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Introduction

Let T be a bounded linear operator acting in a Banach space X. Denote by
R(T ) = TX and N(T ) = {x ∈ X, Tx = 0} its range and kernel, respectively.

Continuity properties of the functions z 7→ R(T − z) and z 7→ N(T − z) were
studied by a number of authors. The investigation was started by Kato [9], [10], who
introduced also useful concepts of the reduced minimum modulus and the gap between
two closed subspaces.

The spectrum σγ(T ) was defined for Hilbert space operators by Apostol [3] as the
set of all complex λ such that either R(T − λ) is not closed or λ is a discontinuity
point of the function z 7→ R(T − z). Properties of this spectrum are analogous to
the properties of the ordinary spectrum. It is always a non-empty compact subset of
the complex plain, contains the topological boundary of σ(T ) and satisfies the spectral
mapping property.

The results of Apostol were generalized by Mbekhta [14], [15], Mbekhta and Oua-
hab [16], [17] and Harte [7] for operators in Banach spaces.

In this paper we continue the investigation of σγ . We define an essential version
σγe which exhibits similar properties as σγ and is closely related to the theory of semi-
Fredholm operators. Further we study generalized inverses for T − λ and show that it
is not possible to extend reasonably σγ for n-tuples of commuting operators.

The author would like to thank to the referee for drawing his attention to the paper
of Rakočevič [18] which is closely related to the present paper. Some of the results are
already proved in [18], especially Theorem 3.1, equivalence 1 ⇔ 2 (see Theorem 2.1 of
[18]) or the spectral mapping theorem for σγe. We leave the proofs here for the sake
of completeness and because they seem to us sometimes more direct. On the other
hand the present paper solves some questions posed in [18]. Thus Example 2.2 gives a
negative answer to both parts of Question 4 and Theorem 3.5 gives a positive answer
to Question 2 of [18].

I. Semi-regular operators and spectrum σγ

Throughout the paper we shall denote by X a fixed complex Banach space X.
Denote by B(X) the algebra of all bounded linear operators in X. For T ∈ B(X) the
reduced minimum modulus of T is defined by

γ(T ) = inf
{‖Tx‖, x ∈ X, dist{x,N(T )} = 1

}

(if T = 0 then we set γ(T ) = ∞).
Let M1 and M2 be two closed subspaces of X. Then we denote by

δ(M1, M2) = sup
{

dist{x,M2}, x ∈ M1, ‖x‖ = 1
}
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(if M1 = {0} then δ(M1,M2) = 0) and the gap between M1 and M2 by

δ̂(M1,M2) = max
{
δ(M1,M2), δ(M2, M1)

}
.

We list the most important properties of the reduced minimum modulus and the gap
between two subspaces (see [10], Chapter IV):

Theorem 1.1.
1) γ(T ) > 0 if and only if R(T ) is closed,
2) γ(T ) > r > 0 if and only if for every y ∈ R(T ) there exists x ∈ X such that Tx = y

and
‖x‖ ≤ r−1‖y‖,

3) γ(T ∗) = γ(T ),
4) the set {T ∈ B(X), γ(T ) ≥ ε} is norm-closed in B(X) for every ε (see [2]),
5) δ(M1,M2) = δ(M⊥

2 ,M⊥
1 ),

6) if δ̂(M1,M2) < 1 then dim M1 = dim M2.

For T ∈ B(X) we have R(T ) ⊃ R(T 2) ⊃ R(T 3) ⊃ . . . and N(T ) ⊂ N(T 2) ⊂ . . . .
Denote shortly R∞(T ) =

⋂∞
n=0 R(Tn) and N∞(T ) =

∨∞
n=0 N(Tn).

Consider the function z 7→ γ(T − z) defined for complex z. Although this function
is not continuous in general, it has good continuity properties. From a great number of
equivalent conditions characterizing the continuity points of the function z 7→ γ(T − z)
we choose the most important:

Theorem 1.2. Let T ∈ B(X) be an operator with closed range. The following
conditions are equivalent:

1) the function z 7→ γ(T − z) is continuous at z = 0,
2) the function z 7→ γ(T − z) is bounded from below in a neighbourhood of 0, i.e.

there exists ε > 0 such that inf |z|<ε γ(T − z) > 0,
3) the function z 7→ R(T − z) is continuous at 0 in the gap topology, i.e.

lim
z→0

δ̂
(
R(T ), R(T − z)

)
= 0,

4) the function z 7→ N(T − z) is continuous at 0 in the gap topology, i.e.

lim
z→0

δ̂
(
N(T ), N(T − z)

)
= 0,

5) N(T ) ⊂ R∞(T ),
6) N∞(T ) ⊂ R(T ),
7) N∞(T ) ⊂ R∞(T ).

The previous theorem was proved in [16]. The equivalence of the first four condi-
tions is true for any continuous operator-valued function z 7→ T (z); in [19] this result
was attributed to Markus, see [13].
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Definition 1.3. (see [16]) An operator T ∈ B(X) is called s-regular (semi-regular) if
T has closed range and satisfies any of the equivalent conditions of Theorem 1.2.

