫
T
z+ζ
z−ζ dν(ζ)

)
the

singular part of mT . Thus (a.e.(ν)),

fb(z) =

{
min{1, fmT } (z ∈ D),
0 (z ∈ T),

and

fe(z) =

{
0 (z ∈ D),
1 (z ∈ T).

Theorem 2.4. Let T ∈ L(H) be an operator of class C0 and let M ∈ Lat(T ) satisfy

µ(THªM) = 2. Then there exists L ∈ Lat(T ), M ⊂ L, such that THªL and TLªM

are multiplicity-free and the model functions of T |M, T |L and T form a Littlewood-

Richardson triple.

Proof. It follows from Lemma 1.4 that we can find a vector x ∈ H such that x is

(T, bm(T )M)-maximal for all integers m ≥ 0 and (T, et(T )M)-maximal for all t ∈ [0, 1].

Fix x with these properties. Set L = M∨KT (x). Since µ(THªM) = 2 and x is also

(T,M)-maximal, we have immediately that both THªL and TLªM are multiplicity-free.

Let Φ = {φj : j ≥ 1}, Ψ = {ψj : j ≥ 1}, and Θ = {θj : j ≥ 1} be the model

functions associated with T |M, T |L, and T respectively. From Theorem 2.1, we have

that (Φ,Ψ) and (Ψ,Θ) are Littlewood-Richardson pairs. To finish the proof, it suffices

to show that, for each j ≥ 1,

θ1 · · · θj
ψ1 · · ·ψj

∣∣ψ1 · · ·ψj−1

φ1 · · ·φj−1
,

i.e.,
j∑

i=1

(fθi(λ)− fψi(λ)) ≤
j−1∑

i=1

(fψi(λ)− fφi(λ)) (a.e.(ν)). (2.4)
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We prove (2.4) in several steps. Fix j ≥ 1.

Step I. Let g be either bm or et for some integer m ≥ 0 or t ∈ [0, 1]. Let u

and v be the minimal functions of T
g(T )Lªg(T )M and T

g(T )Hªg(T )L, respectively. Then

u(T )g(T )x ∈ g(T )M and the maximality of x implies that u(T )g(T )H ⊂ g(T )M ⊂
g(T )L, so that v|u.

Step II. Let g, u and v be as in Step I. It is easy to see (using Proposition

1.1) that the Jordan models of T |g(T )M, T |g(T )L, and T |g(T )H are
⊕∞

i=1 S( φi
g∧φi ),⊕∞

i=1 S( ψi
g∧ψi ) and

⊕∞
i=1 S( θi

g∧θi ), respectively. From Proposition 1.5, we have

j∏

i=1

θi
g ∧ θi

∣∣v ·
j∏

i=1

ψi
g ∧ ψi

and

u ·
j−1∏

i=1

φi
g ∧ φi

∣∣
j∏

i=1

ψi
g ∧ ψi .

This, together with v|u, gives

j∏

i=1

( θi
ψi
· g ∧ ψi
g ∧ θi

)∣∣
j−1∏

i=1

(ψi
φi
· g ∧ φi
g ∧ ψi

)
· ψj
g ∧ ψj .

Thus, a.e.(ν),

j∑

i=1

(
fθi(z)− fψi(z) + min{fg(z), fψi(z)} −min{fg(z), fθi(z)}

)

≤
j−1∑

i=1

(
fψi(z)− fφi(z) + min{fg(z), fφi(z)} −min{fg(z), fψi(z)}

)

+fψj (z)−min{fg(z), fψj (z)}.

