On the Punctured Neighbourhood Theorem

V. Miiller

Abstract. Let X,Y,Z be Banach spaces and X &Y&Z an analytically

dependant sequence of operators satisfying 7'(z)S(z) = 0. We study properties
of the function z +— dim Ker7T'(z)/Im S(z).

Let X,Y be complex Banach spaces. Denote by £(X,Y) the set of all bounded
linear operators from X to Y. If Y = X then we write for short £(X) = L£(X, X).
Recall the well-known punctured neighbourhood theorem:

Theorem 1. Let T' € L£(X) be a Fredholm operator. Then there exist ¢ > 0 and
constants k; < dimKerT, ky < codimImT such that dimKer(T — z) = k; and
codimIm(T — z) = ks for all 2, 0 < |z| < e.

In this paper we study a more general situation. Let X,Y,Z be Banach spaces,
let U be an open subset of C", let S: U — L(X,Y) and T : U — L(Y, Z) be analytic
operator-valued functions satisfying 7'(z)S(z) = 0 for all z € U. For z € U write
a(z) =dimKerT'(z)/Im S(z).

The aim of the paper is to study the behaviour of the function z — «(z).

The main result of the first section is the following generalization of Theorem 1
— if U C C, w € U, ImT'(w) is closed and a(w) < oo then a(z) = k is constant in a
punctured neighbourhood of w.

Clearly the classical punctured neighbourhood theorem follows easily from this
generalization for sequences 0 — X %y and X555y — 0, respectively.

In the second section we study the case n > 2. This situation has been studied
mainly in connection with the Koszul complex of an n-tuple of commuting operators.

L.

For T € L(X,Y) denote by (T) the Kato reduced minimum modulus, (7) =
inf{||Tz|| : dist{z,Ker T} = 1} (formally we set v(0) = c0). Clearly v(T') > 0 if and
only if Im 7T is closed.

If M, L are closed subspaces of X then write

0(M,L) = sup dist{z, L}
<

and the gap between M and L is defined by 6(M, L) = max{d(M,L),5(L, M)}. For
the properties of the reduced minimum modulus and the gap see [6].
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The following result is due to Markus, cf. [13], Theorem 1.4.

Theorem 2. Let U be an open subset of C™, let T : U — L(X,Y) be a norm-
continuous function, let w € U and ImT'(w) be closed. The following conditions are
equivalent:

(i) the function z +— v(7T'(z)) is continuous at w,

(i

i) liminf, ., v(T(z)) > 0,
(iii) hmz_m,é(KerT( ) Ker T'(2)
(iv) lim,_, 0 (KerT ), KerT'(2)
) (ImT'(z), Im T'(w))
i) (ImT'(z), Im T'(w))

|| — —

(v lim,_,,,

ooll

J

(vi) lim,_,,, 5

The equivalences (iii) < (iv) and (v) < (vi) follow from the fact that automati-
cally lim._,,, 6 (Ker T'(z),Ker T'(w)) = 0 and lim,_,, 6(Im T'(w),Im T'(z)) = 0.

A continuous function T': U — L(X,Y) is called regular at w if Im 7T'(w)) is closed
and T satisfies any of equivalent conditions (i) — (vi). In particular, condition (ii)
implies that the set of all regularity points of 7" is open. Also, T is regular at w if and
only if the adjoint function z — T'(2)* is regular at w.

Regular functions are closely related to the exactness:

Theorem 3. ([13], Theorem 2) Let U be an open subset of C", w € U and let
T:U — L(X,Y) be an analytic function. The following conditions are equivalent:
(i) T is regular at w,
(ii) there exists a neighbourhood Uy C U of w, a Banach space E and an analytic
function S : Uy — L(E, X) such that ImS(z) = KerT'(z) (z € Uyp),
(iii) there exists a neighbourhood Uy C U of w, a Banach space E’ and an analytic
function S’ : Uy — L(Y, E') such that ImT'(z) = Ker S’(z) (z € Up).

In particular, if T : U — L(X,Y) is regular at w and x € KerT'(w) then there
exist a neighbourhood Uy of w and an analytic function f : Uy — X such that f(w) =«
and T'(2)f(z) =0 (z € Up). Indeed, let S : Uy — L(F,X) be an analytic function
satisfying the properties of (ii). Choose e € E with S(w)e = x and set f(z) = S(2)e.