For s-regular operators the subspaces R∞(T ) and N∞(T ) can be described in
another way. We start with two simple lemmas:

Lemma 1.4. Let T ∈ B(X) be s-regular, x ∈ X and Tx ∈ R∞(T ). Then x ∈ R∞(T ).

Proof. Let n ≥ 1. Then there exists y ∈ X such that Tn+1y = Tx, i.e. x − Tny ∈
N(T ) ⊂ R∞(T ) ⊂ R(Tn). So x ∈ R(Tn) and as n was arbitrary, x ∈ R∞(T ).

Lemma 1.5. Let T ∈ B(X) be an s-regular operator. Denote by U = {z ∈ C, |z| <
γ(T )}. Then for every λ ∈ U and x ∈ N(T − λ) there exists an analytic function
f : U → X such that (T − z)f(z) = 0 (z ∈ U) and f(λ) = x.

Proof. By [16], Theorem 2.10., T − z is s-regular for z ∈ U . By [19], Theorem 2, there
exists a Banach space Y and an analytic operator-valued function S : U → B(Y, X)
such that R(S(z)) = N(T (z)) (z ∈ U). Choose y ∈ Y such that S(λ)y = x and set
f(z) = S(z)y. Clearly f satisfies all conditions of Lemma 1.5.

Theorem 1.6. Let T ∈ B(X) be s-regular and let r be a positive number, r ≤ γ(T ).
Then

1) N∞(T ) =
∨
|λ|<r N(T − λ),

2) R∞(T ) =
⋂
|λ|<r R(T − λ).

Proof. 1) Denote by U = {z ∈ C, |z| < γ(T )}. Let λ ∈ U and x ∈ N(T − λ). Then
there exists an analytic function f : U → X such that (T − z)f(z) = 0 (z ∈ U) and
f(λ) = x. Let f(z) =

∑∞
i=0 aiz

i (z ∈ U), where ai ∈ X. The equality (T − z)f(z) = 0
implies Ta0 = 0 and Tai = ai−1 (i = 1, 2, . . .). Thus Tnan = 0 and an ∈ N(Tn) ⊂
N∞(T ), so that

x = f(λ) =
∞∑

i=0

aiλ
i ∈ N∞(T ).

Hence
∨
|λ|<γ(T ) N(T − λ) ⊂ N∞(T ).

Conversely, let 0 < r ≤ γ(T ) and x ∈ N(Tn), i.e. Tnx = 0. Set a0 = Tn−1x,
a1 = Tn−2x, . . ., an−1 = x. As x ∈ N(Tn) ⊂ R∞(T ), we can find an ∈ X such that
Tan = x = an−1 and ‖an‖ ≤ 2r−1‖an−1‖. By Lemma 1.4, an ∈ R∞(T ), so that we
can inductively construct elements ai (i = n + 1, n + 2, . . .), such that Tai = ai−1

and ‖ai‖ ≤ 2r−1‖ai−1‖ (i = n, n + 1, . . .). Set f(z) =
∑∞

i=0 aiz
i. Clearly this series

converges for |z| < r/2 and (T − z)f(z) = 0, i.e. f(z) ∈ N(T − z) (|z| < r/2). Further

x = an−1 =
1

2πi

∫

|z|=r/4

f(z)
zn

dz ∈
∨

|z|<r

N(T − z).

2) Let 0 < r ≤ γ(T ) and x ∈ ⋂
|z|<r R(T − z).

By [19] there exists an analytic function f(z) =
∑∞

i=0 aiz
i such that (T−z)f(z) = x

(|z| < r). Hence Ta0 = x and Tai = ai−1 (i = 1, 2, . . .), so that x ∈ R∞(T ).
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Conversely, let x ∈ R∞(T ) and |λ| < γ(T ). Choose r, |λ| < r < γ(T ). Similarly
as in 1) we can find points ai ∈ X such that a0 = x, Tai = ai−1 and ‖ai‖ ≤ r−1‖ai−1‖
for i = 1, 2, . . . . Set f(z) =

∑∞
i=1 aiz

i−1. Then f(z) is defined and

(T − z)f(z) = x for |z| < r.

Thus x ∈ R(T − λ) and

R∞(T ) ⊂
⋂

|z|<γ(T )

R(T − z)

We shall need the following lemma (for better use we state it in a little bit more
general form):

Lemma 1.7. Let T ∈ B(X) be an operator with a closed range. Suppose that, for
k = 1, 2, . . ., there exist a finite dimensional subspace Fk ⊂ N(T ) such that N(T ) ⊂
R(T k) + Fk. Then R(T k) is closed for each k.

In particular, if R(T ) is closed and N(T ) ⊂ ⋂∞
k=0 R(T k) then T is s-regular.

Proof. We prove by induction on k that R(T k) is closed.
Suppose that k ≥ 1 and R(T k) = R(T k). Let u ∈ R(T k+1). By the induction

assumption u ∈ R(T k), i.e. u = T kv for some v ∈ X. Further there are elements vj ∈
X (j = 1, 2, . . .) such that T k+1vj → u (j → ∞). Thus T (T kvj − T k−1v) → 0.
Consider the operator T̃ : X/N(T ) → R(T ) induced by T . Clearly T̃ is bounded below
and T̃ (T kvj − T k−1v + N(T )) → 0, so that T kvj − T k−1v + N(T ) → 0 (j →∞) in
the quotient space X/N(T ). Thus there exist vectors kj ∈ N(T ) such that T kvj +kj →
T k−1v. Since kj ∈ N(T ) ⊂ R(T k) + Fk and R(T k) + Fk is closed, we have T k−1v =
T ka + f for some a ∈ X and f ∈ Fk ⊂ N(T ). Hence u = T kv = T k+1a ∈ R(T k+1) and
R(T k+1) is closed.