(2.5)

Step III. Let z ∈ D, and let g = bfψj (z). Then fg(z) = fψj (z). Therefore, for

1 ≤ i ≤ j we have fψi(z) ≥ fg(z) and fθi(z) ≥ fg(z). Since (Φ,Ψ) is a Littlewood-

Richardson pair, for each 1 ≤ i ≤ j − 1 we have fφi(z) ≥ fg(z). Now (2.5) reduces

to
j∑

i=1

(
fθi(z)− fψi(z)

) ≤
j−1∑

i=1

(
fψi(z)− fφi(z)

)

so that we have (2.4) for z ∈ D.
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Step IV. Since fes(z) = s for z ∈ T (a.e.(ν)), if we set g = es, then (2.5) reduces

to
j∑

i=1

(
fθi(z)− fψi(z) + min{s, fψi(z)} −min{s, fθi(z)}

)

≤
j−1∑

i=1

(
fψi(z)− fφi(z) + min{s, fφi(z)} −min{s, fψi(z)}

)

+fψj (z)−min{s, fψj (z)}.

(2.6)

a.e.(ν). Denote by A the set of all points z ∈ T for which (2.6) is true for all rational

s ∈ [0, 1]. Then ν(A) = ν(T).

Fix z ∈ A. From the continuity in s we infer that (2.6) is true for all s ∈ [0, 1]. In

particular, for s = fψj(z) we have

j∑

i=1

(
fθi(z)− fψi(z)

) ≤
j−1∑

i=1

(
fψi(z)− fφi(z)

)

for all z ∈ A, so that (2.4) is true. Q.E.D.

Theorem 2.5. Let M ∈ Lat(T ). There exists a sequence of invariant subspaces

M = M0 ⊂ M1 ⊂ · · · ⊂ H, such that ∨∞k=0Mk = H and the model functions

Φ(k) = {φ(k)
j : j ≥ 1} of T |Mk form a Littlewood-Richardson sequence.

Moreover, if T has property (P) then the Jordan model of THªM is

∞⊕

k=1

S
( ∞∏

j=1

φ
(k)
j

φ
(k−1)
j

)
.

Proof. Let G = {bm : m = 0, 1 . . .} ∪ {et : t ∈ [0, 1]}.
We construct the required sequence of invariant subspaces {Mi} inductively. As

in Theorem 2.4, let x1 be (T, g(T )M))-maximal for all g ∈ G and M1 = M∨KT (x1).

For j ≥ 2, take xj to be (T, g(T )Mj−1)-maximal for all g ∈ G and define Mj =

Mj−1 ∨KT (xj). It follows immediately from Theorem 2.4 that (Φ(k)) is a Littlewood-

Richardson sequence. Moreover, since each xj can be chosen from a dense subset of H,

it is easy to achieve that ∨∞k=0Mk = H.

The second statement follows from Proposition 1.7. Q.E.D.
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3. CONSTRUCTION

The aim of this section is to construct an operator T of class C0 and a chain of

invariant subspaces M0 ⊂M1 ⊂ . . . of T such that the model functions of T |Mk form

a given Littlewood-Richardson sequence (Φ(k)).

To keep the description of the construction clear, we will construct operators similar

to the Jordan model operators. It is clear that the Sz.-Nagy-Foias functional calculus

can be extended to the operators that are similar to completely nonunitary operators.

That is, if T = XT ′X−1 and T ′ is a completely nonunitary contraction, the map

u 7→ u(T ) = Xu(T ′)X−1 is a continuous algebra homomorphism. If T is similar to an

operator T ′ in the class C0, then we define the Jordan model of T to be the Jordan

model of T ′. Similarly, we extend the notions of multiplicity and maximal vectors.

We set up some notations that we will need throughout the section. Let Ŝ :
⊕∞

1 H2 → ⊕∞
1 H2 be the unilateral shift of infinite multiplicity. Recall that for

a model function Φ = {φj : j ≥ 1} we write H(Φ) =
⊕∞

j=1(H2 ª φjH2). The standard

basis {ej} of S(Φ) := PH(Φ)Ŝ|H(Φ) is defined to be

ej = PH(Φ)

(
(
j−1⊕

i=1

0)⊕ 1⊕ (
∞⊕

i=j+1

0)
)
.

