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abstract: We show that most of the theory of Hermitian Banach algebras can
be proved for normed ∗-algebras without the assumption of completeness.

The condition r(x) ≤ p(x) for all x (where p(x) = r(x∗x)1/2 is the Pták function),
which is essential in the theory of Hermitian Banach algebras, is replaced for normed
∗-algebras by the condition r(x + y) ≤ p(x) + p(y) for all x, y. In case of Banach
∗-algebras these conditions are equivalent.

Introduction:

The investigation of Banach algebras with involution and their representations in
the algebra of bounded operators on a Hilbert space was started in 1943 by I. M.
Gelfand and M. A. Naimark [3] and it was continued by many authors (see e.g.
[4], [6], [8], [10], [11], [12]). The theory culminated by the following, already classi-
cal, results: characterization of C∗-algebras as those satisfying ‖x∗x‖ = ‖x‖2, the
Vidav–Palmer theorem and the characterization of the Hermitian Banach algebras.
All these results are closely connected to each other. A survey of the theory can be
found in [9]. An important tool in the above mentioned results is the Ford square
root lemma [2].

The aim of this paper is to show that, rather surprisingly, a great part of the
theory can be proved without the assumption of completeness (which is of course
necessary for existence of square roots, inverse elements etc.).

All algebras under consideration are complex and possess identity elements de-
noted by 1. The set of real and complex numbers will be denoted by R and C,
respectively.

Let A be a normed algebra with involution. Denote by Ã the completion of
A (we do not suppose the continuity of the involution so that in general it is not
possible to extend the involution to Ã). The spectral radius of an element a ∈ A
will be denoted by

r(a) = lim
n→∞

‖an‖1/n = max{|λ|, λ ∈ σÃ(a)},

where
σÃ(a) = {λ ∈ C, λ− a is not invertible in Ã}.

The spectrum in the original algebra σA(a) = {λ ∈ C, λ− a is not invertible in A}
is in general unbounded and we shall not use it.

We denote by p(a) = r(a∗a)1/2 the Pták function of an element a ∈ A.

1The research has been supported by a grant from La Junta de Andalućıa and by
the Department of Applied Mathematics, University of Seville.
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Clearly p(a) = r(a2)1/2 = r(a) for every selfadjoint element of A. As r(a∗a) =
max{|λ|, λ ∈ σÃ(a∗a)} = max{|λ|, λ ∈ σÃ(aa∗)} = r(aa∗), we have p(a∗) = p(a)
for every a ∈ A. On the other hand in general r(a∗) is not equal to r(a). The set
of all selfadjoint elements of A will be denoted by H(A). We shall write a ≥ 0 if
a∗ = a and σÃ(a) ⊂ < 0,∞).

Let us recall the basic properties of Hermitian Banach algebras. From a great
number of equivalent conditions (see [9], Theorem 5,10) we choose the most impor-
tant:

Theorem: Let A be a Banach ∗-algebra. Then the following conditions are equiv-
alent:
1) A is a Hermitian Banach algebra (i.e. σ(a) ⊂ R for all selfadjoint a ∈ A)
2) r(x) ≤ p(x) for all x ∈ A
3) p(x + y) ≤ p(x) + p(y) for all x, y ∈ A
4) 1 + x∗x is invertible for all x ∈ A.

In this paper we shall use the following definition:

Definition: Let A be a normed ∗-algebra. We say that A is an H-algebra if r(x+y) ≤
p(x) + p(y) for all x, y ∈ A.

Clearly, the condition r(x + y) ≤ p(x) + p(y) implies r(x) ≤ p(x) by setting
y = 0. On the other hand r(x + y) ≤ p(x) + p(y) is an immediate consequence of
properties 2) and 3) in the theorem above. Thus a Banach ∗-algebra is Hermitian
if and only if it is an H-algebra. From this point of view (and also taking into
account the subsequent results), H-algebras deserve to be called Hermitian. We
were afraid, however, that this notation might be a little bit confusing.