Lemma 4. Let U be an open subset of C", let S: U — L(X,Y)and T : U — L(Y, Z)
be functions regular in U. Suppose that 7'(z)S(z) = 0 for all z € U. Then a(z) is
constant on each connected subset of U.

Proof. Let w € U satisfy a(w) = dim Ker T'(w)/Im S(w) < co. By Theorem 2 (iv) and
(vi), lim,—, 6 (Ker T'(w),Ker T'(z)) = 0 and lim,_,, 6(Im7T(w),ImT(z)) = 0. Thus

there exists ¢ > 0 such that 5(Ker T(z),KerT(w)) < 1/9 and 5(Im S(z),Im S(w)) <
1/9 for z € U, dist{z,w} < e. By [1] this implies that

a(z) =dimKerT(z)/Im S(z) = dim Ker T'(w)/ Im S(w) = a(w)
for all z € U, dist{z,w} < e.
Thus «(z) is locally constant and a standard argument gives that a(z) is constant

on the component of connectivity of U containing w.
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If Uy is a component of U and there is no w € Uy with a(w) < oo then clearly
a(z) = oo on U.

An operator T' € L£(X) with the property that the function z — T — z is regular at
0 is called semi-regular (sometimes Kato regular). Semi-regular operators exhibit very
nice properties and have been studied intensely, see e.g. [9], [10], [12].

An essential version of semi-regular operators_ has been also studied. Recall that if
M, L are closed subspaces of X then we write M CL (M is essentially contained in L)
if dim M /(M N L) < co. We summarize some of equivalent conditions characterizing
essentially semi-regular operators.

Theorem 5. ([10], Theorem 3.1) Let 7" € £(X) be an operator with closed range. The

following conditions are equivalent:

(i) (Kato decomposition) there exists a decomposition X = X; & X5 such that TX; C
X1, TXy; C Xs, dimX; < oo, T|X; is nilpotent and T'| X5 is an semi-regular
operator, .

(i) M, Im(T" — 2)CImT,

(iii) dimKerT'/N*(T') < oo, where N*(T') is the set of all x € X such that there are
complex numbers z; (i =1,2,...) tending to 0 and elements z; € Ker(T — z;) such
that x = lim; o, z; (clearly N*(T) C KerT),

(iv) dim R*(T")/ImT < oo where R*(T') is the set of all x € X such that z = lim; . x;
for some z; € Im(T" — z;) and some z; — 0 (clearly Im T C R*(T)).

Note that condition (i) implies that the function z — T'—z is regular in a punctured
neighbourhood {z: 0 < |z| < £} for some £ > 0.

General analytic operator-valued functions of one variable can be reduced to the
linear case by the method of linearization, see [2], Theorem 2.6.

Theorem 6. Let U C C be an open set, T : U — L(X,Y) an analytic function and
w € U. Then there exist a neighbourhood Uy of w, Banach spaces Z and M, an operator
V € L(M) and analytic functions A : Uy — L(M, X & Z), B: Uy — L(Y & Z, M) such
that A(z) and B(z) are invertible operators and

B(2)(T(2) ® Iz)A(z) =V — 2y (z € Uy).

Let U C C be an open set and let T': U — L(X,Y') be an analytic operator-valued
function. Let w € U. Write

R (T(w )) = {y €Y : there exist z € U, 2z, — w and yi, € ImT'(zx) with y, — y},
R*(T(w))={yeY: hm dist{y, ImT'(z)} = 0}.
Clearly ImT'(w) C R**(T(w)) C R*(T(w)) and R*(T(w)), R**(T'(w)) are closed sub-

spaces of Y.
Similarly write

N*(T(w {a: € X : there are 2z, € U, ), € KerT(zk) with 2z, — w and z, — a:},
N*(T(w)) ={z e X : hm dist{z, KerT'(z)} = 0}.



Clearly N**(T'(w)) € N*(T(w)) C KerT(w) and N*(T'(w)), N**(T'(w)) are closed
subspaces of X.

Theorem 7. Let U C C be an open set, T : U — L(X,Y) an analytic function and
w € U. The following statements are equivalent:
(i) dim R*(T(w))/Im T (w) < oo,
(ii)) dim R**(T(w))/Im T (w) < oo,
(iii) dimKer T'(w)/N*(T'(w)) < oo and Im T'(w) is closed,
(iv) dimKer T'(w)/N**(T(w)) < oo and Im T'(w) is closed.