Let T be similar to S(Φ), say T = XS(Φ)X−1. The set of vectors {xj = Xej : j =

1, 2, . . .} is called a standard basis of T (induced by X). Clearly the vectors xj determine

the similarity X uniquely. Set C{xj} = ‖X‖‖X−1‖.
Our first step is to build an operator T and M ∈ Lat(T ) such that the model

functions of T |M and T coincide with a given Littlewood-Richardson pair.

Proposition 3.1. Let (Φ,Ψ) be a Littlewood-Richardson pair, φ = {Φj}, Ψ = {Ψj},
let Φ have property (P ) and ε > 0. Suppose that T ∈ L(M) is similar to S(Φ), with

the standard basis {xj : j ≥ 1}. Then there exists an extension V of T (that is,

M ∈ Lat(V ) and V |M = T ) such that V is similar to S(Ψ), with a standard basis

{yj}, and:

(i) VHªM is multiplicity-free with minimal function
∏∞
j=1

ψj
φj

,

(ii) ∨{ψj
φj

(V )yj , xj
}

= ∨{yj+1, xj} for all j = 1, 2, . . .,

(iii) C{yj} < (1 + ε)C{xj}.

11



Proof. Let m = ψ1. We first consider the case when M =
⊕∞

j=1(mφjH
2 ª

mH2) and T = PMŜ|M. Clearly T is unitarily equivalent to S(Φ) and the vectors

xj = PM(mφj ej) (j ≥ 1) form a standard basis for T . Set K =
⊕∞

n=1(H2 ª mH2),

ŜK = PKŜ|K, and let a be a positive constant large enough so that a > 2 and 2
a−2 < ε.

Define

yj = PK
(j−1⊕

i=1

0⊕ m

ψj
⊕

∞⊕

i=j+1

1
ai−j

· m
ψj

· φj · · ·φi−1

ψj+1 · · ·ψi
)
.

Let H = ∨{ŜnKyj : n ≥ 0, j ≥ 1} and V = ŜK|H. It is obvious from the definition of yj

that
ψj
φj

(V )yj − xj =
1
a
yj+1. (3.1)

Thus (ii) is satisfied.

Also, (3.1) implies M ⊂ H, M ∈ Lat(V ), and T = V |M. It is easy to show

by induction on j that yj ∈ M ∨ KV (y1), so that H = M ∨ KV (y1) and VHªM is

multiplicity-free.

Consider the lower triangular operator matrix

B :
∞⊕

j=1

H2 →
∞⊕

j=1

H2

defined by

B =




1 0 0 0 . . .
1
a
φ1
ψ2

1 0 0 . . .
1
a2

φ1φ2
ψ2ψ3

1
a
φ2
ψ3

1 0 . . .

...
...

...
...

...


 .

Clearly B is a bounded operator, ‖B‖ ≤ ∑∞
k=0 a

−k = 1
1−a−1 and ‖B−I‖ ≤ ∑∞

k=1 a
−k =

1
a−1 < 1 so that B is invertible and ‖B−1‖ = ‖∑∞

k=0(I −B)k‖ ≤ ∑∞
k=0

1
(a−1)k = a−1

a−2 .

Thus ‖B‖ · ‖B−1‖ < 1 + ε.

Let B̂ : K → K be the operator defined by B̂ = PKB|K. Then B̂ is an invertible

operator and ‖B̂‖ · ‖B̂−1‖ < 1 + ε.

Let K0 =
⊕∞

j=1

(
m
ψj
H2 ªmH2

)
. Then B̂K0 = H and B̂ is a similarity between

PK0 Ŝ|K0 (which is unitarily equivalent to S(Ψ)) and V . From Corollary 1.6 we have

immediately that the minimal function of VHªM is
∏∞
j=1

ψj
φj

. Further, B̂ carries the

standard basis to {yj}, so that C{yj} < 1 + ε. This finishes the proof for the case when

T is unitarily equivalent to SΦ.

12



The general case of T being only similar to S(Φ) follows immediately from the

following lemma.