Remark 1. Let τA(a) be the approximate point spectrum (see [5]) of an element

a ∈ A, i.e. τA(a) = τ
(l)
A ∪ τ

(r)
A , where

τ
(l)
A (a) = {λ ∈ C, inf{‖(a− λ)x‖, x ∈ A, ‖x‖ = 1} = 0} and

τ
(r)
A (a) = {λ ∈ C, inf{‖x(a− λ)‖, x ∈ A, ‖x‖ = 1} = 0}.

It is easy to see that τ
(l)
A (a) = τ

(l)

Ã
(a) and τ

(r)
A (a) = τ

(r)

Ã
(a).

It is well - known that δσÃ(a) ⊂ τ
(l)

Ã
(a)∩ τ

(r)

Ã
(a) and τ

(l)

Ã
(a)∪ τ

(r)

Ã
(a) ⊂ σÃ(a).

So τ̂
(l)
A (a) = τ̂

(r)
A (a) = τ̂A(a) = σ̂Ã(a), where M̂ denotes the polynomially

convex hull of M . This means that σÃ(a) can be replaced by τA(a) (or by

τ
(l)
A (a), τ (r)

A (a),respectively) in all conditions that will be considered later. For ex-
ample a ≥ 0 if and only if a∗ = a and τA(a) ⊂ < 0,∞). The approximate point
spectrum has the aesthetic advantage that it is not necessary to go out of the al-
gebra A to the define it. On the other hand the spectrum σÃ(a) in the Banach
algebra Ã is more conveniente to use, therefore in the following we shall stick to it.
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Theorem 1: Let A be a normed ∗-algebra satisfying r(x) ≤ p(x) for every x ∈ A.
Then
1) σÃ(a) ⊂ R for every a ∈ H(A)
2) if a, b ∈ H(A) then r(ab) ≤ r(a)r(b)
3) p(xy) ≤ p(x)p(y) for all x, y ∈ A
4) r(x) = r(x∗) = lim

n→∞
p(xn)1/n = inf

n
p(xn)1/n for all x ∈ A.

PROOF.
1) Suppose that there exists a ∈ H(A) and α + iβ ∈ σÃ(a), where α, β ∈ R, β 6= 0.

Then, for every real t, we have

α + iβ + it ∈ σÃ(a + it), i.e. r(a + it)2 ≥ α2 + (β + t)2.

On the other hand

p(a + it)2 = r((a− it)(a + it)) = r(a2 + t2) ≤ r(a2) + t2.

Thus

(β + t)2 ≤ r(a + it)2 ≤ p(a + it)2 ≤ r(a2) + t2,

2βt + β2 ≤ r(a2)

for every real t. Hence β = 0, a contradiction.

2) Let a, b ∈ H(A). Then

r(ab) ≤ p(ab) = r(baab)1/2 = r(a2b2)1/2.

By the induction we get

r(ab) ≤ r(a2k

b2k

)1/2k ≤ ‖a2k‖1/2k‖b2k‖1/2k −→ r(a)r(b) as k →∞.

3) Let x, y ∈ A. Then

p(xy) = r(y∗x∗xy)1/2 = r(x∗xyy∗)1/2 ≤ r(x∗x)1/2r(yy∗)1/2 = p(x)p(y).

4) By 3) we have p(xn+m) ≤ p(xn)p(xm) for every positive integers n,m. It is well-
known that this implies that the limit lim

n→∞
p(xn)1/n exists and lim

n→∞
p(xn)1/n =

inf
n

p(xn)1/n. We have p(xn)1/n = r(x∗nxn)1/2n ≤ ‖x∗n‖1/2n‖x‖1/2n, hence

lim
n→∞

p(xn)1/n ≤ r(x∗)1/2r(x)1/2. Further r(x) = r(xn)1/n ≤ p(xn)1/n, and

so r(x) ≤ lim
n→∞

p(xn)1/n. Similarly r(x∗) ≤ lim
n→∞

p(x∗n)1/n = lim
n→∞

p(xn)1/n.

Thus
max{r(x), r(x∗)} ≤ lim

n→∞
p(xn)1/n ≤ r(x∗)1/2r(x)1/2.



4

Hence r(x∗) = r(x) = lim
n→∞

p(xn)1/n.

