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ABSTRACT. We characterize the spaces of all local intertwiners I(A, B;e) that are reflexive (hy-
perreflexive). We show that if e is not an eigenvector of A, then the reflexivity (hyperreflexivity)
of I(A, B;e) depends only on B and is independent of A and e. This has consequences concerning

the reflexivity of the space of intertwiners I(A, B) and of the commutant of an operator.

1. INTRODUCTION

For complex Banach spaces X and Y, let B(X,Y) be the Banach space of all bounded linear
operators from X to Y; similarly, let B(X) be the Banach algebra of all bounded linear operators
on X. The topological dual of X is denoted by X*.

Let A € B(X), B € B(Y), and e € X be given. An operator S € B(X,Y) intertwines A and
B at e, if SAe = BSe. The set of all operators that intertwine A and B at e is denoted by
I(A, B;e). In particular, if X =Y and A = B, then C(A4,e) :=I(A, A;e) is the local commutant
of A at e. Local commutants were introduced and studied by Larson [8], see also [3].

It is obvious that I(A, B;e) is a linear space of operators and it is not hard to see that I(A, B;e)
is closed in the strong operator topology, which means, by convexity, that it is closed in the weak
operator topology as well.

For a linear subspace 8 C B(X,Y), the reflexive closure of § is given by

Ref 8§ ={T € B(X,Y); Tz € [S8z] forall x e X},

where Sx = {Sx; S € 8} is the orbit of § at x and [Sx] is its closure. It is obvious that Ref § O 8.
If Ref 8§ = §, then the space S is said to be reflexive.

In Section 2 we give a complete description of subspaces I(A, B;e) that are reflexive. It is easy
to see that this space is reflexive if e is an eigenvector of A. If e and Ae are linearly independent
then the space I(A, B;e) is reflexive if and only if (ycc[im (B — A)] = {0}. It is interesting that
this condition depends only on B and is independent of A and e. This has applications for the
reflexivity of the space of intertwiners between A and B.

Section 3 is devoted to the hyperreflexivity (for the definition see that section). It is well-
known that any hyperreflexive subspace of operators is reflexive and that the converse does not
hold, see [7], Theorem 6. We shall show that spaces of locally intertwining operators provide
natural examples of spaces of operators that are reflexive but not hyperreflexive.

In the last section we discuss the k-reflexivity and k-hyperreflexivity of spaces of local inter-
twiners.
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2. REFLEXIVITY OF THE SPACE OF LOCALLY INTERTWINING OPERATORS

In this section we shall characterize those spaces I(A, B;e) that are reflexive. The following
proposition describes the orbits of spaces of local intertwiners.

Proposition 2.1. Let A € B(X), B € B(Y), and e, x € X\ {0} be arbitrary.
(i) If x is not in the linear span of the vectors e and Ae, i.e. x ¢ V{e, Ae}, then I(A, B;e)x =
Y.
(ii) If Ae = Xe for some X\ € C and x is a scalar multiple of e, then I(A, B;e)x = ker (B — \).
(iii) If e and Ae are linearly independent, o, 5 € C and x = aAe + e, then 1(A, B;e)r =
im (aB + ).

Proof. (i) Since = ¢ V{e, Ae} there exists £ € X* that annihilates V{e, Ae}, that is { €
(\/{e, Ae})l such that (z,&) = 1. Let y € Y be artitrary. The operator y ® £, which is given by
(y&)z=(z,&)y (2 € X), maps = to y and it is in I(A, B;e) because (y®&)Ae = 0 = B(y®§)e.

(ii) Let u € C\ {0} be such that = = pe. If S € I(A, B;e), then (B—\)Sxz = uS(Ae—Xe) = 0.
Thus, I(A, B;e)x C ker (B — \). For the opposite inclusion, let y € ker (B — \) be arbitrary.
Then there exists S € B(X,Y) such that Sz = y. Since (B — \)Se = u~ (B — \)y = 0 we have
BSe = ASe = SAe and S € I(A, B;e).