Lemma 3.2. Let H,M′ be Hilbert spaces, let V ∈ L(H), M ∈ Lat(V ), T = V |M,

T ′ ∈ L(M′), and let X : M → M′ be an invertible operator satisfying XT = T ′X.

Then there exist a Hilbert space H′ ⊃ M′, V ′ ∈ L(H′) and an invertible operator

Y : H → H′ such that M′ ∈ Lat(V ′), V ′|M′ = T ′, Y V = V ′Y , and ‖Y ‖‖Y −1‖ =

‖X‖‖X−1‖.

Proof. Let N = HªM and H′ = M⊕N . Define Y : H → H′ by Y = X ⊕ IN

and V ′ ∈ L(H′) by V ′ = Y V Y −1. Then V ′ and Y satisfy all conditions required.

This finishes the proof of Lemma 3.2 and also of Theorem 3.1. Q.E.D.

Corollary 3.3. Let Φ,Ψ be model functions. The following conditions are equivalent:

(i) (Φ,Ψ) is a Littlewood-Richardson pair.

(ii) There exist an operator T of class C0 and M ∈ Lat(T ), such that THªM is

multiplicity free and the model functions of T |M and T are Φ and Ψ, respectively.

Now we are ready to construct an operator T similar to an operator in the class C0

and associated with a given Littlewood-Richardson sequence in the sense of Theorem

2.5.

Theorem 3.4. Let {Φ(k)}∞k=0 be a Littlewood-Richardson sequence with ∧∞j=1φ
(0)
j = 1.

Then there exist T ∈ L(H), and a sequence of increasing invariant subspaces, M0 ⊂
M1 ⊂ . . . ⊂ H such that H = ∨∞k=0Mk and

(i) T |Mk is similar to S(Φ(k)),

(ii) TMkªMk−1 is multiplicity-free for all k,

(iii) T is similar to an operator of class C0 with Jordan model
⊕∞

k=1 S(φ(k)
k ),

(iv) the Jordan model of THªM is
⊕∞

k=1 S
(∏∞

j=1
φ

(k)
j

φ
(k−1)
j

)
.

Proof. Choose positive numbers ε1, ε2, . . . such that
∏∞
k=1(1 + εk) < ∞. Let

T ∈ L(M0) be an operator unitarily equivalent to S(Φ(0)). Apply Proposition 3.1

inductively, so that we obtain an increasing sequence of subspaces M0 ⊂M1 ⊂M2 ⊂
. . . and an extension of T defined in each Mk, which we will still denote by T , such

that:

13



(1) T |Mk is similar to S(Φ(k)),

(2) TMkªMk−1 is multiplicity-free,

(3) ‖T |Mk‖ ≤ (1 + εk)‖T |Mk−1‖ for k = 1, 2, . . .,

(4) for each k ≥ 0, T |Mk has a standard basis {x(i)
j : i ≤ k, j ≥ 1}, with the property

that

∨
{ φ

(k)
j

φ
(k−1)
j

(T )x(k)
j , x

(k−1)
j

}
= ∨{

x
(k)
j+1, x

(k−1)
j

}
. (3.2)

Let H = ∨∞k=0Mk. Extend T to H, and we still denote the extension by T . Thus

‖T‖ ≤ ∏∞
k=1(1+ εk) <∞. It follows from Theorem 1.4 that the Jordan model function

of T is {∨∞k=0φ
(k)
1 ,∨∞k=0φ

(k)
2 , . . .} = {φ(1)

1 , φ
(2)
2 , . . .}. Thus (i)-(iii) are satisfied.

It remains to prove (iv). To simplify the notation, we set β(k)
j =

φ
(k)
j

φ
(k−1)
j

. Thus

condition (2.1) in Definition 2.1 becomes

β
(k)
1 . . . β

(k)
j |β(k−1)

1 . . . β
(k−1)
j−1 (3.3)

and (3.2) gives

β
(k)
j (T )x(k)

j ∈ ∨{x(k)
j+1, x

(k−1)
j } and x

(k)
j+1 ∈ ∨{β(k)

j (T )x(k)
j , x

(k−1)
j }. (3.4)

We divide the proof of (iv) into several steps.

