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Abstract

In this note we consider three questions which can be traced to
our early collaboration with Jan “Honza” Pelant. We present them
from the contemporary perspective, in some cases extending our earlier
work. The questions relate to Ramsey Theory, uniform spaces and
tournaments.
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1 Introduction

Jan’s mathematical interactions with the authors date back to early 70’s.
Jan Pelant was a remarkable man whose influence on his contemporaries
transcended Prague’s mathematical life. He was an excellent mathematician
with a gift for understanding and solving problems. Moreover, Jan Pelant
was not just an expert in his own field. His interests and talents were broad
and he could have been successful in other areas. His passing is a great loss
to all of us.

Here we deal with his work related to 3 problems: Ramsey topological
spaces, characters of uniformities and tournament algebras.
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2 Ramsey topological spaces

Ramsey theory was developing very rapidly during the 70’s. One of the most
significant changes was the fact that the original set theory (and graph the-
ory) setting of Ramsey theory was generalized to other structures. These
developments are, for example, nicely described in the first monograph de-
voted to Ramsey theory [7]. The following is an example of an extension to
topology.

Definition 2.1 A topological space Y is said to be point Ramsey for the
space X if for every (set) partition Y = Y1UYa one of the classes Y; contains
a subspace which is homeomorphic to X.

In the classical Erdés-Rado notation this is denoted by Y — (X)i. If a
parts are allowed we write Y — (X).. We say that a class 7 of topological
spaces is point Ramsey if for every X € 7 and every cardinal « there exists
Y € 7 such that

Y — (X )1 .

a

In [26] we proved the following statements:

Theorem 2.2
1. The class Ty of all Ty-topological spaces is point Ramsey.
2. The class T1 of all Ty -topological spaces is point Ramsey.

This is an easy result which is obtained by the lexicographic (nested)
product.

It is not known if the class 75 of Hausdorf topological spaces is point
Ramsey. Particularly, the following problem concerning the unit interval 1
popularized the study of Ramsey topological spaces.

Problem 2.3 Is it true that for every o there exists 3 such that I® — (I).?

Problem 2.3 is related to the question of whether the class of completely
regular spaces is point Ramsey. The above is contained in the conference
volume of TOPOSYM'76 [26].

We were pleased to learn that this note was quickly followed by research
by W. Weiss, V. I. Malyhin, S. Todor¢evi¢ and others [14, 39, 40]. A sur-
vey article by W. Weiss about this research appeared in [41]. In fact the
TOPOSYM paper [26] contains only a sketch of the proof of Theorem 2.2
and, in hindsight, it proves more, namely an analogous result for topological



spaces with a given linear ordering of points and for monotonne homeo-
morphism. These are denoted by (X, <x), (Y, <y), monotonne homeomor-
phism as (X,<x) — (Y,<y) and the corresponding partition arrow by
(V,<y) — (X,<x)L. Thus after 30 years we take the liberty to include
here the following mild strengthening of [26]:

Theorem 2.4 For every T1-topological space X, every linear ordering <x
of its points and every cardinal « there exists a T1-topological space Y with
a linear ordering <y such that (Y, <y) — (X, <x)L.

Proof For a < oo the result was proved in [26], so we may assume that «
is an infinite cardinal.

We define the underlying set Y as X®. Let <y be the lexicographic
ordering of sequences (z, : ¢ < «). The topology of Y will be defined by the
set 7 of all closed subsets of Y. For A C Y we say that A € 7 if and only if
it satisfies the following condition:

ifu, € X (1 < a), f < a,and (vW)yep C A is a net satisfying
oM =, (L < B,A €N, v/(g)‘) — ug (in X), v/(g)‘) # ug (A € A), then
(UL)L<a S A

It is easy to verify that 7 is closed under taking finite unions and arbitrary
intersections, so it defines a topology on Y. Moreover, the points of Y are
closed, so Y is a Tj-topological space.

We prove (Y, <) — (X, <)L. Suppose for contrary that (Y, <) /4 (X, <
)L. Let ¢: Y — a be a coloring of points of Y witnessing this. We construct
by transfinite induction points xy € X such that c¢(u) # A whenever u € Y
such that u, = x, for each v < A. Suppose that A < o and z, € X (7 < )
have already been constructed. Suppose on the contrary that there is no
) with the required property. This means that for each v € X there exists
y¥ € Y satisfying y = 2, (y < A), y} = v and ¢(y”) = A. Then, the set
{y” : v € X} induces an ordered subspace of ¥ monotone homeomorphic to
(X, <). Clearly the set is homogeneous for the coloring ¢, a contradiction
with the choice of ¢. Hence, we can construct the elements z) (A < «)
with the required property. Then, the sequence x = (z))x<o € Y satisfies
c(x) # X for each A < «, a contradiction. [ ]

Remark 2.5 Recall that Theorem 2.4 deals with partitions of points only.
Perhaps it makes sense to ask if a similar Ramsey type statement holds
when pairs or, more generally, discrete n-tuples are partitioned. Since k
(w)§ for any infinite cardinal s [4, 5] it is unlikely that there is a Ramsey
class of infinite topological spaces. For some related applications see [38]. In



[28], we suggested an alternative (graph theoretical) proof of this partition
relation. An interesting version of this proof was given in [39].