(iii) If S € I(4, B;e), then Sz = S(aAe + fe) = (aB + 3)Se, which shows that I(A, B;e)z C
im (aB + ). On the other hand, let y = (aB + [)w, where w € Y, be an arbitrary vector in
the range im (B + [3). Since e and Ae are linearly independent there exist £, n € X* such that
(,) =1 = (Ae,n) and (Ae, &) =0 = (e,n). Set S :=w® &+ Bw ®n. Then it is easily seen
that S € I(A4, B;e) and Sz =y. O

Let 0,,(T') be the point spectrum (the set of eigenvalues) of a given linear operator T' € B(X).
It is well-known that a number X is in o, (7™) if and only if the range im (7" — A) is not dense in

X. Recall that a nonempty set 8 C B(X) is transitive if, for any = # 0, the orbit S8z is dense in
X.

Corollary 2.2. Let A,B € B(X) and e € X. Assume that e and Ae are linearly independent.
Then it is an immediate consequence of Proposition 2.1 that 1(A, B;e) is transitive if and only

if the point spectrum of B* is empty. In particular, the local commutant C(A,e) is transitive if
and only if o,(A*) = 0.

Now we describe the reflexive closure of the space of local intertwiners.

Proposition 2.3. Let A € B(X), B € B(Y), and e € X be arbitrary. If e and Ae are linearly

independent, then
RefI(A,B;e) = {T € B(X,Y); T(A—MNec€ [im(B—-\)] forall X\eC}.

Proof. Let T' € Ref I(A, B;e) be arbitrary. Choose A € C and set z) = Ae — Ae. By Proposition
2.1 (iii), I(A, B;e)z) € im (B—A). Since Tx € [I(A, B; e)x] for any x € X we conclude T(A—\)e =
Txy € [I(A,B;e)xy] = [im (B — \)].
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Now, assume that 7' € B(X,Y) satisfies T(A — A)e € [im(B — \)] for all A € C. Let x € X
be arbitrary. It is obvious that Tz € [I(A, B;e)x] for = 0. Suppose therefore that = # 0.
If x ¢ [{e, Ae}], then, by Proposition 2.1 (i), I(A, B;e)x = Y which gives Tx € [I(A, B;e)z].
If x is a scalar multiple of e, say x = (e for some § # 0, then I(4, B;e)r = im (BI) = Y,
by Proposition 2.1 (iii), and again Tz € [I(A, B;e)z|. Finally, assume that z = ade + (e
with @ # 0. Then Tz = oT(A + B/a)e € [im (B + (/a)]. Since, by Proposition 2.1 (iii),
im (B + 3/a) =1(A, B;e)(A + 3/a)e we conclude that Tz € [I(A, B; e)x]. O

Corollary 2.4. If e and Ae are linearly independent, then Ref 1(A, B;e) = B(X,Y) if and only

if op(B*) = 0.

Proof. If 0,(B*) = 0, then [im (B — \)] =Y for all A € C. Thus, every T € B(X,Y) satisfies the

condition T'(A—M\)e € [im (B—\)] (A € C), which means, by Proposition 2.3, that T" € I(A4, B;e).
On the other hand, if there exists A € 0,(B*), then [im (B — \)] # Y. Since (A — Ae is a

nonzero vector there exists 7' € B(X,Y) such that (A — N)e ¢ [im (B — \)]. O

It follows from Proposition 2.1 that I(A, B;e) is reflexive whenever e is an eigenvector of A.

Proposition 2.5. Let A € B(X) and B € B(Y). Ife € X is an eigenvector of A, then I(A, B;e)
is reflexive.

Proof. Let Ae = Xe and assume that T' € RefI(A, B;e). Then, by Proposition 2.1, we have
Te € ker (B — \). It follows that BTe = \Te = T'Ae, i.e., T € I(A, B;e). O

For an operator T" € B(X) such that o,(T*) # 0, let Eig(T*) be the weak-* closure of the
subspace of X* that is spanned by the eigenvectors of 7. If 0,(T™*) is empty, then we set

Eig(T™) = {0}.
Theorem 2.6. Let A € B(X), B € B(Y), and e € X be arbitrary. If e and Ae are linearly
independent, then the following is equivalent:

(i) I(A, B;e) is reflexive;

(i) Eig(B*) = Y*;

(i) (eclim (B — A)] = {0}
Proof. First we shall prove the equivalence of (i) and (ii). If Eig(B*) is a proper subspace of
Y*, then there exists a non-zero vector y € Eig(B*),. Let £ € X* be such that (e,&) = 0 and
(Ae, &) = 1. Then T := y ® £ is not in I(A, B;e), since TAe = y # 0 = BTe. However, for an
arbitrary number Ay, we have

T(A— NoJe = y € Fig(B*)1 = () [im (B — X)] € [im (B — \o)],
AeC

which gives T' € Ref I(A, B;e), by Proposition 2.3.