Theorem 2: Let A be a normed ∗-algebra. Suppose that σÃ(a) ⊂ R for every
a ∈ H(A), and a + b ≥ 0 whenever a, b ∈ A, a ≥ 0, b ≥ 0. Then
1) If a, b ∈ H(A) then r(a + b) ≤ r(a) + r(b)
2) r(x∗ + x) ≤ 2p(x) for every x ∈ A
3) x∗x ≥ 0 for every x ∈ A.

PROOF.
1) Let conv σÃ(a) =< α, β > and σÃ(b) =< γ, δ >. Then a − α ≥ 0 and

b−γ ≥ 0, so (a+ b)− (α+γ) ≥ 0, i.e. σÃ(a+ b) ⊂ < α+γ,∞). Similarly β−a ≥ 0
and δ − β ≥ 0, so (β + δ)− (a + b) ≥ 0 and σÃ(a + b) ⊂ < α + γ, β + δ >. Hence
r(a + b) ≤ max{|α + γ|, |β + δ|} ≤ max{|α|, |β|}+ max{|γ|, |δ|} = r(a) + r(b).

2) Let x = a+ib where a, b ∈ H(A). Then x∗ = a−ib and x∗x+xx∗ = 2(a2+b2).
As r(a2 + b2) − a2 − b2 ≥ 0 and b2 ≥ 0, we conclude that r(a2 + b2) − a2 ≥ 0, i.e.
r(a2) ≤ r(a2 + b2). Hence

r(x∗+x)2 = r(2a)2 = 4r(a2) ≤ 4r(a2+b2) = 2r(x∗x+xx∗) ≤ 2(r(x∗x)+r(xx∗)) = 4r(x∗x) = 4p(x)2.

3) By the assumption σÃ(x∗x) ⊂ R for every x ∈ A since x∗x ∈ H(A). Suppose
on the contrary that there exists an element x ∈ A and λ ∈ σÃ(x∗x), λ < 0. Denote
by K = r(x∗x) ≥ |λ| > 0. Let f :< −K, K >→ R be the function defined by

f(t) =
3√
|λ| (−K ≤ t ≤ 0),

f(t) =
1√

t− λ/9
(0 ≤ t ≤ K).

Clearly, f is a continuous function on < −K,K >. Denote by δ = min

{
1√
|λ| , inf

0<t≤K
{ 1√

t
− 1√

t−λ/9
}
}

.

We have δ > 0 since lim
t→0+

( 1√
t
− 1√

t−λ/9
) = +∞ (in fact it is easy but rather tedious

to show that δ = 1√
K
− 1√

K−λ/9
). By the Stone–Weierstrass theorem there exists

a polynomial q(t) with real coefficients such that

|q(t)− f(t)| < δ (−K ≤ t ≤ K).

Then |q(t)| ≤ f(t) + δ ≤ 1√
t

for 0 < t ≤ K and

q(t) ≥ f(t)− δ ≥ 3√
|λ| −

1√
|λ| =

2√
|λ| for −K ≤ t ≤ 0.

Consider the element y = xq(x∗x) ∈ A. Then

y∗y = x∗xq(x∗x)2 = q1(x∗x), where q1(t) = tq(t)2.
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Clearly q1(t) ≤ 0 for t ≤ 0 and q1(t) = tq(t)2 ≤ t( 1√
t
)2 = 1 for 0 < t ≤ K. Therefore

σÃ(y∗y) =
{q1(µ), µ ∈ σÃ(x∗x)} ⊂ (−∞, 1 >. Let y = a + ib where a, b ∈ H(A). Then y∗ =
a− ib and y∗y +yy∗ = 2a2 +2b2 ≥ 0. Further 1−y∗y ≥ 0 and 1+yy∗ = (1−y∗y)+
(y∗y +yy∗) ≥ 0. Thus σÃ(yy∗) ⊂ < −1,∞). Since σÃ(y∗y)−{0} = σÃ(yy∗)−{0},
we conclude that σÃ(y∗y) ⊂< −1, 1 >. On the other hand q1(λ) ∈ σÃ(y∗y) where

q1(λ) = λq(λ)2 ≤ λ

(
2√
|λ|

)2

= −4, a contraction. Hence x∗x ≥ 0 for every x ∈ A.