There are several beautiful Ramsey type results for topological restricted
colorings (cf. [3, 6, 13]). For finite topological spaces, the full characteriza-
tion of Ramsey classes is given in [23, 24]. Ramsey classes of finite structures
are related to ultrahomogeneous structures [12, 22, 23|, a connection which
recently yielded a spectacular application in the context of topological dy-
namics [12].

Remark 2.6 Ramsey problems depend very much on the underlying cat-
egory. The more restrictive maps lead to fewer subspaces and thus we can
expect a richer spectrum of results. Examples of this phenomenon are
Euclidean and geometric Ramsey theorems [16] and also metric Ramsey
theorems [2, 17] (which should be distinguished from Ramsey theorem for
finite metric spaces [25]). However, these questions were studied much later.

3 The point character of /,(x)

Let (X, p) be a metric space. An open covering U of (X, p) is a family of
open subsets of X with X = (JU. We say that U is bounded if there exists
b > 0 with the property that diam U < b for all U € U. We also say that U
is b-bounded if diam U < b for all U € U. The covering U is called uniform
if there exists € > 0 such that for every x € X there is a U € U which
contains the e-ball B(z,¢) = {y : p(z,y) < €}. By a well-known theorem of
A.H. Stone [36], every metric space is paracompact and hence every open
covering U of (X, p) has a locally finite open refinement V), i.e., there exists
an open covering ¥V with the following two properties:

1. for each z € X there is a neighborhood of « which meets only finitely
many members of V,

2. for every V € V thereisa U € Y with V C U.

A H. Stone [37] asked whether the theorem remains valid when replacing
the open covering and its refinement by uniform ones (see also [9]). In other
words, is it true that in any metric space every uniform covering has a
locally finite uniform refinement? A space satisfying this property is said
to have the Stone uniform property. It is clear that FKuclidean spaces and
more generally separable spaces have the Stone uniform property. However,
it was shown independently by Pelant [29] and Schepin [35] that the space
lx (k) for k sufficiently large does not have the Stone uniform property.



Subsequently in [33] and in [32] we proved that the space ¢,(k), 1 < p < 00
and k sufficiently large, does not have the Stone uniform property either.
Here we present the result from [32] which is related to a paper from this
volume [1].

For a family & of sets, we define ord(€) = sup {|D|* : D C &, D # 0}.

Definition 3.1 Let (X, p) be a metric space. The point character pc(X, p)
of (X, p) is the least cardinal B such that every uniform cover U of X has a
uniform refinement V with ord(V) < f3.

A space with pe(X, p) < Ny is also called point finite. Point finite spaces
are those satisfying the Stone uniform property. For any Euclidean space F,
we have that pc(E,) = n+2. So the point character provides a generalization
of the notion of dimension for the “infinite dimensional case”.

For an infinite cardinal £ and p > 1 recall that £,(k) is the Banach space
whose elements are the real functions on x such that ), . |f(4)[P converges.
The operations are pointwise and the norm is defined by

1/p
11l = (Z!f(i)\p> :

1<K
The main objective of this paragraph is to prove the following.

Theorem 3.2 For any limit ordinal o we have

pe (f1(wa)) = wa-

For the proof we shall need the following lemma. Let X be a set. We
denote the system of all n-element subsets of X by [X]™.

Lemma 3.3 Let n > 2 be an integer and let v be any ordinal. For every
mapping f 1 [Wysn—1]" — wytn—1 with the property that for any x,y €
[Wytn—1]", Ny = 0 implies f(z) # f(y), there exists C C [wyqtn—1]" with
the following properties:

1. |C] = wy,
2. for any x1,29 € C, 71 # x2, we have f(z1) # f(x2),

3. |Neec el =n—1.



For the proof see [1].

Proof of Theorem 3.2 Let U = {B(z,1),z € X} be a cover consisting of
all balls of diameter 1. We will show that any refinement V of U satisfies
ord(V) > wq. In fact, we will show that any 1-bounded covering V has this
property.

Let us consider the topological subspace of ¢} (w,) on the set

{f| f:wa—1[0,1], |cozf| < wp and f(x) = 1/|cozf]|, for x € cozf}

where cozf = {m| f(m) # 0}. We denote this subspace by F(w,).

As V is a uniform covering, there exists € > 0 such that for every x €
F(wqy) thereis a V € V with B(z,e) C V. Let us take n sufficiently large so
that 1/n < e/2. Consider

F'wa) ={f | f € F(wa) and [cozf| = n}.

For any M € [w,]™, we denote by fas the unique map in F"(w,) satis-
fying coz(fpr) = M. Let us define the mapping g : [ws]|™ — V so that for
every M € [wo]", B(fam,e) € g(M). In other words, the map g “chooses”
for each M € [wqo]™ a set of V containing B(far, ).