Any of these conditions implies that there exists ¢ > 0 such that the function
T is regular in the punctured neighbourhood {z € U : 0 < |z — w| < ¢}. Fur-
ther N*(T'(w)) = N**(T'(w)), R*(T'(w)) = R**(T(w)) and dim Ker T'(w)/N*(T(w)) =
dim R*(T'(w))/ Im T (w).
Proof.
A. Suppose first that Y = X and T'(z) = V — zIx for some operator V € L(X). We
show that in this case conditions (i) — (iv) are equivalent to
(v) V —w is essentially semi-regular.

Clearly (i) = (i7) and (iv) = (4i7).

By Theorem 5, (i) < (iii) < (v).

(73) = (v): Clearly (ii) implies that Im7T'(w) is closed. Further

() Im(V = 2) € R*(V — w)
z#w
so that, by Theorem 5, V' — w is essentially semi-regular.
Suppose now that V' — w is essentially semi-regular. Let X = X; & X, be the
Kato decomposition of V —w, i.e., VX; C X1, VX, C X5, dim X; < o0, (V —w)|X; is

nilpotent and (V —w)| X5 is semi-regular. It is easy to see that, for z # w, Ker(V —z) =
Ker((V — 2)|X3) and Im(V — z) = X7 + Im((V — 2)|X2). Thus

N*(V —w) = N*(V —w) = Ker((V — w)| X2)
and
R*(V —w) = R*(V —w) = X1 + Im((V — w)|X,).
Hence (v) implies (iv). Further

dimKer(V — w)/N*(V — w) = dimKer((V — w)|X1)
=dim X; /(V —w)X; =dim R*(V — w)/Im(V — w).

Also the Kato decomposition implies that the function z — V — z is regular in a certain
punctured neighbourhood of w.

B. Let now T'(z) be a general analytic operator-valued function. By Theorem 6 there
exist a neighbourhood Uy of w, Banach spaces Z, M, an operator V € L(M) and
analytic functions A : Uy — L(M, X ® Z), B : Uy — L(Y & Z, M) whose values are
invertible operators, such that

B(2)(T(z) @ 12)A(z) =V — 214 (z € Up).



For z € Uy we have
Ker(V — zI) = Ker((T'(2) ® Iz)A(z)) = A(z) ' Ker(T'(z) & Iz) = A(z)” " Ker T(z)

and
Im(V — zI) =Im(B(2)(T(z) ® Iz)) = B(z)(ImT'(z) + Z).
Thus
N*(V —wI) = A(w) "' N*(T(w)),
N*(V —wl) = A(w) ' N**(T(w)),
R*(V —wl) = B(w)(R*(T(w)) + 2) and
R*™*(V —wl) = B(w)(R*™(T(w)) + Z).

Hence all the statements for the function 7'(z) are equivalent to the corresponding
statements for V' — zI and the general case reduces to the previous case.

Remark 8. Let U C C, w € U and let T': U — L(X,Y) be an analytic function.
Then dim Ker T'(w)/N*(T(w)) can be interpreted as the ”jump” in the kernel of T'(2);
similarly dim R*(7T'(w))/ Im T'(w) signifies the jump in the range of 7'(2). It is interesting
to note that these two numbers are always equal.

Theorem 9. Let U be an open subset of C and w € U. Suppose that S : U — L(X,Y),
T :U — L(Y,Z) are analytic functions satisfying 7'(2)S(z) =0 (z € U), a(w) < o0
and ImT'(w) is closed. Then there exist ¢ > 0 and a constant ¢ < a(w) such that
a(z) =cforall z,0 < |z —w| <e.

Proof. By [14], Lemma 2.1, a(z) < a(w) for all z in a neighbourhood of w. Using
the previous theorem, both z — S(z) and z +— T(z) are regular in a certain punc-
tured neighbourhood of w so that, by Lemma 4, a(z) is constant in this punctured
neighbourhood.

I1.

In this section we study analytic operator-valued functions of n-variables.
It is not possible to expect the punctured neighbourhood theorem for n > 2; the
proper generalization seems to be

Conjecture 10. Let U C C" be open, let S : U — L(X,Y) and T : U —
L(X,Y) be analytic on U. Suppose that T(z)S(z) = 0, ImT'(2) is closed and «a(z) =
dimKer7T'(z)/ImS(z) < oo (z € U). Let k € N. Then the set {z € U : a(z) > k} is
analytic in U.