The following theorem gives another characterization of s-regular operators (cf.
[3], Lemma 1.4 and [15], Theorem 2.1).

Theorem 1.8. Let T ∈ B(X) be an operator with closed range. The following
conditions are equivalent:

1) T is s-regular,
2) N(T ) ⊂ ∨

z 6=0 N(T − z),

3) R(T ) ⊃ ⋂
z 6=0 R(T − z).

Proof. Implications 1 ⇒ 2 and 1 ⇒ 3 follow from the previous theorem (note that
R(T − z) is closed for |z| < γ(T ) by [16], Theorem 2.10).

2 ⇒ 1. Let λ 6= 0 and x ∈ N(T−λ). Then Tx = λx and x = T nx
λn ∈ R(Tn), so that

x ∈ R∞(T ). Thus
∨

λ6=0 N(T − λ) ⊂ R∞(T ), so that N(T ) ⊂ R∞(T ) ⊂ ⋂∞
n=0 R(Tn)

and T is s-regular by the previous lemma.
3 ⇒ 1. Let x ∈ N(Tn) and λ 6= 0. Then

(T − λ)(Tn−1 + λTn−2 + . . . + λn−1)x = Tnx− λnx = −λnx,
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so that x ∈ R(T − λ). Thus N(Tn) ⊂ R(T − λ). Hence N∞(T ) ⊂ ⋂
z 6=0 R(T − z) ⊂

R(T ) and T is s-regular.

Definition 1.9. Let T ∈ B(X). Denote by σγ(T ) = {λ ∈ C, T −λ is not s− regular}.

For properties of σγ(T ) see [3] and [15]. The spectrum σγ(T ) is always a non-empty
compact subset of C and

∂σ(T ) ⊂ σγ(T ) ⊂ σ(T ).

More precisely, σγ(T ) ⊂ σπ(T )∩σδ(T ), where σπ(T ) is the approximate point spectrum
of T ,

σπ(T ) =
{
λ, inf{‖(T − λ)x‖, x ∈ X, ‖x‖ = 1} = 0

}

and σδ(T ) = {λ, (T − λ)X 6= X} is the defect spectrum of T .
The set {λ ∈ σγ(T ), R(T − λ) is closed} is at most countable and

σγ(T ) = {λ, lim
z→λ

γ(T − z) = 0}

(this limit always exists).
Further σγ(f(T )) = f(σγ(T )) for every function f analytic in a neighbourhood of

σ(T ) (in particular for every polynomial).

II. Generalized spectra

The axiomatic theory of spectrum was introduced by Żelazko [20]. A generalized
spectrum in a Banach algebra A is a set-valued function σ̃ which assigns to every n-
tuple a1, . . . , an of commuting elements of A a non-empty compact subset of Cn such
that

1) σ̃(a1, . . . , an) ⊂ ∏n
i=1 σ(ai),

2) σ̃(p(a1, . . . , an)) = p(σ̃(a1, . . . , an)) for every m-tuple p = (p1, . . . , pm) of polyno-
mials in n variables.
Sometimes, a generalized spectrum is defined first only for single elements and one

is looking for its extension for n-tuples of commuting elements, see e.g. [6]. We show
that σγ can not be extended to a generalized spectrum. We start with the following
simple criterion:

Theorem 2.1. Let σ̃ be a generalized spectrum defined in a Banach algebra A, let
a, b ∈ A and ab = ba. Then 0 ∈ σ̃(ab) if and only if either 0 ∈ σ̃(a) or 0 ∈ σ̃(b).

Proof. If 0 ∈ σ̃(a) then there exists λ ∈ C such that (0, λ) ∈ σ̃(a, b). Then 0 = 0 · λ ∈
σ̃(ab). Similarly 0 ∈ σ̃(b) implies 0 ∈ σ̃(ab).

Conversely, let 0 /∈ σ̃(a) and 0 /∈ σ̃(b). Then

σ̃(ab) = {λµ, (λ, µ) ∈ σ̃(a, b)} ⊂ {λµ, λ ∈ σ̃(a), µ ∈ σ̃(b)}
⊂ {λµ, λ 6= 0, µ 6= 0} = C− {0},

i.e. 0 /∈ σ̃(ab).
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Example 2.2. We construct two commuting s-regular opertors such that their product
is not s-regular.

Let H be the Hilbert space with an orthonormal basis {ei,j} where i and j are
integers such that ij ≤ 0. Define opertors T and S ∈ B(H) by

Tei,j =

{
0 if i = 0, j > 0,
ei+1,j otherwise

and

Sei,j =

{
0 if j = 0, i > 0,
ei,j+1 otherwise.