For any two disjoint M,N € [w,]™ we have dist(far, fnv) = 2. Since
V is 1-bounded, g(M) and g(N) must be different. Hence, the mapping g
satisfies the assumption of Lemma 3.3.

Let now v < . As o is a limit ordinal we have also wy1,—1 < w, and
thus, by Lemma 3.3, there is a family C' C [wy4n—1]|" satisfying the following
properties:

L. |C| = wy,
2. for any c1,c9 € C, if ¢1 # ¢, then g(c1) # g(c2),

3. [Nueccl =n—1.

Fix ¢ € C. For each ¢ € C we have p(f., fs) = 2 < &, and so f, €
B(fe,e) C g(¢). Hence c is contained in w, elements of V. Since v < o was
arbitrary, we infer that pc(f1(wq)) > wa. [ ]

Finally, let us note that the proof for p > 1 is analogous. For more
details see [29, 30, 34].



4 Tournaments and algebras

The first two papers [19, 31] of Jan Pelant deal with relations: [31] can be
traced to a dimension question of M. Katétov while [19] is an abstract of the
main activity of the combinatorial seminars in 1970 — 1971. It deals with
the following notion:

Definition 4.1 A tournament (X, R) is a reflexive relation which is com-
plete and antisymmetric. Explicitly, R satisfies

RUR'=X% RNR'={(z,2):z¢€ X}
Thus for x,y € X, x #y we have (z,y) € R <= (y,z) ¢ R.

In [19, 20, 21] we studied tournaments from the algebraic point of view:
every tournament 7' = (X, R) corresponds uniquely to the binary tourna-
ment algebra (X, ) defined by

. _Jz if(z,y) € R,
ny it (y,2) € R.

In [19, 20, 21] we studied tournaments from the algebraic point of view:
Every tournament T' = (X, R) corresponds uniquely to the binary tourna-
ment algebra (X, 1) defined by z -7y = 2z if (z,y) € R and = = z.

Clearly tournament algebras are just quasitrivial (z -y € {z,y}), com-
mutative and idempotent algebras. Note also that f : (X,R) — (X', R)
is a (relational) homomorphism if and only if f : (X,-7) — (X',-v) is an
(algebraic) homomorphism.

This connection led us to investigate the tournament algebras thor-
oughly. This resulted in papers [20, 21] where we (among other things)
characterized the congruence lattices of tournaments algebras. It also led to
new notions such as the simple tournament.

Definition 4.2 A tournament T'= (X, R) is simple if every non-constant
homomorphism f : T — T is an automorphism. (These are now called core
tournaments [8].)

Inspired by the characterization of the groups of automorphisms of tour-
naments we proved that every such group can be represented by a simple
tournament. We also characterized scores of simple tournaments, where by
the score of a tournament we mean the sequence of the degrees of its vertices
(loops not counted). Furthermore, we characterized scores for which every



tournament is simple (these are just scores (1,1, 1), (2,2,2,2,2),(3,3,3,3,3,3,3)).

It came then as a surprise that the this notion was studied independently
at the same time by P. Erdés, A. Hajnal, E. Milner and Moon [5, 18]. We
found this very encouraging.

Tournament algebras proved to be useful. Denote by Vr the variety (in
the sense of Birkhoff) generated by the finite tournament algebras. In [20]
we isolated infinitely many irreducible equations valid in Vr and posed as a
problem whether V7 is finitely axiomatizable. This problem was solved by J.
Jezek, M. Mdaroti and R. McKenzie [10] (there is no finite axiomatization). It
appeared that tournament algebras form an important class (see, e.g., [15]).
They played a role in Ramsey theory as well. We finish this paper by stating
explicitly this connection.

Let K be a class of idempotent algebras (by this we mean that every sin-
gle element subset induces a subalgebra). The notation B — (A)}, has the
analogous meaning as above in Section 2 (for topological spaces). More gen-
erally given algebras A, B we also write C' — (B)#} if the following statement
holds:

For every partition of the set (g) of all subalgebras of C' which are
isomorphic to A into k classes there exists a subalgebra B’ of C, B’ ~ B,
such that (il) is a subset of one of the classes of the partition. We say that
K has the A-Ramsey property if for every positive k and every B € K there
exists C such that C — (B)#.

In [11] we proved:

Theorem 4.3
1. Every variety V of idempotent algebras has the point Ramsey property.

2. The variety V1 generated by the tournament algebras has the A-Ramsey
property if and only if A is the singleton.

In [27] we investigated varieties of partially ordered sets and lattices.
Particularly we characterized those lattices A for which the class of all finite
distributive lattices has the A-Ramsey property and for which the class of
all lattices have the A-Ramsey property. However, for the class M of all
finite modular lattices the situation is not clear and still presents an open
problem:

Problem 4.4 Characterize those modular lattices A for which the class M
has the A-Ramsey property.
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