Recall that a set M C U is called analytic in U if for each w € U there exist
a neighbourhood Uy of w and analytic (scalar-valued) functions fi,..., f, such that

MﬂU():{ZEUOZfl(Z):"':fr(Z)ZO}.

The conjecture is true in the following particular cases:
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A. if the ranges and kernels of S(z) and 7'(z) are complemented subspaces, see Theo-
rem 14 below. In particular, the conjecture is true for operators in Hilbert spaces.

B. if either S(z) = 0 or T'(z) = 0; this means that the other function is upper (lower)
semi-Fredholm-valued and the conjecture reduces to the statement about defect
indices of semi-Freholm-valued functions, see [5].

C. if the sequence X "Ey—EZisa part of a Fredholm complex vanishing at the ends,
see [7], [8], [11] or Theorem 18 below.

We start with the following lemma:
Lemma 11. Let U C C™ be an open subset, let T : U — L(X,Y) be an analytic

function, let £ € N. Then the set {z € U : dimIm 7'(2) < k} is analytic.

Proof. If z1,...,z, € X, y{,...,y; € Y*, 2 € U and dimImT'(2) < k then the vectors
T(z)z1,...,T(2)zy are linearly independent and det((T'(z)z;, yj*>) = 0.
On the other hand, if dimIm7'(z) > k then there are vectors x1,...,xx € X,
yi, ..., y; € Y* such that det((T(z)xi,y;‘)) # 0. Thus
{z €U :dimImT(z) < k}
={z € U :det((T'(2)xi,y;)) =0for all zy,...,2p € X,9f,...,y €Y}

which is an analytic set, see [3], p. 86.

Corollary 12. Let S : U — L(X,Y) and T : U — L(Y, Z) be analytic functions and
let k € N. Then the set {z € U : dimIm S(z)/(Im S(z) NKer T'(z)) < k} is analytic.
Proof. Clearly dimIm S(z)/(ImS(z) N KerT'(z)) = dimIm(7(2)S(z)) so that the

corollary follows from the previous lemma.

Lemma 13. Let U be an open subset of C",let S : U — L(X,Y)and T : U — L(Y, Z)
be analytic functions satisfying 7(z)S(z) =0 (z € U). Suppose that there are Banach
spaces X7 and Z; and regular analytic functions Sy : U — L£(X1,Y), Ty : U — L(Y, Z1)
satisfying

KerTi(z) C ImS(z) C KerT(z) C Im S1(2)

and dimIm Sy (2)/ KerT1(z) < oo (2 € U). Then the set
{z €U :dimKerT(z)/ImS(z) > k}

is analytic in U.
Proof. The situation is illustrated by the following diagram:

x 2yl

Fig. 1



We can assume that U is connected. For each j set
Aj ={z€U :dimIm S(z)/KerTi(z) < j}

and
Bj ={z €U :dimIm S;(2)/ KerT'(z) < j}.

By Corollary 12, A; and B, are analytic sets. As in the proof of Lemma 4 (or using
Theorem 3) it is easy to that there is a constant ¢ such that dimIm S;(z)/ Ker T1(z) = ¢
in U. Thus

{z €U :dimKerT(z)/ImS(z) > k}
={z € U : dimIm S1(2)/ Ker T'(z) + dimIm S(z)/Ker Ty (z) < ¢ — k}

= U A;NBe_j_;.

i=0
The last set is clearly analytic.

Let T' € L£(X,Y). An operator S € L(Y, X) is called a generalized inverse of T’
if TST =T and STS = S. If S is a generalized inverse of T then T7'S and ST are
projections satisfying Im(7'S) = Im T and Ker(ST) = Ker T. Thus T has a generalized
inverse if and only if both KerT" and Im 7" are complemented subspaces of X and Y,
respectively.

The next result shows that Conjecture 10 is true for operators with generalized
inverses. We adopt the method of [4].

Theorem 14. Let U be an open subset of C™, let S : U — L(X,Y) and T : U —
L(Y, Z) be analytic functions. Suppose that 7'(z)S(z) = 0, dimKer7'(z)/Im S(z) < oo
and the operators S(z) and T'(z) have generalized inverses for z € U. Let kK € N. Then
the set {z € U : a(z) > k} is analytic in U.