For the opposite implication, assume that Eig(B*) = Y*. Let T' € RefI(A, B;e) be arbitary.
By Proposition 2.3, we have T'(A—\)e € [im (B — \)| for all A € C. Choose and fix \g € 0,(B*).
Then (T'(A — Xo)e,n) = 0 for each n € ker (B* — \g). It follows that

(TAe,n) = \o(Te,n) = (Te, B*n) = (BTe,n).
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Thus, (BT —TA)e,n) = 0 for all n € ker (B* — X\g). Since \g € 0,(B*) is arbitrary and since
Eig(B*) = Y* we conclude that (BT — T A)e = 0, i.e. operator T is in I(A, B;e).

Now about the equivalence of (ii) and (iii). It is well known that [im (B —\)] = ker (B* —\) .
Thus, if x € [im (B — \)], for all A € C, then (¢, z) = 0, for any eigenvector £ of B*. It follows
that z € Eig(B*),. On the other hand, if x € X is not in the intersection Nyeclim (B — A)],
then there exists a number Ao such that = ¢ [im (B — A\g)] = ker (B* — A\g) 1. Thus, there exists
an eigenvector ¢ of B* such that (£, x) # 0, which means z ¢ Eig(B*) . O

Note that conditions (ii) and (iii) do not depend on vector e. Thus, the following assertion

holds.

Corollary 2.7. IfI(A, B;e) is reflezive for e € X \ {0} that is not an eigenvector for A, then
I(A, B; f) is reflexive for any f € X. O

Clearly
(1(A,B;e) =1(A, B) := {S € B(X,Y); SA=BS}.
eeX
Since an arbitary intersection of reflexive spaces is a reflexive space we have the following corol-
lary, which extends Lemma 1 [9].

Corollary 2.8. Let A € B(X) and B € B(Y). If Eig(B*) = Y*, then I(A, B) is reflexive. O

Note however that the condition Eig(B*) = Y* is not necessary for reflexivity of I(A, B). For
instance, let N be a normal operator without eigenvalues on a complex Hilbert space H. Then,
of course, Eig(N*) = {0}. On the other hand, the commutant { N}’ is reflexive since it is a von
Neumann algebra ([2], Proposition 56.6).

Corollary 2.9. Let A € B(X) be an arbitrary operator and let B € B(Y) be a non-zero nilpotent

operator. If I(A, B;e) is reflexive for some non-zero e € X, then e is an eigenvector of A.

Proof. Since B is non-zero nilpotent the adjoint operator B* is a non-zero nilpotent as well.
It follows that Eig(B*) # Y*. By Theorem 2.6, I(A, B;e) cannot be reflexive if e is not an
eigenvector of A. O

Proposition 2.10. Let T € B(X) and S € B(Y) be operators such that there exists an injective
operator V€ I(T, S). If S satisfies condition (iii) of Theorem 2.6, then T satisfies this condition
as well.

Proof. Assume that T does not satisfy the conditions. Then there exists a non-zero vector
r € (yeclim (T — A)]. The intertwiner V' is injective, therefore Vo € Y is also a non-zero
vector. Let A € C be an arbitary number. Since x € [im (7" — \)], there exists a sequence
() in X such that lim, .o ||(T — AN)zp, — z|| = 0. It follows lim, o0 [[(S — A\) V2, — V| <
V|| limp,—oo [[(T — Ny, — || = 0, which gives Va € [im (S — X)]. We conclude that S does not
satisfy condition (iii) of Theorem 2.6. O
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Note that the condition in Proposition 2.10 is satisfied if T is a quasi-affine transform of S.
In particular, it is weaker than the quasi-similarity of operators 1" and S.

