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Abstract. In [1] various types of closedness of subspace lattice
was studied. In particular, the authors defined operator reflexivity
which can be regarded as a one-point closedness of the lattice.
They asked if all subspace lattices are operator reflexive. In this
work we give an example that the answer is negative.

Let H be a Hilbert space. By B(H) we denote the algebra of all
bounded linear operators on H and by P(H) the lattice of all orthog-
onal projections on H. A SOT-closed sublattice of P(H), containing
the trivial projections 0 and I is called a subspace lattice.

Recall that for any set S of operators the operator-reflexive hull of
S is defined as

ref S = {A ∈ B(H) : Ax ∈ Sx for all x ∈ H}.
It was proved in [1] that if L is a subspace lattice then

ref L = {P ∈ P(H) : Px ∈ Lx for all x ∈ H}.
Recall after [1] that a projection lattice L is called operator reflexive
(or 1-closed) if L = ref L. In [1] authors proved that operator reflexive
lattices are always SOT-closed, but they asked if all subspace lattices
are operator reflexive. Here we intend to proof that it is not so.

Let M be a subspace of a Hilbert space H. We denote by PM the
orthogonal projection onto M . Let M, L ⊂ H be subspaces. Write

δ(M, L) = sup{dist {x, L} : x ∈ M, ‖x‖ ≤ 1}.

Denote by δ̂(M, L) = max{δ(M, L), δ(L, M)} the gap between M and

L. It is well-known, see [2], p. 197, that δ̂(M, L) = ‖PM − PL‖.
Moreover, if δ̂(M, L) < 1 then dim M = dim L.

Lemma 1. Let H be a finite-dimensional Hilbert space, M, L ⊂ H
subspaces, dim M = dim L, dim H = 2 dim M . Let ε > 0. Then there
exists a subspace M ′ ⊂ H such that δ̂(M ′, M) ≤ ε and M ′ ∩ L = {0}.
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Proof. We may assume that ε < 1. We have dim H = dim M +dim L =
dim(M ∩ L) + dim(M + L). Hence dim(M ∩ L) = dim(M + L)⊥. Let
V : M ∩ L → (M + L)⊥ be a surjective isometry.

Let M ′ = (I+εV )(M∩L)⊕(M	(M∩L)). Clearly M ′ is a subspace
and dim M ′ = dim M .

Suppose that u ∈ M ′∩L. Then u = (I+εV )x+y for some x ∈ M∩L
and y ∈ M	(M ∩L). We have u−x−y ∈ M +L and εV x ⊥ (M +L),
so εV x = 0 = u − x − y. Thus x = 0 and u = y. Hence y ∈ M ∩ L,
and so y = 0 and u = 0. Consequently, M ′ ∩ L = {0}.

Suppose that u ∈ M , ‖u‖ = 1. Then u = x + y for some x ∈
M ∩ L and y ∈ M 	 (M ∩ L) with ‖x‖2 + ‖y‖2 = ‖u‖2 = 1. Then
dist {u, M ′} ≤ ‖u− (I +εV )x−y‖ = ‖εV x‖ ≤ ε. Hence δ(M, M ′) ≤ ε.

Conversely, let v ∈ M ′, ‖v‖ = 1. Then v = (I + εV )x + y for
some x ∈ M ∩ L and y ∈ M 	 (M ∩ L). Since εV x ⊥ y, we have
‖(I + εV )x‖ ≤ 1. Since εV x ⊥ x, we have ‖x‖ ≤ 1. Thus

dist {v, M} ≤ ‖v − (x + y)‖ = ‖εV x‖ ≤ ε

and so δ̂(M ′, M) ≤ ε. �

Lemma 2. Let H be a finite dimensional Hilbert space, dim H = 2n,
let M1, . . . ,Mk, L ⊂ H be n-dimensional subspaces, let ε > 0. Then
there exists a subspace L′ ⊂ H such that δ̂(L′, L) ≤ ε and L′ ∩ Mi =
{0} (i = 1, . . . , k).

Proof. We prove the statement by induction on k. For k = 1 the
statement was proved in Lemma 1. Suppose that the statement is true
for some k − 1 and let M1, . . . ,Mk, L, ε be given.