Proof. Let w € U. Let V be a generalized inverse of S(w), i.e., V.S(w)V =V and
S(w)VS(w) = S(w). Set P=1— S(w)V. Then P is a projection, Ker P = Im S(w).

For z close to w, the operator I+ (S(z) —S(w))V is invertible. Define P(z) € L(Y)
by P(z) = P(I+(S(z)—S(w))V) e L(Y). Clearly the function z — P(z) is regular at
w since Im P(z) = Im P is constant. We prove Ker P(z) C Im S(z). Let y € Ker P(z),
ie, 0= P(z)y=P(I+(S(z) = S(w))V) 'y. Then

(I+(S(z) = S(w))V) 'y € Ker P = Im S(w)
For some x € X we have
y= I+ (S(z) = S(w))V)S(w)z = S(z)VS(w)z € Im S(z).

Similarly, let W be a generalized inverse of T'(w). Set @ = I — WT(w). Then
Q is a projection with Im @ = KerT'(w). For z close to w define Q(z) € L(Y) by



Q(z) = (I +W(S(z) - S(w)))_lQ. Clearly the function z — @(z) is regular since
Ker Q(z) = Ker @ is constant. We have

WT(z) = WT(w) + W(T(z) — T(w)) = I — Q + W(T(z) — T(w))
so that
(I+W(T(z) = T(w))) " WT(z) = I — (I + W(T(2) = T(w))) "' Q =1 —Q().

Consequently, Ker 7'(z) C Im Q(z).
Thus we have Ker P(z) C Im S(z) C KerT'(z) C Im Q(z) and

dimIm Q(w)/ Ker P(w) = dimIm @/ Ker P = dim Ker T'(w)/ Im S(w) < oo.

As in Lemma 4 we have that dimIm Q(z)/Ker P(z) < oo in a neighbourhood of w.
The rest follows from Lemma 13.

Corollary 15. Conjecture 10 is true for operators in Hilbert spaces.

In the following we consider a complex

0 — X &x, 28 By, (1)

where Xy, ..., X, are Banach spaces, operators d,(z) satisfy d,(z)d;—_1(2) = 0 and
depend analytically on a parameter z € U, where U is an open subset of C".

Suppose that complex (1) is Fredholm, i.e., dimKerd;(z)/Imd;_1(z) < oo for all
j=0,...,nand z € U (formally we set 6_1(z) = 0 and J,(z) = 0).

Let £ € N. It is a folklore among specialists in the sheaf theory that the set
{z € U : dimKerd;(z)/Imd;_1(z) > k} is analytic. This result is stated without proof
(for the Koszul complex of a commuting n-tuple of operators) in [7] and [8]; cf also [11].
Since apparently there is no elementary proof of this result, we include the proof here.

We need the following modification of Lemma 13:

Lemma 16. Let U be an open subset of C",let S : U — L(X,Y)and T : U — L(Y, Z)
be analytic functions satisfying 7'(2)S(z) =0 (z € U). Suppose that there are Banach
spaces X1, 71, finite dimensional Banach spaces F,G and regular analytic functions
S1:U—L(X1,YOF)and Th : U — L(Y @ G, Z;) such that Im S;(z) D KerT'(z) D
Im S(z), ImS(z) + G D KerTi(z) and dim(Im S1(z) + G)/KerT1(z) < oo (2 € U),
see Fig. 2. Let kK € N. Then the set {z € U : o(2) > k} is analytic in U.

T(z)

x3eyTE S

Fig. 2



Proof. Set Y =Y @& F @ G. For z € U define operators S’(z) : X ® G — Y/,
T(z):Y - ZoF,S|(2): X1 G —-Y and T{(2) : Y — Z; @ F by

S'(z)(x @ g) = S(2)x +g,
T')(yo fog) =Ty + f,
Si(z)(z1 @ g) = S1(2)x1 + g,

i) yofog) =Ti(z)ydg) + f

forallz € X, f € F, g € G and x; € X;. Thus Im S'(2) = Im S(2) + G, KerT'(z) =
KerT(z) + G, Im Si(z) = Im S1(2) + G and KerT7(z) = KerT1(z). We have

Im S (z) D KerT'(z) D Im S’'(z) D Ker T (2)

and
dimIm S7(z)/ Ker T{(z) = dim(Im Sy (z) + G) / Ker T3 (2) < oc.