Then

TSeij = STeij =

{
0 if i = 0, j ≥ 0 or j = 0, i ≥ 0,
ei+1,j+1 otherwise,

so that T and S commute.
Further N(T ) =

∨{e0,j , j > 0} ⊂ R∞(T ), N(S) =
∨{ei,0, i > 0} ⊂ R∞(S) and

both R(T ) and R(S) are closed. Thus T and S are s-regular.
On the other hand TSe0,0 = 0, i.e. e0,0 ∈ N(TS) and e0,0 /∈ R(TS), so that TS is

not s-regular.

Corollary 2.3. There exists no generalized spectrum σ̃ such that σ̃(T ) = σγ(T ) for
every T ∈ B(X).

Remark 2.4. Note that one implication in Theorem 2.1 is true for σγ :
if TS = ST and either 0 ∈ σγ(T ) or 0 ∈ σγ(S) then 0 ∈ σγ(TS) (see [15], Lemma

4.15).

Another drawback of the spectrum σγ is that it is not upper semicontinuous. For
this it is sufficient to show that the set of all s-regular operators is not open.

Example 2.5. Let H be the Hilbert space with an orthonormal basis

{ei,j , i, j integers, i ≥ 1}.

Let T ∈ B(H) be defined by

Tei,j =

{
ei,j+1 if j 6= 0,
0 if j = 0.

Clearly N(T ) = ∨{ei,0, i ≥ 1} ⊂ R∞(T ) and R(T ) is closed, so that T is s-regular.
Let ε > 0. Define S ∈ B(H) by

Sei,j =

{
ε
i ei,1 if j = 0,
0 if j 6= 0.

Clearly ‖S‖ = ε and S is an infinite dimensional compact operator so that R(S) is
not closed. Denote M = ∨{ei,1, i ≥ 1}. We have R(T ) ⊥ M and R(S) ⊂ M , so that
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(T + S)x ∈ M implies x ∈ N(T ) and (T + S)x = Sx. Thus R(T + S)∩M = SN(T ) =
R(S), so that R(T + S) is not closed. Therefore T + S is not s-regular.

III. Essential case

In this section we admit finite dimensional jumps in N(T − z) or R(T − z).
If M1 and M2 are subspaces of X then we shall write shorty M1 ⊂e M2 if there

exists a finite dimensional subspace F ⊂ X such that M1 ⊂ M2 + F . In this case we
may assume that F ⊂ M1. Clearly M1 ⊂e M2 if and only if dim

(
M1|(M1 ∩M2)

)
< ∞.

Theorem 3.1. Let T ∈ B(X) be an operator with closed range. Then the following
conditions are equivalent:

1) N(T ) ⊂e R∞(T ),
2) N∞(T ) ⊂e R(T ),
3) N∞(T ) ⊂e R∞(T ),
4) there exists a decomposition X = X1 ⊕ X2 such that dim X1 < ∞, TX1 ⊂ X1,

TX2 ⊂ X2, T |X1 is nilpotent and T |X2 is an s-regular operator,
5) N(T ) ⊂e

∨
z 6=0 N(T − z),

6) R(T ) ⊃e

⋂
z 6=0 R(T − z),

7) dim
(
N(T )|Ñ(T )

)
< ∞, where Ñ(T ) is the set of all x ∈ X such that there are

complex numbers λi (i = 1, 2, . . .) tending to 0 and elements xi ∈ N(T − λi) such
that x = limi→∞ xi (clearly Ñ(T ) ⊂ N(T )),

8) dim(R̃(T )|R(T )) < ∞ where R̃(T ) is the set of all x ∈ X such that x = limi→∞ xi

for some xi ∈ R(T − λi) and some λi → 0. (Clearly R(T ) ⊂ R̃(T )).

Proof. Implications 4 ⇒ 3, 3 ⇒ 1 and 3 ⇒ 2 are clear.
1 ⇒ 4 and 2 ⇒ 4. We prove these two implications simultanously. The proof will

be done in several steps.
a) Either 1) or 2) implies N(Tn) ⊂e R(T k) for every n, k, i.e. there are finite

dimensional subspaces Fn,k ⊂ N(Tn) such that

N(Tn) ⊂ R(T k) + Fn,k. (∗)

Suppose first N(T ) ⊂e R∞(T ). We prove (∗) by induction on n.
The statement is clear for n = 1.
Suppose that we have found subspaces Fm,k ⊂ N(Tm) for every m ≤ n − 1 and

every k such that (∗) holds. Choose a subspace F ′n,k ⊂ X such that TF ′n,k = Fn−1,k+1∩
R(T ) and dim F ′n,k = dim(Fn−1,k+1 ∩R(T )) ≤ dim Fn−1,k+1 < ∞.

Then

N(Tn) = T−1N(Tn−1) ⊂ T−1
(
R(T k+1) + Fn−1,k+1

)

⊂(
R(T k) + N(T )

)
+

(
F ′n,k + N(T )

) ⊂ R(T k) + F ′n,k + R(T k) + F1,k = R(T k) + Fn,k,

where Fn,k = F ′n,k + F1,k ⊂ N(Tn).
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We prove that 2) implies (∗). Suppose N∞(T ) ⊂e R(T ). We prove (∗) by induction
on k. The statement is clear for k = 1. Suppose (∗) is true for every n and every
l ≤ k − 1. Then N(Tn+1) ⊂ R(T k−1) + Fn+1,k−1, so that

TN(Tn+1) ⊂ R(T k) + TFn+1,k−1.