By the induction assumption, there exists a subspace L′′ ⊂ H such
that δ̂(L, L′′) ≤ ε/2 and L′′ ∩Mi = {0} (i = 1, . . . , k − 1).

By a compactness argument, there exists δ > 0 such that dist {x, L′′} ≥
δ whenever 1 ≤ i ≤ k − 1, x ∈ Mi, ‖x‖ = 1. By Lemma 1, there exists

L′ ⊂ H such that δ̂(L′, L′′) ≤ min{ε/2, δ/2, } and L′ ∩Mk = {0}.
We have δ̂{L′, L} = ‖PL′ − PL‖ ≤ ‖PL′ − PL′′‖+ ‖PL′′ − PL‖ ≤ ε.
We show that L′∩Mi = {0} (i = 1, . . . , k−1). Fix i ∈ {1, . . . , k−1}

and suppose that there exists x ∈ L′ ∩Mi, ‖x‖ = 1. Then there exists

x′ ∈ L′′ with ‖x′ − x‖ ≤ δ̂(L′, L′′) ≤ δ/2, a contradiction with the
definition of δ. Hence L′ ∩Mi = {0} (i = 1, . . . , k). �

Let H be the Hilbert space with an orthonormal basis e1, e2, . . . For
k ∈ N let Hk =

∨
{e1, . . . , ek}. Denote by SH the unit sphere in H. Fix

a sequence (xn, yn)∞n=1 dense in SH × SH such that for each n ∈ N the
vectors xn, yn are linearly independent and 〈xn, yn〉 6= 0. Moreover,
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we may assume that all the vectors xn, yn have finite support, i.e.,
xn, yn ∈

⋃
k∈N

Hk for each n ∈ N.

Fix a sequence (tn)∞n=1 ⊂ (0, 1) consisting of mutually distinct num-
bers.

Lemma 3. There exist subspaces Mn ⊂ H (n ∈ N) such that:

(i) Mn ∩Mm = {0} (m, n ∈ N, m 6= n);
(ii) Mn ∨Mm = H (m, n ∈ N, m 6= n);
(iii) ‖PMnxn − 〈xn, yn〉yn‖ ≤ 1/n;
(iv) there is a constant c > 0 such that for all m,n ∈ N, m 6= n,

max
j=1,2,3

‖PMnej − PMmej‖ ≥ c;

(v) there is an increasing sequence of positive integers (kn)∞n=1 such
that each Mn can be written as

Mn = Fn ⊕
∨
{e2j+1 + tne2j+2 : j ≥ kn},

where Fn ⊂ H2kn is a kn-dimensional subspace.

Proof. We construct the subspaces Mn by induction on n. Let n ∈ N
and suppose that the subspaces M1, . . . ,Mn−1 satisfying (i)–(v) have
already been constructed.

Let Ln =
∨
{xn, yn}. By assumption, dim Ln = 2. Fix jn ∈ {1, 2, 3}

such that

dist {ejn , Ln} = max
i=1,2,3

dist {ei, Ln}.

Clearly there is a constant c > 0 such that max
i=1,2,3

dist {ei, L} ≥ 4c for

each 2-dimensional subspace L ⊂ H. Hence dist {ejn , Ln} ≥ 4c. Let

un =
P

L⊥n
ejn

‖P
L⊥n

ejn‖
. Fix kn > max{kn−1, 2} such that xn, yn ∈ H2kn−1. Since

un =
ejn−PLnejn

‖P
L⊥n

ejn‖
and ejn ∈ Ln + L′n, thus un ∈ H2kn−1.

Let L′n =
∨
{un, e2kn}. Then dim L′n = 2 and L′n ⊥ Ln. Let F ′

n be
any kn-dimensional subspace of H2kn such that yn ∈ F ′

n, un + e2kn ∈ F ′
n

and dim(H2kn 	 (Ln + L′n)) ∩ F ′
n = kn − 2.

For s = 1, . . . , n− 1 let Es ⊂ H2kn be defined by

Es = Fs ⊕
∨
{e2j+1 + tse2j+2 : ks ≤ j < kn}.