By Lemma 13, the set {z € U : dimKerT"(z)/Im S’(z) > k} is analytic in U. This
set, however, is equal to the set {z € U : a(z) > k}.

Lemma 17. Let U be an open subset of C™, let S : U — L(X,Y)and T : U — L(Y, Z)
be analytic functions satisfying 7'(z)S(z) = 0 and a(z) < co (2 € U). Let w € U.
Suppose that there are finite dimensional spaces G, H, a neighbourhood U; of w and
a regular analytic function 7y : Uy — L(Y & G,Z @& H) such that T1(2)|Y = T'(2).
Then there exist a finite dimensional space F', a neighbourhood U; of w and a regular
analytic function Sy : Uy — L(X @ F,Y @ G) such that S1(z)|X = S(2) and Im S (z) =
KerTi(z) D KerT'(z), see Fig. 3.

x5EyTE

Fig. 3
Proof. For z € U; we have
dimKer 71 (z)/ImS(z) = dimKer 71 (z)/ Ker T'(z) + dim Ker T'(z) / Im S(2) < oo.
Let y1,...,y, be linearly independent vectors in Ker T (w) such that
Im S(w) VA{y1,...,y-} = Ker T} (w).
Since 77 is regular, for ¢ = 1,...,r, there exists a (Y @ G)-valued analytic function ¢;

defined in a neighbourhood of w such that 77 (z)¢(z) = 0 and ¢;(w) = y;. Let F be an
r-dimensional space with a basis f ..., f, and define S1(2): X @ F - Y & G by

S1(2) <a: @ Z B; fi> — S(2)z + Z Bid(z)yi  (z € X, B eC).
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Clearly T7(z)S1(z) = 0 and Im S;(w) = Ker 77 (w) so that there is a neighbourhood of
w where KerTj(z) = Im S1(z), see [14]. Thus S is regular in a neighbourhood of w
and satisfies all the required conditions.

Theorem 18. Let X, X1,...,X,, be Banach spaces, U an open subset of C". Let

0— x2&x, 22y g

be a Fredholm complex analytically dependent on z € U (i.e., 6,;(z)d;_1(z) = 0 and
dimKerd;(z)/Imd;_1(z) < oo for all € U and j =0,...,n).

Let 0 < j < n and k € N. Then the set {z € U : dimKerd;(z)/Imd;_1(z) > k}
is analytic in U.

Proof. Let w € U. Using Lemma 17 repeatedly it is easy to see by the downward in-
duction that there are finite dimensional spaces F;_1, F; and a regular analytic function
S(z): X;_1® Fj_1 — X; @ F; defined in a neighbourhood of w such that S(z)|X;_; =
dj—1(%) and Im S(z) D Kerd;(z). In particular, dimIm S(z)/Kerd,;_1(z) < oo.
Consider the ”adjoint” complex
0 — xRyl By

where we write for short 07 () instead of (J;(2))*. Since this complex is also Fredholm,
similarly as above there exist finite dimensional spaces G; and Gj4; and a regular
analytic function 7'(z) : X7, ; ® Gj41 — X @® G defined in a neighbourhood of w such
that Im7'(2) D Ker(é}f_l(z)) and dimIm7'(z)/ Ker67_;(2) < oo. Further the operator
S*(z): X; @ F* — X7 | @ F;_, satisfies

Ker S*(2) = (Im S(2))* C (Kerd;(2))* + F =1Imé;(2) + F}.
By Lemma 16, the set {z : dim Ker 67_1(2)/Imé;(2) > k} is analytic. Since
dim Ker ¢;_;(2)/Imd;(z) = dimKer d;(2)/Imd; 1 (z),
this finishes the proof.

Let A = (A1,...,A,) be an n-tuple of commuting operators on a Banach space
X. Denote by o7 (A) the Taylor spectrum of A. The essential spectrum o7.(A) of A
is defined as the set of all A = (\q,...,\,) € C™ such that the Koszul complex of the
n-tuple (A; — A1,..., A4, — \y) is not Fredholm.

Corollary 19. ([7], [8]) Let A = (A4,...,A,) be an n-tuple of commuting operators
on a Banach space X. Then the set o7(A) \ o7.(A) is analytic in C™ \ or.(A).
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