Theorem 3: Let A be a normed ∗-algebra. Then the following conditions are
equivalent:
1) A is an H-algebra (i.e. r(x + y) ≤ p(x) + p(y) for all x, y ∈ A).
2) r(x) ≤ p(x) for every x ∈ A and a + b ≥ 0 whenever a, b ∈ A, a ≥ 0, b ≥ 0
3) r(x) ≤ p(x) for every x ∈ A and p(x + y) ≤ p(x) + p(y) for all x, y ∈ A.

PROOF.
1 ⇒ 2: If we put y = 0 we get r(x) ≤ p(x) for every x ∈ A. Also, r(x + y) ≤

p(x) + p(y) = r(x) + r(y) for all x, y ∈ H(A). Let a, b ∈ A, a ≥ 0, b ≥ 0. Set
c = r(a)− a, d = r(b)− b. Clearly c, d ∈ H(A), σÃ(c) ⊂ < 0, r(a) > and σÃ(d) ⊂ <
0, r(b) >, so that r(c) ≤ r(a), r(d) ≤ r(b) and r(c + d) ≤ r(c) + r(d) ≤ r(a) + r(b).
Hence a + b = r(a) + r(b)− (c + d) ≥ 0.

2 ⇒ 3: Let x, y ∈ A. By using Theorems 1 and 2 we get p(x + y)2 = r((x +
y)∗(x + y)) ≤ r(x∗x) + r(y∗y) + r(x∗y + y∗x) ≤ p(x)2 + p(y)2 + 2p(x∗y) ≤ p(x)2 +
p(y)2 + 2p(x∗y) ≤ p(x)2 + p(y)2 + 2p(x∗)p(y) = (p(x) + p(y))2.

3 ⇒ 1: We have r(x + y) ≤ p(x + y) ≤ p(x) + p(y).

Notation. Let A be a normed ∗-algebra. We denote by P (A) the set of all linear
functionals f ∈ A′ satisfying f(1) = 1 and |f(x)| ≤ p(x) for every x ∈ A.

Theorem 4: Let A be an H-algebra and let f ∈ P (A). Then
1) f(a) ∈ R for every a ∈ H(A)
2) f(a) ∈ conv σÃ(a) for every a ∈ H(A)
3) f(x∗x) ≥ 0 for every x ∈ A

4) f(x∗y) = f(y∗x) for all x, y ∈ A
5) |f(x∗y)|2 ≤ f(x∗x)f(y∗y) for all x, y ∈ A, in particular |f(y)| ≤ f(y∗y)1/2 for

all y ∈ A
6) f(x∗y∗yx) ≤ f(x∗x)r(y∗y) for all x, y ∈ A.

PROOF.
1) Let a ∈ H(A), f ∈ P (A) and let f(a) = α + iβ with α, β ∈ R. For every

t ∈ R we have
|f(a + it)|2 = |α + iβ + it|2 = α2 + (β + t)2

and
p(a + it)2 = r((a− it)(a + it)) = r(a2 + t2) ≤ r(a2) + t2.
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Thus α2 + β2 + 2βt ≤ r(a2) for every t ∈ R, hence β = 0 and f(a) ∈ R.

2) We have |f(b)| ≤ p(b) = r(b) for every b ∈ H(A). Let a ∈ H(A) and let
conv σÃ(a) =< α, β >. Then f(a) − α = f(a − α) ≤ r(a − α) = β − α since
conv σÃ(a− α) =< 0, β − α >. So f(a) ≤ β and similarly

β − f(a) = f(β − a) ≤ r(β − a) = β − α, so f(a) ≥ α.

Hence f(a) ∈< α, β >= conv σÃ(a).

3) Follows immediately from 2) since x∗x ≥ 0 for every x ∈ A.