Further TN(Tn+1) = N(Tn) ∩ R(T ) and N(Tn) ⊂ R(T ) + Fn,1 where Fn,1 ⊂ N(Tn),
so that

N(Tn) ⊂ (
R(T ) ∩N(Tn)

)
+ Fn,1 = TN(Tn+1) + Fn,1

⊂ R(T k) + TFn+1,k−1 + Fn,1 = R(T k) + Fn,k,

where Fn,k = TFn+1,k + Fn,1 ⊂ N(Tn).

b) Condition (∗) implies by Lemma 1.7 that R(T k) is closed for each k.
c) We construct now the decomposition X = X1 ⊕ X2. Suppose that T satisfies

(∗).
If N(T ) ⊂ R∞(T ) then T is s-regular and we can take X1 = {0}, X2 = X.
Therefore we may assume that N(T ) 6⊂ R(T k) for some k and we take the smallest

k with this property, i.e. N(T ) ⊂ R(T k−1). Find a subspace L1 such that

N(T ) = L1 ⊕
(
N(T ) ∩R(T k)

)
.

Clearly 1 ≤ dim L1 = r < ∞.
As L1 ⊂ N(T ) ⊂ R(T k−1), we can find a subspace Lk such that dim Lk = r

and T k−1Lk = L1. Set Li = T k−iLk (i = 1, . . . , k). Clearly Li ⊂ R(T k−i) and
Li ∩ R(T k−i+1) = {0} for every i. Therefore subspaces Lk, Lk−1, . . ., L1 and R(T k)
are linearly independent in the following sense: if li ∈ Li (1 ≤ i ≤ k), x ∈ R(T k) and
x + l1 + · · ·+ lk = 0, then x = l1 = . . . = lk = 0.

Let x1, . . . , xr be a basis in L1. As x1, . . . , xr are linearly independent modulo
R(T k)+L2 + . . .+Lk, we can find linear functionals f1, . . . , fr ∈ (R(T k)+L2 + . . . Lk)⊥

such that 〈xi, fj〉 = δij (1 ≤ i, j ≤ r). Set

Y1 =
k∨

i=1

Li and Y2 =
k−1⋂

j=0

r⋂

i=1

ker(T ∗jfi).

Clearly dim Y1 < ∞, TY1 ⊂ Y1 and (T |Y1)k = 0. Further TY2 ⊂ Y2. Indeed, if x ∈ Y2

then
〈Tx, T ∗jfi〉 = 〈x, T ∗(j+1)fi〉 = 0 for 0 ≤ j ≤ k − 2

and 〈Tx, T ∗(k−1)fi〉 = 〈T kx, fi〉 = 0.
Find y1, . . . , yr ∈ Lk such that xi = T k−1yi (1 ≤ i ≤ r). Then

{T jyi, 0 ≤ j ≤ k − 1, 1 ≤ i ≤ r}

form a basis of Y1 and

{T jyi, 0 ≤ j ≤ k − 1, 1 ≤ i ≤ r} and {T ∗jfi, 0 ≤ j ≤ k − 1, 1 ≤ i ≤ r}

form a biorthogonal system. Thus it is easy to show that X = Y1 ⊕ Y2.
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Denote by T1 = T |Y1 and T2 = T |Y2. We have N(T ) = N(T1) ⊕ N(T2) =
L1 ⊕N(T2) and R∞(T ) = R∞(T1)⊕R∞(T2) = R∞(T2).

If T satisfies 1), i.e. dim
(
N(T )|(N(T ) ∩R∞(T ))

)
< ∞ then

dim
(
N(T2)|(N(T2) ∩R∞(T2))

)
= dim

(
N(T )|(N(T ) ∩R∞(T ))

)− r

< dim
(
N(T )|(N(T ) ∩R∞(T ))

)
< ∞.

and we can repeat the same construction for T2. After a finite number of steps we
obtain a decomposition X = X1 ⊕X2 such that dim X1 < ∞, TX1 ⊂ X1, TX2 ⊂ X2,
T |X1 is nilpotent and N(T |X2) ⊂ R∞(T ), i.e. T |X2 is s-regular.

Similarly, if T satisfies 2), i.e.

dim
(
N∞(T )|(N∞(T ) ∩R(T ))

)
= a < ∞,

then

dim(N∞(T2)|(N∞(T2) ∩R(T2))) = a− dim(N∞(T1)|(N∞(T1) ∩R(T1)))

= a− dim(Y1|
k−1∨

i=1

Li) = a− r < a,

so that after a finite number of steps we obtain the required decomposition X = X1⊕X2.

1 ⇒ 7: Since Ñ(T |X2) = N(T |X2) by Lemma 1.5, we have dim(N(T )|Ñ(T )) =
dim(N(T |X1)|Ñ(T |X1) = dim N(T |X1) < ∞.

7 ⇒ 5: Clearly Ñ(T ) ⊂ ∨
z 6=0 N(T − z).