Now we shall give a description of operators that satisfy the equivalent conditions (ii) and
(iii) of Theorem 2.6. Our description is based on the idea presented in [5], Solution 69.

Let Q be a non-empty set and let X (£2) be a Banach space of complex-valued functions on €2
satisfying the following two conditions:

for each w € Q, there exists f € X () such that f(w) # 0;

. If()] < |If|l, for f € X(Q2) and w € Q.

An operator M € B(X(Q)) is a multiplication operator if there exists a complex-valued function
¢ on Q such that (M f)(w) = ¢(w) f(w) for all w € Q. If M is a multiplication operator, then the
corresponding function ¢ is uniquely determined. In the sequel we shall write M, to indicate
the connection between a multiplication operator and the corresponding function.

For each w € (2, define the point evaluation &, on X () by (f,&w) = f(w) (f € X(92)). Since

[(fr &l = 1F@<fl (f e X(Q)

each &, is a linear functional with norm at most 1. By the first condition in (1), each &, is
non-zero and it is not hard to see that the linear span of {¢,; w € 2} is weak-* dense in X (€2)*.
Let M, € B(X(€2)) be an arbitrary multiplication operator. Then

(f, (My) 60) = (Myf, &) = p(W)f () = (f o)) (f € X(Q))

holds for any w € Q. Thus, each &, is an eigenvector for (Mgpyk (with p(w) as the corresponding
eigenvalue) and consequently Eig((Mw)*) = X(Q)*.

Now, let X be a Banach space that is isometrically isomorphic to X (2), i.e. there exists a
(bijective) linear isometry U : X — X(£2). Assume that 7' € B(X) is equivalent to a multipli-
cation operator M, € B(X(Q)), which means T = U~ 'M,U. It is easily seen that the linear
span of {U*¢,; w € Q} is weak-+ dense in X* and that T*U*¢, = p(w)U*E, (w € Q). Thus,
Eig(T*) = X*. We have proved one implication in the following theorem.

Theorem 2.11. Let X be a Banach space. An operator T € B(X) satisfies Eig(T*) = X* if and
only if T is equivalent to a multiplication operator M, on a Banach space X (Q) satisfying (1).

Proof. Let € be the set of all eigenvectors of T of norm 1. For each x € X, let Uz be the
complex function on  defined by (Uz)(w) = (z,w). Of course X (Q) := {Ux; z € X} is a linear
space of complex-valued functions on Q and U : x +— Ux is a linear surjection from X to X ().
The map U is also injective since the weak-* closed linear span of Q is Eig(7™) = X*. If we
equip X (Q2) with the norm ||Uz| := ||z|| (x € X), then X (£2) becomes a Banach space satisfying
(1) and U becomes an isometry, which means that X and X () are isometrically isomorphic
Banach spaces. Define ¢ :  — C through T"w = ¢(w)w and let M, : X(Q) — X (2) be given
by (M,Uz)(w) = ¢(w)(Uz)(w). Then

(MyUz)(w) = p(w)(z,w) = (z,T*w) = (UTz)(w),
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which gives M, = UTU ~1. Thus, M, is bounded and it is a multiplication operator equivalent
to T. ]

Corollary 2.12. Let A € B(X), B € B(Y), and e € X be arbitrary. If e and Ae are linearly
independent, then 1(A, B;e) is reflexive if and only if B is equivalent to a multiplication operator

M, on a Banach space X () satisfying (1).

Assume that a multiplication operator M, on X () (satisfying (1)) is also an algebraic oper-
ator. Let m(z) = (z — A1) --- (2 — A\g)™* be the minimal polynomial. It is easily seen that the
condition m(MLP) = 0 is equivalent to the condition

(p(w) = A1) (p(w) = Ap) =0 forall weQ.

However, (p(w) — A1) (p(w) — Ax)"™ = 0 if and only if (p(w) — A1) -+ (p(w) — Ag) = 0.
Thus, if M, is an algebraic operator, then each zero of its minimal polynomial is simple. On
the other hand, if ¢(2) = {A1,..., A}, then M, is an algebraic multiplication operator with
the minimal polynomial m(z) = (z — A1) -+ (2 — A\g).