4) Let x, y ∈ A and let µ be an arbitrary complex number. Then by 3) we have

0 ≤ f((x + µy)∗(x + µy)) = f(x∗x) + µ̄f(y∗x) + µf(x∗y) + |µ|2f(y∗y),

so that µ̄f(y∗x) + µf(x∗y) is real for every µ ∈ C. For µ = 1 we get Im f(y∗x) +
Im f(x∗y) = 0 and if µ = i then Re f(y∗x) = Re f(x∗y). It follows that f(x∗y) =

f(y∗x).

5) For t real set µ = tf(y∗x). The inequality above then gives

0 ≤ f(x∗x) + 2t|f(x∗y)|2 + t2|f(x∗y)|2f(y∗y)

for every t ∈ R, i.e.

4|f(x∗y)|4 − 4f(x∗x)|f(x∗y)|2f(y∗y) ≤ 0.

Hence |f(x∗y)|2 ≤ f(x∗x)f(y∗y).
Setting x = 1, we get, in particular,

|f(y)| ≤ f(y∗y)1/2.

6) If f(x∗x) = 0 then, by 5),

|f(x∗y∗yx)|2 ≤ f(x∗x)f(z∗z) for z = y∗yx,

so that the inequality is satisfied trivially. Suppose f(x∗x) > 0. Let k be a non–
negative integer. Inequality 5) for the pair of vectors x and (y∗y)2k

x gives

f(x∗(y∗y)2k

x)2 ≤ f(x∗x)f(x∗(y∗y)2k+1

x).

Thus

f(x∗y∗yx)2n ≤ f(x∗x)2n−1

f(x∗(y∗y)2x)2n−1 ≤
≤f(x∗x)2n−1

f(x∗x)2n−2

. . . f(x∗x)f(x∗(y∗y)2n

x) ≤

≤f(x∗x)2n−1r(x∗(y∗y)2n

x) ≤ f(x∗x)2n r(xx∗)
f(x∗x)

r((y∗y)2n

)
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(we used the submultiplicivity of the spectral radius or H(A)). Hence

f(x∗y∗yx) ≤ f(x∗x)

(
r(xx∗)
f(x∗x)

)1/2n

r(y∗y) → f(x∗x)r(y∗y)

as n →∞ (note that r(xx∗) = r(x∗x) ≥ f(x∗x) > 0).

Theorem 5: Let A be an H-algebra and let f ∈ P (A). Then there exist a Hilbert
space Hf , a vector ξf ∈ Hf and a ∗-representation πf : A → B(Hf ) such that

1) f(a) =< πf (a)ξf , ξf > for alll a ∈ A

2) f(a∗a)1/2 ≤ ‖πf (a)‖ ≤ p(a) for all a ∈ A.

PROOF. The construction of the Hilbert space Hf is standart, therefore we give
only an outline of the proof. For details see e.g. [9], Theorem 2.5. Define a semi-
definite scalar product in A by < a, b >= f(b∗a) and the corresponding norm
‖a‖2

f =< a, a >. Denote by Lf = {a ∈ A, ‖a‖f = 0} = {a ∈ A, f(a∗a) = 0}. It
is easy to see by the previous theorem that Lf is a left ideal in A. Consider the
quotient space A|Lf and denote its completion by Af . Then Hf is a Hilbert space.

For every a ∈ A, define πf (a) : A|Lf → A|Lf by πf (a)(x + Lf ) = ax + Lf . The
definition is correct and

‖πf (a)(x + Lf )‖2
f

‖x + Lf‖2
f

=
f(x∗a∗ax)

f(x∗x)
≤ r(a∗a) = p(a)2,

so that πa(f) is continuous and there is a unique extension of πf (a) to an operator
on Hf . Further

< πf (a)(x+Lf ), y+Lf >= f(y∗ax) =< x+Lf , a∗y+Lf >=< x+Lf , πf (a∗)(y+Lf ) >,

hence πf (a∗) = πf (a)∗ and πf is a ∗-representation.If we put ξf = 1A +Lf we have
1) and

‖πf (a)‖2 ≥ ‖πf (a)(1 + Lf )‖2
f = f(a∗a) for all a ∈ A.

Theorem 6: Let A be an H-algebra and let a ∈ H(A). Then

{f(a), f ∈ P (A)} = conv σÃ(a).