5 ⇒ 1: It is easy to see that N(T − z) ⊂ R∞(T ) for z 6= 0. Thus

N(T ) ⊂e

∨

z 6=0

N(T − z) ⊂ R∞(T ).

By Lemma 1.7 we have R(T k) = R(T k) for each k, so that N(T ) ⊂e R∞(T ).

4 ⇒ 8: By condition 2 of Theorem 1.2 R̃(T |X2) = R(T |X2), so that

dim(R̃(T )|R(T )) ≤ dim X1 < ∞.

8 ⇒ 6: Clearly
⋂

z 6=0 R(T − z) ⊂ R̃(T ).

6 ⇒ 2: This follows from the inclusion N∞(T ) ⊂ ⋂
z 6=0 R(T − z) (see the proof of

Theorem 1.7).

Definition 3.2. We say that an operator T ∈ B(X) is essentially s-regular if R(T ) is
closed and T satisfies any of the equivalent conditions of Theorem 3.1.
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Remark 3.3. Condition 4 of Theorem 3.1 is the Kato decomposition which was proved
in [9] for semi-Fredholm operators. Clearly, essentially s-regular operators are a gener-
alization of semi-Fredholm operators.

This notion is closely related to quasi-Fredholm operators, see [11], [12].

Corollary 3.4. (cf. [18]). Let T ∈ B(X).
1) If T is essentially s-regular, then Tn is essentially s-regular for every n.
2) T is essentially s-regular if and only if T ∗ ∈ B(X∗) is essentially s-regular.

Proof. 1) Let X = X1 ⊕ X2 be the Kato decomposition for T (see condition 4 of
Theorem 3.1). Clearly the same decomposition satisfies all conditions for Tn.

2) We have X∗ = X⊥
2 ⊕X⊥

1 where dim X⊥
2 = codim X2 = dim X1 < ∞, T ∗X⊥

2 ⊂
X⊥

2 , T ∗X⊥
1 ⊂ X⊥

1 , T ∗|X⊥
2 is a nilpotent operator and T ∗|X⊥

1 is isometrically isomor-
phic to (T |X2)∗, so that T ∗|X⊥

1 is s-regular and T ∗ is essentially s-regular.
Conversely, if T ∗ is essentially s-regular, then R(T ) and R(Tn) are closed for every

n and T ∗∗ ∈ B(X∗∗) is essentially s-regular, so that N(T ∗∗) ⊂e R∞(T ∗∗). Further
N(T ) = N(T ∗∗)∩X and R(Tn) = R(T ∗∗n)∩X for every n, so that R∞(T ) = R∞(T ∗∗)∩
X and N(T ) ⊂e R∞(T ).

Theorem 3.5. Let A,B ∈ B(X), AB = BA. If AB is essentially s-regular then A and
B are essentially s-regular.

Proof. We have N(A) ⊂ N(AB) ⊂e R∞(AB) ⊂ R∞(A), so that it is sufficient to
prove that R(A) is closed.

There exists a finite-dimensional subspace F ⊂ X such that N(AB) ⊂ R(AB)+F .
We prove that R(A) + F is closed. Let vj ∈ X, fj ∈ F and Avj + fj → u. Then
BAvj + Bfj → Bu and Bu ∈ R(AB) + BF since R(AB) + BF is closed. Thus
Bu = ABv + Bf for some v ∈ X and f ∈ F , i.e.

Av + f − u ∈ N(B) ⊂ N(AB) ⊂ R(AB) + F ⊂ R(A) + F.

Hence u ∈ R(A) + F and R(A) + F is closed.
The closeness of R(A) follows from the following lemma, which is a particular case

of lemma of Neubauer, see [11], Proposition 2.1.1.

Lemma 3.6. Let T ∈ B(X), let F ⊂ X be a finite-dimensional subspace. Suppose
that R(T ) + F is closed. Then R(T ) is closed.

Proof. Without loss of generality we can assume R(T ) ∩ F = {0}. Let S : X|Ker T ⊕
F → X be defined by S

(
(x + Ker T ) ⊕ f

)
= Tx + f ∈ R(T ) + F . Then S is a

bounded injective operator onto R(T ) + F . Hence S is bounded below and R(T ) =
S(X|Ker T ⊕ {0}) is closed.

Definition 3.7. Let T ∈ B(X). Denote by

σγe(T ) = {λ ∈ C, T − λ is not essentially s− regular}.

Theorem 3.8. (cf. [18]). Let dim X = ∞ and T ∈ B(X). Then
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1) σγe(T ) ⊂ σγ(T ) and σγ(T ) − σγe(T ) consists of at most countably many isolated
points,

2) σγe(T ) is a non-empty compact set,
3) ∂σe(T ) ⊂ σγe(T ) ⊂ σe(T ), where σe(T ) denotes the essential spectrum of T . More

precisely, σγe(T ) ⊂ σπe(T ) ∩ σδe(T ), where σπe(T ) is the essential approximate
point spectrum of T ,

σπe(T ) =
{
λ, T − λ is not upper semi− Fredholm

}

= {λ, R(T − λ) is not closed} ∪ {λ, dim N(T − λ) = ∞}

and

σδe(T ) =
{
λ, T − λ is not lower semi− Fredholm

}
=

{
λ, codim R(T − λ) = ∞}

.