Claim 1. For all k ≥ 0 and j ≥ 1,

x
(k)
j ∈M0 +

(
β

(k)
1 · · ·β(k)

j−1

)
(T )Mk (3.5)

(we use the convention that β(0)
j ≡ 1).

Obviously (3.5) holds for k = 0 or j = 1. We will prove Claim 1 by double

induction, that is, if (3.5) holds for all (k′, j′) with k′ ≤ k, j′ ≤ j and (k′, j′) 6= (k, j),

then we prove (3.5) for (k, j). Suppose that

x
(k−1)
j ∈M0 +

(
β

(k−1)
1 · · ·β(k−1)

j−1

)
(T )Mk−1

and

x
(k)
j−1 ∈M0 +

(
β

(k)
1 · · ·β(k)

j−2

)
(T )Mk.
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Using (3.4), we have

x
(k)
j ∈ ∨{

x
(k−1)
j−1 , β

(k)
j−1(T )x(k)

j−1

}

⊂M0 +
(
β

(k−1)
1 · · ·β(k−1)

j−2

)
(T )Mk−1 +

(
β

(k)
1 · · ·β(k)

j−1

)
(T )Mk

⊂M0 +
(
β

(k)
1 · · ·β(k)

j−1

)
(T )Mk,

since (3.3) and Mk−1 ⊂Mk.

This finishes the proof of Claim 1.

Claim 2. For each j ≥ 0,

(
β

(k)
1 · · ·β(k)

j φ
(k)
j+1

)
(T )x(k)

1 ∈M0 +
(
β

(k)
1 · · ·β(k)

j φ
(k)
j+1

)
(T )Mk−1.

Apply (3.4) repeatedly to obtain

(β(k)
1 . . . β

(k)
j )(T )x(k)

1

∈ ∨ {(β(k)
2 . . . β

(k)
j )(T )x(k−1)

1 , (β(k)
2 . . . β

(k)
j )(T )x(k)

2 }
⊂ ∨ {(β(k)

2 . . . β
(k)
j )(T )x(k−1)

1 , (β(k)
3 . . . β

(k)
j )(T )x(k−1)

2 , (β(k)
3 . . . β

(k)
j )(T )x(k)

3 } ⊂ · · ·
⊂ ∨ {(β(k)

2 . . . β
(k)
j )(T )x(k−1)

1 , (β(k)
3 . . . β

(k)
j )(T )x(k−1)

2 , . . .

(β(k)
i+1 . . . β

(k)
j )(T )x(k−1)

i , . . . , β
(k)
j (T )x(k−1)

j−1 , x
(k−1)
j , x

(k)
j+1}.

Using Claim 1 and (3.3), we have, for each i = 1, . . . , j − 1,

(β(k)
i+1 . . . β

(k)
j )(T )x(k−1)

i ∈M0 + (β(k−1)
1 . . . β

(k−1)
i−1 β

(k)
i+1 . . . β

(k)
j )(T )Mk−1

⊂M0 + (β(k)
1 . . . β

(k)
i−1β

(k)
i β

(k)
i+1 . . . β

(k)
j )(T )Mk−1,

and thus,

(β(k)
1 . . . β

(k)
j )(T )x(k)

1 ∈M0 + β
(k)
1 . . . β

(k)
j (T )Mk−1 + ∨{x(k)

j+1}.

Since φ(k)
j+1(T )x(k)

j+1 = 0, we have

(β(k)
1 . . . β

(k)
j · φ(k)

j+1)(T )x(k)
1 ∈M0 + (β(k)

1 . . . β
(k)
j · φ(k)

j+1)(T )Mk−1,

which finishes the proof of Claim 2.

Set α(k) =
∏∞
j=1 β

(k)
j .

15



Claim 3. α(k)(T )Mk ⊂M0 + α(k)(T )Mk−1.