PROOF. By Theorem 4, {f(a), f ∈ P (A)} ⊂ conv σÃ(a). Let a ∈ H(A). Denote
by A0 the smallest algebra containing a and 1. Let Ã0 be the closure of A0 in Ã.
Let λ ∈ conv σÃ(a). Since Ã0 is a commutative Banach algebra with one generator
a, we have σÃ0

(a) = conv σÃ(a) 3 λ and there exists a multiplicative functional

g : Ã0 → C with g(a) = λ. Let x ∈ A0, i.e. x =
∑n

i=0 αia
i for some complex

coefficients αi. Then

x∗ =
n∑

i=0

ᾱia
i and g(x∗) =

n∑

i=0

ᾱiλ
i =

n∑

i=0

αiλi = g(x).
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It follows that |g(x)|2 = g(x)g(x) = g(x∗)g(x) = g(x∗x) ∈ σÃ0
(x∗x). Hence

|g(x)| ≤ r(x∗x)1/2 = p(x) for every x ∈ A0. Since p is a seminorm, by the Hahn–
Banach theorem there exists an extension f ∈ A′ with

|f(y)| ≤ p(y) for every y ∈ A and f |A0 = g|A0.

In particular, f(1) = 1, and so f ∈ P (A) and f(a) = λ.

Theorem 7: Let A be an H-algebra. Then there exists a Hilbert space H and a ∗-
representation
π : A → B(H) such that ‖π(x)‖ = p(x) for every x ∈ A. Further r(π(x)) = r(x)
and σ̂B(H)(π(x)) = σ̂Ã(x) for all x ∈ A.

PROOF. Let H =
⊕

f∈P (A)
Hf and π =

⊕
f∈P (A)

πf , where Hf and πf are constructed

in Theorem 5.
For every x ∈ H we have ‖π(x)‖ = sup

f∈P (A)
‖πf (x)‖, where f(x∗x)1/2 ≤ ‖πf (x)‖ ≤

p(x). Since sup
f∈P (A)

f(x∗x)1/2 = r(x∗x)1/2 = p(x) by Theorem 6 we have ‖π(x)‖ =

p(x) for every x ∈ A. By Theorem 1 we have r(x) = lim
n→∞

p(xn)1/n = lim
n→∞

‖π(xn)‖1/n =

lim
n→∞

‖π(x)n‖1/n = r(π(x)) for all x ∈ A. For every polynomial q we have

max{|q(µ)|, µ ∈ σB(H)(π(x))} = r(q(π(x))) = r(q(x)) = max{|q(µ)|, µ ∈ σÃ(x)}.

Hence λ ∈ σ̂B(H)(π(x)) if and only if λ ∈ σ̂Ã(x).

Theorem 8: Let A be a normed ∗-algebra. Then the following conditions are
equivalent:
1) A is an H-algebra (i.e. r(x + y) ≤ p(x) + p(y) for all x, y ∈ A)
2) r(x) ≤ p(x) and a + b ≥ 0 whenever a, b ∈ A, a ≥ 0, b ≥ 0.
3) r(x) ≤ p(x) and p(x + y) ≤ p(x) + p(y)
4) There exists a Hilbert space H and a ∗-representation π · A → B(H) such that

r(π(x)) = r(x) for every x ∈ A

5) 1 + a + b + ic is invertible in Ã for every a, b, c ∈ H(A), a ≥ 0, b ≥ 0
6) 1 + a + b + ic is not a left (right) topological division of zero in A for all a, b, c ∈

H(A), a ≥ 0, b ≥ 0.

PROOF. The equivalence of the first three condition was proved in Theorem 3.
The implication 1 ⇒ 4 is contained in Theorem 7.

4 ⇒ 5: As in the previous theorem we have σ̂Ã(x) = σ̂B(H)(π(x)) for all x ∈ A.
In particular,

σ̂Ã(a + b + ic) = σ̂B(H)((π(a + b + ic)) ⊂ W (π(a) + π(b) + iπ(c)) ⊂
⊂W (π(a)) + W (π(b)) + iW (π(c)) ⊂ < 0,∞)+ < 0,∞) + iR ⊂ {z ∈ C, Re z ≥ 0},
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where W (T ) is the numerical range of an operator T ∈ B(H); it is well–known that
W (T ) is a convex set containing the spectrum and W (S) = conv σB(H)(S) for ev-
ery selfadjoint operator S. Therefore
−1 /∈ σÃ(a + b + ic), i.e. 1 + a + b + ic is invertible in Ã.