Proof. 1) Let λ ∈ σγ(T ) − σγe(T ). Then T − λ is essentially s-regular, so that there
exists a decomposition X = X1 ⊕ X2 with TX1 ⊂ X1, TX2 ⊂ X2, dim X1 < ∞,
(T − λ)|X1 nilpotent and (T − λ)|X2 s-regular. Then (T − z)|X2 is s-regular in a
certain neighbourhood U of λ and (T − z)|X1 is s-regular (even invertible) for every
z 6= λ. It is easy to see that T − z is s-regular for z ∈ U − {λ}, i.e. U ∩ σγ(T ) = {λ}.
Clearly σγ(T )− σγe(T ) is at most countable.

2) If λ /∈ σγe(T ) then either λ /∈ σγ(T ) or λ ∈ σγ(T ) − σγe(T ). In both cases
U ∩ σγe(T ) = ∅ for some neighbourhood U od λ. Hence σγe(T ) is closed.

The non-emptiness of σγe(T ) follows from the inclusion ∂σe(T ) ⊂ σγe(T ) which
will be proved next.

3) Suppose λ ∈ ∂σe(T ) and λ /∈ σγe(T ). Then T −λ is essentially s-regular so that
R(T−λ) is closed and there exists a decomposition X = X1⊕X2 such that dim X1 < ∞,
TX1 ⊂ X1, TX2 ⊂ X2, (T − λ)|X1 is nilpotent and (T − λ)|X2 is s-regular. Choose a
sequence λn → λ such that λn /∈ σe(T ), i.e. T − λn is Fredholm. We have

dim N((T − λn)|X2) ≤ dim N(T − λn) < ∞

and, from the regularity of T |X2 and property 6 of Theorem 1.1 we conclude that

dim N((T − λ)|X2) < ∞

and also dim N(T − λ) < ∞.
Similarly we can prove codim R(T −λ) < ∞, so that T −λ is a Fredholm operator

and λ /∈ σe(T ), a contradiction.
Thus ∂σe(T ) ⊂ σγe(T ).
If λ ∈ σγe(T ), then T − λ is not semi-Fredholm by Remark 3.3, so that λ ∈

σπe(T ) ∩ σδe(T ).

Remark 3.9. In fact we have proved ∂σe(T ) ⊂ σπe(T ) and ∂σe(T ) ⊂ σδe(T ), which is
not so trivial as in the non-essential case (see [8], cf. also [1]).

Theorem 3.10. Let T ∈ B(X). Then σγe(f(T )) = f(σγe(T )) for every function f
analytic in a neighbourhood of σ(T ).
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Proof. It is sufficient to prove that 0 /∈ σγe(f(T )) if and only if T − λ is essentially
s-regular whenever f(λ) = 0.

Since f has only a finite number of zeros λ1, . . . , λn in σ(T ) we can write f(z) =
(z − λ1)m1 · · · (z − λn)mnh(z) where h is analytic in a neighbourhood of σ(T ) and
f(z) 6= 0 for z ∈ σ(T ).

We have f(T ) = (T − λ1)m1 · · · (T − λn)mnh(T ). If f(T ) is essentially s-regular,
then T − λ1, . . . , T − λn are essentially s-regular by Theorem 3.5.

Conversely, suppose that T − λ1, . . . , T − λn are essentially s-regular. Denote by
q(z) = (z − λ1) · · · (z − λn) and p(z) = (z − λ1)m1 · · · (z − λm)mn . Then

N(q(T )) =
n∨

i=1

N(T − λi)

and

R(q(T )m) =
n⋂

i=1

R((T − λi)
m)

for every m (see [15], Lemmas 5.2 and 5.3). Thus R(q(T )) is closed. Further N(T−λi) ⊂
R∞(T − λj) for j 6= i and N(T − λi)) ⊂ R∞(T − λi) + Fi for some finite-dimensional
subspace Fi ⊂ X. Thus

N(T − λi) ⊂
n⋂

j=1

R∞(T − λj) + Fi

and

N(q(T )) ⊂
n⋂

i=1

R∞(T − λi) + F1 + · · ·+ Fn = R∞(q(T )) + F1 + · · ·+ Fn.

Hence q(T ) is essentially s-regular. If m = max{mi, 1 ≤ i ≤ n}, then q(T )m is es-
sentially s-regular by Corollary 3.4 and p(T ) is essentially s-regular by Theorem 3.5.
Further h(T ) is an invertible operator commuting with p(T ). Thus N(f(T )) = N(p(T ))
and R(f(T )n) = R(p(T )n) for every n, so that R(f(T )) is closed and

N(f(T )) = N(p(T )) ⊂e R∞(p(T )) = R∞(f(T )).

Hence f(T ) is essentially s-regular.

Problem 3.11. Example 2.5 shows that σγe(T ) is not stable under compact pertur-
bations. We do not know if it is stable under finite-dimensional perturbations. Equiv-
alently, taking into account the Kato decomposition, we can reformulate this question
as follows:

Let T be s-regular and A a finite-dimensional operator. Is then T + A essentially
s-regular?