Corollary 2.13 (Cf. [1], Section 3). If B € B(Y) is an algebraic operator such that its minimal
polynomial has only simple zeroes, then I(A, B;e) is reflexive for any A € B(X) and any e € X.
On the other hand, if B is algebraic and 1(A, B;e) is reflexive for an operator A € B(X) and a
vector e € X that is not an eigenvector for A, then the minimal polynomial of B has only simple

ZETOES.

Proof. Let m(z) = (z — A1) - - (2 — Ag) be the minimal polynomial of B (thus, A\; # A; if i # j).
For each 1 <i <k, let ¢i(2) := m(2)/(z = \;). Since m(B) = 0 we have [im (B — \;)] C ker ¢;(B)
and consequently

k

k

([im (B = A)] € ([im (B = X)) € () ker g;(B).
AeC i=1 i=1

However, the intersection ﬂle ker ¢;(B) is trivial since the greatest common divisor of the

polynomials ¢; is equal to 1.

Conversely, suppose that I(A, B;e) is reflexive for some A and e, such that e is not an
eigenvector of A. Then B is equivalent to a multiplication operator M., by Theorems 2.6 and
2.11. Of course, M, is an algebraic operator with the same minimal polynomial as B. By the
observation above, we conclude that the minimal polynomial has only simple zeroes. O

Example 2.14. (1) An operator B € B(Y) will be called semi-shift if it is bounded below and
N,—,;im B" = {0}. Any semi-shift satisfies the equivalent conditions of Theorem 2.6. Indeed,
there is an open neighbourhood U of 0 such that B — z is bounded below for z € U. Then
N,eyim (B — z) = (,—;im B" = {0}. Hence the spaces of intertwiners I(A, B;e) are reflexive
for all A € B(X) and e € X, which gives the reflexivity of I(A, B) for any A € B(X).

(2) In particular, let B € B(H) be a unilateral weighted shift on a Hilbert space 3. Thus,
Be; = wiejr1 (i = 0,1,...), where eg, eq,... is an orthonormal basis for H and w; € C form a
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bounded sequence. Suppose that im B is closed, i.e. inf; |w;| > 0. Then B is a semi-shift and
therefore it satisfies the conditions of Theorem 2.6.

Assumption that im B is closed is necessary. For example, let B be the weighted shift with
weights w; = =5. Then ||B"|| = .; and so B is quasinilpotent. Hence [, cc[im (B — z)] =
[im B] = V{e;; i > 1} and B does not satisfy the conditions of Theorem 2.6.

(3) Let V be an isometry acting in a Hilbert space H. Let V = U @ S be the Wold decom-
position of V', where U is unitary and S is a unilateral shift (of some multiplicity). Clearly,
the commutant {U}’ is reflexive since it is a von Neumann algebra and {S}’ is reflexive by (1).
However, in general {V'}’ is not reflexive. For example, let U be the bilateral shift and S the
unilateral shift. Then V = U @& S may be represented as the operator of multiplication by z in
L? @ H?, where L? is considered with respect to Lebesgue measure on the unit circle and H?
is the Hardy space. For fi, fo € L*°, f3 € H the operator of multiplication by the matrix

[J;I ;2 belongs to {V}'. For g € H?, g # 0, we have {V} (0@ g) D gL* ®0 = L? ® 0. Hence
3

for any X € B(H?, L?) the operator [8 € Ref{V} and {V} is not reflexive.

3. HYPERREFLEXIVITY OF THE SPACE OF LOCALLY INTERTWINING OPERATORS

Let 8§ € B(X,Y) be a closed subspace. For an operator 1" € B(X,Y), define
a(T,8) = sup{dist(Tz,8x); = € X, |z| = 1}.

The space 8 is said to be hyperreflexive if there is a constant ¢ > 0 such that the inequality
dist(7,8) < ca(T,8) holds for all T € B(X,Y). It is well known that the hyperreflexivity is
stronger condition than reflexivity, that is, each hyperreflexive space is reflexive. In this section
we shall show that some spaces of local intertwiners can serve as natural examples of spaces that
are reflexive but not hyperreflexive.

First we give a characterisation of hyperreflexive spaces of local intertwiners.