It is sufficient to show α(k)(T )x(k)
1 ∈ M0 + α(k)(T )Mk−1 since Mk = Mk−1 ∨

KT (x(k)
1 ). Clearly α(k)|β(k)

1 . . . β
(k)
j · φ(k)

j+1 for all j ≥ 0. By Claim 2, β(k)
1 . . . β

(k)
j ·

φ
(k)
j+1(T )x(k)

1 ∈ M0 + α(k)(T )Mk−1. Furthermore, α(k) = ∧j≥0(β(k)
1 . . . β

(k)
j · φ(k)

j+1),

hence α(k)(T )x(k)
1 ∈M0 + α(k)Mk−1.

Claim 4. The Jordan model function of TMkªM0 is
⊕k

i=1 S(α(i)).

Clearly the multiplicity of TMkªM0 ≤ k. Let
⊕k

i=1 S(γ(i)) be the Jordan model

of TMkªM0 . Observe that

k∏

i=1

γ(i) =
∞∏

i=1

φ
(k)
i

φ
(0)
i

=
k∏

i=1

α(i). (3.6)

For j ≤ k, α(k)|α(j) and Claim 3 implies that

α(j)(T )Mk ⊂M0 + α(j)(T )Mk−1

⊂M0 + α(j)(T )Mk−2 ⊂ . . .

⊂M0 + α(j)(T )Mj−1.

Thus, µ(TMkªM0 |ranα(j)(TMkªM0)) ≤ j−1. Consequently, γ(j)|α(j). Using (3.6), we

have α(j) ≡ γ(j).

Finally, apply Theorem 1.4 to THªM0 with the increasing sequence of invariant

subspaces {Mk ªM0}, to establish (iv). Q.E.D.

Combining Theorem 2.2 and Theorem 3.4 we have the following characterization

of all the possible Jordan models of (T, T |M, THªM) when T has property (P).

Corollary 3.5. The following statements are equivalent:

(i) There exist an operator T ∈ L(H) of class C0 with property (P) and M∈ Lat(T )

such that the Jordan models of T |M, THªM, and T are S(Φ), S(Ψ), and S(Θ),

respectively.

(ii) There exists a Littlewood-Richardson sequence (Φ(0),Φ(1), . . .), Φ(k) = {Φ(k)
j }∞j=1

such that Φ(0) = Φ, θj = φ
(j)
j and ψj =

∏∞
i=1

Φ(j)
i

Φ(j−1)
i

for all j.
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classe C0. III, Acta Sci. Math. (Szeged) 37 (1975), 313-322.

[5] H. Bercovici, W. Li, and T. Smotzer, Classical linear algebra inequalities for the

Jordan models of C0 operators, Linear Alg. Appl. 251 (1997), 341-350.

[6] H. Bercovici, W. Li, and T. Smotzer, A continuous version of the Littlewood-

Richardson rule and its application to invariant subspaces, preprint.

[7] J. Green, Symmetric functions and p-modules, Lecture notes, Manchester, 1961.

[8] T. Klein, The multiplication of Schur-functions and extensions of p-modules, J.

London Math. Soc. 43 (1968), 280–284.

[9] W. Li and V. Müller, Invariant subspaces of nilpotent operators and LR-sequences,

preprint.

[10] I. G. Macdonald, Symmetric functions and Hall polynomials, Oxford University

Press, New York, 1995.

[11] B. Sz.-Nagy and C. Foias, Harmonic Analysis of Opertors on Hilbert Space, North-

Holland, Amsterdam, 1970.

[12] G. Ph. A. Thijsse, The local invariant factors of a product of holomorphic matrix

functions: the order 4 case, Integral Equations Operator Theory 16 (1993),

277–302.

School of Mathematics

Georgia Institute of Technology

Atlanta, Georgia 30332

U.S.A.

e-mail: li@math.gatech.edu

Institute of Mathematics

Academy of Sciences of the Czech Republic

115 67 Prague 1, Žitná 25
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