5 ⇒ 2: First we show that 5) implies Re σÃ(a + b + ic) ≥ 0 for all a, b, c ∈
H(A), a ≥ 0, b ≥ 0. Indeed, if α + iβ ∈ σÃ(a + b + ic) with α, β ∈ R, α < 0
then −1 ∈ σÃ( a

|α| + b
|α| + i c−β

|α| ), a contradiction. Setting a = b = 0 we get
Re σÃ(−ic) ≥ 0, hence σÃ(c) ⊂ R for every c ∈ H(A).

Setting c = 0 we get that a ≥ 0 and b ≥ 0 implies a+b ≥ 0. To prove r(x) ≤ p(x)
it is sufficient to show that λ ∈ C, |λ| > p(x) implies that λ− x is invertible in Ã.
We have

(λ̄ + x∗)(λ− x) = |λ|2 − x∗x + λx∗ − λ̄x =

=(|λ|2 − p(x)2) + (p(x)2 − x∗x) + i(iλ̄x− iλx∗),

where p(x)2−x∗x ≥ 0 and iλ̄x− iλx∗ ∈ H(A). So Re σÃ(p(x)2−x∗x+ i(iλ̄x−
iλx∗)) ≥ 0 and Re σÃ((λ̄ + x∗)(λ−x)) ≥ |λ|2− p(x)2 > 0, so that (λ̄ + x∗)(λ−x)
is invertible in Ã, hence also λ− x is invertible in Ã.

5 ⇔ 6: We have seen above that condition 5) is equivalent to the condition
Re σÃ(a + b + ic) ≥ 0 for all a, b, c ∈ H(A), a ≥ 0, b ≥ 0. In the same way 6) is

equivalent to the condition Re τ l
A(a + b + ic) ≥ 0 ( Re τ

(r)
A (a + b + ic) ≥ 0) for

all a, b, c ∈ H(A), a ≥ 0, b ≥ 0.

The rest follows from the fact that σ̂Ã(a+b+ic) = τ̂
(l)
A (a+b+ic) = τ̂

(r)
A (a+b+ic).

Remark 2: Although the theory of Hermitian Banach algebras is already classical,
the observation that r(x) = r(π(x)) for all x ∈ A (and consequently the equivalence
4 ⇔ A is an H-algebra) seems to be new even for Hermitian Banach agebras.

In particular cases it is possible to obtain stronger results than in Theorem 8.
For commutative normed ∗-algebras the situation is completely analogous to the
Banach algebras case:

Theorem 9 : Let A be a commutative normed ∗-algebra. Then the following
conditions are equivalent:
1) A is an H-algebra
2) σÃ(a) ⊂ R for all a ∈ H(A)
3) r(x) ≤ p(x) for all x ∈ A
4) p(x + y) ≤ p(x) + p(y) for all x ∈ A

5) 1 + x∗x is invertible in Ã for all x ∈ A
6) 1 + x∗x is not a left (right) topological divisor of 0 in A for all x ∈ A.

PROOF. If A is an H-algebra then all the remaining conditions are satisfied by the
previous theorem.
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2 ⇒ 1: Let a, b, c ∈ H(A), a ≥ 0, b ≥ 0. Then

σÃ(a+b+ic) ⊂ σÃ(a)+σÃ(b)+iσÃ(c) ⊂< 0,∞)+ < 0,∞)+iR ⊂ {z ∈ C, Re z ≥ 0}

so that 1 + a + b + ic is invertible in Ã and A is an H-algebra.

The implication 3 ⇒ 2 is true in general (see Theorem 1).

4 ⇒ 3: For x ∈ A set a = 1
2 (x + x∗) and b = 1

2i (x− x∗). Then x = a + ib, a, b ∈
H(A) and

r(x) ≤ r(a) + r(ib) = p(a) + p(b) =
1
2
p(x + x∗) +

1
2
p(x− x∗) ≤

≤ 1
2

(p(x) + p(x∗) +
1
2

(p(x) + p(x∗)) = 2p(x).