Proposition 3.1. Let A € B(X) and B € B(Y) be arbitary operators and assume that Ae = \e
for some X\ € C. Then I(A, B;e) is hyperreflezive.

Proof. Without loss of generality we may assume that ||e|| = 1. Let S € B(X,Y). By Proposition
2.1, we have a(S,I(A, B; e)) = dist(Se,ker (B — )\))

We shall prove that dist (S, I(A, B; e)) = dist (Se, ker (B—)\)). Let e > 0 and let y € ker (B—\)
satisfy ||Se — y| < dist(Se, ker (B — X)) + €. Let y* € Y* satisfy (e, y*) = 1 = ||y*||. Define S €
B(X,Y) by Spe = Se—y and Soliery+ = 0. Then S—Sy € I(A4, B;e) and dist (S, 1(A, B;e)) < ||So]|.
Let € X have norm 1. Write x = ae + zg with o € C and xg € kery*. Then

1(So)x|| = [[a(So)ell = [z, y™)] - [|Se =yl
< [|Se — y|| < dist(Se, ker (B — \)) +e.

Hence dist(S,I(A, B; e)) < dist (Se, ker (B — )\)) O
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Lemma 3.2. Let A € B(X) and B € B(Y) be arbitary operators. Let e € X and Ae be linearly
independent. Then there exists a constant k > 0 such that for any S € B(X,Y) it is possible to
find Sp € B(X,Y) with the properties

Soe =0, S — Sy €I(A, Bse) and |Sol| < k|| SAe — BSe||.
Consequently, dist (S,I(A, B; e)) < k|| SAe — BSe]||.

Proof. Since e and Ae are linearly independent there exists k& > 0 such that || < %Hae + B Ae||
for arbitrary a, § € C. Choose and fix a projection P € B(X) whose image is V{e, Ae} and
|IP|| < 2. Let S € B(X,Y) be arbitrary. Now let Sy € B(X,Y) be defined by conditions

Sge =0, SpAe = SAe — BSe and Solkerp = 0.

Since (S — Sp)Ae = SAe — SAe + BSe = B(S — Sy)e, the operator S — Sy is in I(A, B;e). Let
x € X be an arbitrary vector of norm 1 and let x = ae + fAe + xg with zg € ker P. Then

k
IS0z || = [I8SoAe|| = |6] - [|SAe — BSe| < 5 llae + SAe| - [[SAe — BSel|

k
= S|Pl - |SAe — BSel| < k| SAe — BSe]|.
It follows now that dist(S,I(4, B;e)) < [|So| < k[ SAe — BSe||. O

Theorem 3.3. Let A € B(X) and B € B(Y) be arbitary operators and assume that e € X
and Ae are linearly independent. Then 1(A, B;e) is hyperreflexive if and only if there exists a
number € > 0 such that sup{dist(y,im (B — \)); A€ C} > ¢, forally €Y, [lyl| = 1.

Proof. Withot loss of generality we assume that |le|| =1, ||A]| <1, and || B|| < 1.
Suppose that for any € > 0 there exists a vector y. € Y of norm one such that

(2) sup{dist (ye,im (B — \)); A€ C} <e.

Since e and Ae are linearly independent, there exists £ € X* such that (£, e) = 0 and (£, Ae) = 1.
Let F, := y. ® £&. Thus F, is a rank-one operator that maps e to 0 and Ae to y.. We show
that dist(Fg,I(A,B;e)) > 1/2. Towards contradiction suppose that there exists an operator
S € I(A, B;e) such that ||F. — S| < 1/2. Then ||Se| = ||Fee — Se|| < [|[Fe — S|| < 1/2 and
therefore ||SAe| = ||BSe| < ||B]| - ||Se|| < 1/2. It follows that

[(Fe = S)Ae|| = [lye — SAe|| = [lyel| — [[SAel| > 1 -1/2=1/2.

Since || Ae|| < 1 we conclude that ||F. — S|| > 1/2, which contradicts to the assumption.

We have seen that for any € > 0 there exists a rank-one operator F, such that dist (Fe, I(A, B; e))
1/2. Now we shall estimate a(FE, I(A, B; e)).