By Lemma 2 for the subspaces E1, . . . , En−1, F
′
n there exists a subspace

Fn ⊂ H2kn such that Fn∩Es = {0} (s = 1, . . . , n−1) and δ̂{Fn, F
′
n} <

min{ 1
n
, c}. Note that this implies that dim Fn = kn and Fn ∨ Es =

H2kn (s = 1, . . . , n− 1).
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Let Mn = Fn⊕
∨
{e2j+1+tne2j+2 : j ≥ kn}. We show that Mn satisfies

(i)–(v). Condition (v) follows from the definition. Since tm 6= tn for
m < n, we have Mm ∩Mn = {0} and Mm ∨Mn = H.

We have PF ′
n
xn = 〈xn, yn〉yn and ‖PFn − PF ′

n
‖ = δ̂{Fn, F

′
n} ≤ 1

n
.

Hence

‖PMnxn − 〈xn, yn〉yn‖ = ‖PFnxn − PF ′
n
xn‖ ≤

1

n
.

Let Q be the orthogonal projection onto the 1-dimensional subspace
generated by e2kn . Let m < n. We have PMmejn ∈ H2km , and so
QPMmejn = 0. Furthermore

‖QPMnejn‖ = ‖QPFnejn‖ ≥ ‖QPF ′
n
ejn‖ − ‖Q(PF ′

n
− PFn)ejn‖

≥ ‖QPF ′
n
ejn‖ − δ̂{F ′

n, Fn} ≥ ‖QPF ′
n
ejn‖ − c

and

‖QPF ′
n
ejn‖ = ‖QPLn∩F ′

n
ejn + QPL′

n∩F ′
n
ejn‖ = ‖QPL′

n∩F ′
n
ejn‖

= ‖QPL′
n∩F ′

n
(un · ‖PL⊥

n
ejn‖)‖ ≥ 4c · ‖QPL′

n∩F ′
n
un‖ = 4c · ‖Qun+e2kn

2
‖ = 2c.

Hence

‖PMnejn − PMmejn‖ ≥ ‖QPMnejn −QPMmejn‖ ≥ 2c− c = c.

�

Theorem 4. There exists a strongly closed lattice L ⊂ P(H) which is
not operator reflexive.

Proof. Let Mn be the subspaces constructed in the previous lemma.
Let L = {0, I, PMn : n ∈ N}. Clearly L is a lattice and L 6= P(H).
We show that L is strongly closed. It is sufficient to show that the set
{PMn : n ∈ N} is strongly closed. Let P ∈ P(H), P ∈ {PMn : n ∈
N}−SOT . Let c > 0 be the number from the previous lemma.

Let x ∈ H. Then there exists n(x) ∈ N such that

‖PMn(x)
x− Px‖ <

c

2
and

‖PMn(x)
ej − Pej‖ <

c

2
(j = 1, 2, 3).

Moreover, n(x) is determined uniquely and is independent of the choice
of x ∈ H. Indeed, let y ∈ H and let n(y) ∈ N satisfies

‖PMn(y)
x− Px‖ <

c

2
and

‖PMn(y)
ej − Pej‖ <

c

2
(j = 1, 2, 3).
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For j = 1, 2, 3 we have

‖PMn(x)
ej − PMn(y)

ej‖ ≤ ‖PMn(x)
ej − Pej‖+ ‖Pej − PMn(y)

ej‖ < c.

Hence n(x) = n(y). Furthemore, PMn(x)
x = Px. Indeed, for each

δ ∈ (0, c
2
) there exists r ∈ N such that

‖PMrx− Px‖ < δ

and
‖PMrej − Pej‖ <

c

2
(j = 1, 2, 3).

Hence r = n(x) and ‖PMn(x)
x − Px‖ < δ. Since δ > 0 was arbitrary,

we have PMn(x)
x = Px and P = PMn(x)

.
Hence L is closed in the strong operator topology.
On the other hand, the operator-reflexive hull of L is the whole lattice

P(H). To see this, let P ∈ P(H) and x ∈ H, ‖x‖ = 1. If Px = 0 then
obviously Px ∈ {Qx : Q ∈ L}−. Let Px 6= 0 and y = Px

‖Px‖ . Then there

is a sequence (nk) such that nk →∞, xnk
→ x and ynk

→ y. Thus

Px = 〈x, y〉y = lim
k→∞

〈xnk
, ynk

〉ynk
= lim

k→∞
PMnk

xnk
=

= lim
k→∞

PMnk
x ∈ {Qx : Q ∈ L}−,

and so P is in the operator-reflexive hull of L. �
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