Hence

r(x)n = r(xn) ≤ 2p(xn) = 2r(x∗nxn)1/2 = 2r(x∗x)n)1/2 = 2r(x∗x)n/2 = 2p(x)n.

If n →∞ then we get r(x) ≤ p(x).

5 ⇒ 2: Suppose on the contrary that there exists a ∈ H(A) and α + iβ ∈ σÃ(a)
with α, β ∈ R, β 6= 0. Then setting x = β−1(a − α) we get i ∈ σÃ(x) and
−1 ∈ σÃ(x2) = σÃ(x∗x), a contradiction.

The implication 6 ⇒ 2 can be proved in the same way as σÃ(a) ⊂ R if and only if

τ
(l)
A (a) ⊂ R

(τ (r)
A (a) ⊂ R).

Other case, when it is possible to obtain stronger results is the case of algebras
with open set of invertible elements, i.e. Q-algebra in the sense of [7]. Suppose that
A is a normed Q-algebra, i.e. there exists ε > 0 such that {1 − x, x ∈ A, ‖x‖ <
ε} ⊂ Inv (A) where Inv (A) denotes the set of all invertible elements in A. Then,
for each y ∈ A and λ ∈ C, λ > ‖y‖

ε , we have λ− y = λ(1− y
λ ) ∈ Inv (A) so that

max{|λ|, λ− y /∈ Inv (A)} ≤ ‖y‖
ε

.

Thus

max{|λ|, λ− y /∈ Inv (A)} = max{|µ|, µ− yn /∈ Inv (A)}1/n ≤ (
‖yn‖

ε
)1/n → r(y).

Hence

max{|λ|, λ− y /∈ Inv (A)} = max{|λ|, λ− y /∈ Inv (Ã)} = r(y).

As in Theorem 7 this means that σ̂A(y) = σ̂Ã(y) for all y ∈ A.
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Corollary 10: Let A be a normed ∗-Q-algebra. Then A is an H-algebra if and only
if r(x) ≤ p(x) for every x ∈ A.

PROOF. It is sufficient to show that a + b ≥ 0 whenever a, b ∈ A, a ≥ 0 and b ≥ 0.
By Theorem 1, σÃ(c) ⊂ R for every selfadjoint element c ∈ A. Hence it is

sufficient to show that, for a, b ∈ A, a ≥ 0 and b ≥ 0, −1 /∈ σÃ(a + b), i.e. that
1 + a + b is invertible in Ã. Since σA(a) ⊂ conv σÃ(a) ⊂ < 0,∞), we have
1 + a ∈ Inv (A) and similarly 1 + b ∈ Inv (A). We can write

1 + a + b = (1 + a)(1 + b)− ab = (1 + a)(1− uv)(1 + b)

where u = (1 + a)−1a, v = b(1 + b)−1. Clearly u, v ∈ H(A), r(u) < 1 and r(v) < 1.
By Theorem 1 we have r(uv) < 1 so that 1 − uv ∈ Inv (Ã) and also 1 + a + b ∈
Inv (Ã).

Remark 3: Suppose that A is a normed ∗-algebra such that the numerical range
W (a) is real for every a ∈ H(a). Then A is an H-algebra since condition 5)
of Theorem 8 is satisfied. To see this, let a, b, c ∈ H(A), a ≥ 0 and b ≥ 0. Then
σÃ(a+b+ic) ⊂ W (a+b+ic) ⊂ W (a)+W (b)+iW (c) = conv σÃ(a)+ conv σÃ(b)+
i conv σÃ(c) ⊂ < 0,∞)+ < 0,∞) + iR ⊂ {z ∈ C, Re z ≥ 0}.

By using Theorem 8 it is possible to obtain the Vidov–Palmer theorem. However,
in this case the application of standart technics (see e.g. [1] p. 207) gives that the
involution is continuous and therefore it can be extended to Ã. Thus in this case
the situation reduces to the Banach algebras case.
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