If a vector x € X is not in [{e, Ae}], then I(A4, B;e)x = Y, by Proposition 2.1. Thus,
dist(Fex,I(A, B;e)z) = 0 in this case.

Assume that x = aAe + e, for some a, § € C, and ||z|| = 1. Of course, there is a number
M > 0 such that M > |a| for all @ € C that satisfy condition ||aAe + Se|| = 1 for some § € C.
Note that M does not depend on e. By Proposition 2.1, if z = aAe + fe, then I(A, B;e)x =

>
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im (aB + ). Thus, dist(F.z,1(4, Bje)z) = dist(aye,im (aB + 3)) < Mdist(ye,im (aB + 3))
and therefore, by (2), dist(F.z,I(A, B;e)z) < Me. We conclude that a(F,1(4, B;e)) < Me.
Now, since lim,_.qg a(FE,I(A,B;e)) = 0 and dist (Fg,I(A,B; e)) > 1/2 for any € > 0, the space
I(A, B;e) is not hyperreflexive.

For the opposite implication, let S € B(X,Y) be arbitrary and let Sop € B(X,Y) be an operator
that satisfies the conditions from Lemma 3.2, so dist(S,1(4, B;e)) < [|So| < k||SAe — BSe].
Since S — Sp € 1(A, B; e) we have a(S, I(A, B; e)) = a(So, I(A, B; e)). By the assumption, there
exists A € C such that dist(SoAe,im (B — X)) > €||SpAe|. Clearly A € o(B), and so |[A| < || B
Note also that I(A4, B;e)(Ae — Ae) = im (B — X), by Proposition 2.1. So we have

oS, I(A, Bse)) = a(S0,1(A, Bse)) > || Ae — Ae||~dist (Sp(Ae — Ae),I(A, Bye)(Ae — Xe))
dist (SpAe, im (B — X)) S e||SoAel|
A+ BDlel AL+ IBID el

Recall that SyAe = SAe— BSe (see proof of the claim) and so «(S,1(A, B;e)) > ¢||SAe— BSel],
— 13
where ¢ = (B -

Example 3.4. Let Y = ¢? and let B € B(¢?) be given by
1 1

B: (x1, w2, x3,...) — ($1, 592 g{[‘g,...).
It is easily seen that im (B—1) = {(z;) € (% z, = 0}, for any n € N, and that im (B—\) = (% if
A # 1 (Vn € N). Thus B satisfies condition (iii) of Theorem 2.6 and we conclude that I(4, B;e)
is reflexive for any Banach space X and arbitary A € B(X) and e € X. On the other hand, these
spaces are hyperreflexive if and only if e is eigenvector of A or e = 0. Namely, we shall see that
B does not satisfy condition (ii) of Theorem 3.3.

(k)

For a positive integer k, let f(*) = (f;7) € £? be given by

w ) F 1<i<K?
[ = 0:

k? < j.
Then || f®)| =1 and f® €im(B—A)if A ¢ {1, 3, ..., &} Thus dist(f*,im (B —))) =0
ifA¢ {1, 3, ..., k—IQ} For 1 < n < k? we have

1 1
dist (f),im (B — ) = min{[| f® — (2;); @ =0} = .
We conclude that .
sup{dist(f(k),im (B=X); AeC} = 7

which means that condition (ii) of Theorem 3.3 is not fulfilled.
4. k-REFLEXIVITY AND k-HYPERREFLEXIVITY OF THE SPACE OF LOCALLY INTERTWINING

OPERATORS

Let X and Y be complex Banach spaces and let F'(Y,X) be the space of all operators of finite
rank from Y to X, that is the linear span of all operators of finite rank. Thus, an operator
F € B(Y,X) is of finite rank if and only if there exist a positive integer n and z1,...,z, € X,
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M, Nn € Y* such that F =21 @01 + -+ -+ x, @1n,. The pair (B(DC,H),F(H, DC)) is a dual pair
via the pairing

(T.F) = (Tz1,m) + - + (Txn,mn),
where ' € B(X,Y) and F =21 @m + -+ 2, @0, € F(Y,X) are arbitrary. If # C B(X,Y),
then let U+ := {F € F(Y,X); (S,F)=0 forall S & U} and, similarly, for W C F(Y,X),
let W, :={Se€B(X,Y); (S,F)=0 forall FeW}.

For a positive integer k, let Fi(Y,X) C F(Y,X) be the subset of all operators from Y to X
whose rank is at most k. Since Fj(Y,X) = {0} and Fj(Y,X) is closed under multiplication by
the scalars, (B(X,Y), F(Y,X), Fir(Y,X)) satisfies the conditions of a reflexive triple (over C) in
the sense of [4]. Thus, for a linear subspace § C B(X,Y) we define the k-reflexive cover of § as
Ref:$ := (8+ N Fi(Y, :)C))J_ The sets Ref;8 are linear subspaces of B(X,Y) closed in the weak
operator topology. Of course, § C Ref;S and § is said to be k-reflexive if § = Ref;8. Clearly,
the 1-reflexivity coincides with the notion of reflexivity. The reader is referred to [4] for details;
especially for the relation to the classical notion of a reflexive algebra.

Let § C B(X,Y) be a weakly closed subspace such that § = W, with W C Fj(Y,X). Then
SENF(Y,X) = (WL)NF(Y,X) 2 W and consequently Refx$ = (8- N F(Y,X)), C W, =8.
It follows that 8 is k-reflexive. On the other hand, if § is k-reflexive, then § = W, with
W = 8+NEL(Y,X) C Fi(Y,X). Thus, 8 is k-reflexive if and only if there is a subset W C F},(Y, X)
such that § = W, .

Proposition 4.1. For arbitrary A € B(X), B € B(Y), and e € X, the subspace 1(A, B;e) C
B(X,Y) is 2-reflexive.

Proof. 1t is obvious that an operator S € B(X,Y) satisfies SAe = BSe if and only if (S, Ae ®
7 —e® B*n) = 0 holds for all n € Y*. Thus, I(A, B;e) = G(A, B;e),, where G(A, B;e) :=
{Ade@n—e® B*np; neY}C FY,X). O

Let 8§ C B(X,Y) be a subspace and T' € B(X,Y). For a positive integer k, define
k
T,8) = inf Tz'—Ai; gy DC, =1}
(T, 8) SUP{}ES;H vy — Azill; @1, wp € X, [zl + - [l = 1}

In particular, for k = 1, we have a1 (7T, 8) = (T, 8). The space 8 is said to be k-hyperreflexive
if the seminorms dist(+,8) and ax(+,S) are equivalent.

Again, the notion of 1-hyperreflexivity coincides with that of hyperreflexivity.

Denote by dist; the distance in the space yk (the ¢;-direct sum of k copies of Y). We have

a,(T,8) = sup distl((Tarl, ooy Teg), {(Axy, ..., Axyg); A€ S})

k k
~  sw sup S (Twnyid|s S Az yf) =0 forall A€
T1seen z, €X Yl y;‘;G‘é* i=1 i=1
ol Hlzpl=1 yr <1, lyp<t
= sup [T, F)|.
FeF(Y,X)

IF <1



REFLEXIVITY AND HYPERREFLEXIVITY ... 11
Thus, this definition agrees with that given by Kli§ and Ptak in [6] for Hilbert spaces.

Theorem 4.2. For arbitrary A € B(X), B € B(Y), and e € X, the subspace (A, B;e) C B(X,Y)
s 2-hyperreflexive.

Proof. If e is an eigenvector of A, then the space I(A, B;e) is even hyperreflexive, by Proposition
3.1.

Assume that the vectors e and Ae are linearly independent and let 7' € B(X,Y) be arbitrary.
By Lemma 3.2, there is a constant k > 0 such that dist(T,1(4, B;e)) < k||TAe — BTe||. On the
other hand, let y* € Y* satisfy ||y*|| = 1 and (T'Ae — BTe, y*) = ||[T Ae — BTe||. We have

as(T,I(A, B,e)) > [|[Ae ® y* — e ® B*y*|| (T, Ae ® y* — e @ B*y")]
-1 . ~1
> (1A +1IBIDNell) KT Ae — BTe,y*)| = (1Al + [ BI)llell) | TAe — BTe|.
Hence I(A, B;e) is 2-hyperreflexive. O
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