IV. Generalized inverses
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Let T ∈ B(X). We say that S ∈ B(X) is a generalized inverse of T if TST = T
and STS = S. In this case TS is a bounded projection onto R(T ) and ST is a bounded
projection with N(ST ) = N(T ). Thus it is easy to see that T has a generalized inverse
if and only if R(T ) is closed and both N(T ) and R(T ) are ranges of bounded projections.

An operator T is called regular if T is s-regular and has a generalized inverse.
Let T be an operator in a Hilbert space H. Then there is an analytic generalized

inverse of T − z defined on the open set G = C− σγ(T ) (see [3], Theorem 2.5). More
precisely, there exists an analytic operator-valued function S : G → B(X) such that
(T − z)S(z)(T − z) = T − z and S(z)(T − z)S(z) = S(z) for all z ∈ G. One can see
easily that C− σγ(T ) is the largest open set with this property.

If T is an operator in a Banach space X then another necessary condition for
existence of an analytic generalized inverse of T − z is that R(T − z) and N(T − z) are
ranges of bounded projections. We show that this is already a sufficient condition.

We start with a local version of this result, which was essentially proved in [14],
Theorem 2.6, see also [7], Theorem 9.

Theorem 4.1. Let T ∈ B(X) be a regular operator. Then there exists an open
neighbourhood U of 0 and an analytic function S : U → B(X) such that (T−z)S(z)(T−
z) = T − z and S(z)(T − z)S(z) = S(z) for all z ∈ U .

Proof. Let S ∈ B(X) be a generalized inverse of T , i.e. TST = T and STS = S.
Set U = {z ∈ C, |z| < ‖S‖−1}. For z ∈ U define P (z) =

∑∞
i=0 Si(I − ST )zi. Clearly

the sum converges for z ∈ U . We have (I − ST )S = 0 = T (I − ST ), therefore
P (z)2 =

∑∞
i=0 ziSi(I − ST )2 = P (z) and

(T − z)P (z) = (T − z)
∞∑

i=0

Si(I − ST )zi

=T (I − ST ) +
∞∑

i=1

zi
[
TSi(I − ST )− Si−1(I − ST )

]
=

∞∑

i=1

(TS − I)Si−1(I − ST )zi.

Let x ∈ X. Then T (I − ST )x = 0, so that (I − ST )x ∈ N(T ) ⊂ R∞(T ).
Further, if y ∈ R∞(T ), y = Tz then y = Tz = TSTz = TSy and, by Lemma 1.4,

Sy ∈ R∞(T ). Thus S(R∞(T )) ⊂ R∞(T ).
Finally, for u ∈ R(T ), u = Tv we have (TS − I)u = (TS − I)Tv = 0. Thus

(TS − I)Si−1(I − ST ) = 0 (i ≥ 1)

and (T − z)P (z) = 0.
For z ∈ G set S(z) =

∑∞
i=0 Si+1zi. Then

S(z)(T − z) + P (z) =
∞∑

i=0

Si+1zi(T − z) +
∞∑

i=0

Si(I − ST )zi

= ST + I − ST +
∞∑

i=1

[
Si+1T − Si + Si(I − ST )

]
zi = I,
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hence S(z)(T −z) = I−P (z). We have (T −z)S(z)(T −z) = (T −z)(I−P (z)) = T −z
and S(z)(T − z)S(z) = (I − P (z))S(z) = S(z) since

P (z)S(z) =

( ∞∑

i=0

ziSi(I − ST )

)( ∞∑

i=0

Si+1zi

)
= 0.

Clearly P (z) is a bounded projection onto N(T − z).

Remark 4.2. Let S(z) be the function constructed in the previous theorem and let
λ, µ ∈ U . Then

S(λ)− S(µ) =
∞∑

i=0

(λi − µi)Si+1 = (λ− µ)
∞∑

i=1

(λi−1 + λi−2µ + · · ·+ µi−1)Si+1

= (λ− µ)




∞∑

j=0

λjSj+1




( ∞∑

k=0

λkSk+1

)
= (λ− µ)S(λ)S(µ).

Thus S(z) satisfies the resolvent identity and so it is not only a generalized inverse of
T − z but also a generalized resolvent in the sense of [4] or [5].

The next theorem shows that it is possible to find a global analytic general inverse
of T −z. It is an open question if there always exists a global analytic general resolvent.

Theorem 4.3. Let T ∈ B(X). Denote by G = {z ∈ C, T − z is regular}. Then G is
an open set and there exists an analytic function S : G → B(X) such that

(T − z)S(z)(T − z) = T − z

and
S(z)(T − z)S(z) = S(z) (z ∈ G).

Proof. For z ∈ G define the operator M(z) : B(X) → B(X) by

M(z)A = (T − z)A(T − z) (A ∈ B(X)).

Clearly M : G → B(B(X)) is an analytic function. Let λ ∈ G. By the previous
theorem there exists a neighbourhood U of λ and an analytic function S1 : U → B(X)
such that (T − z)S1(z)(T − z) = T − z and S1(z)(T − z)S1(z) = S1(z) (z ∈ U).

Let µ ∈ U and A ∈ B(X). Set A1 = S1(µ)(T − µ)A(T − µ)S1(µ). Then

M(µ)A1 = (T − µ)S1(µ)(T − µ)A(T − µ)S1(µ)(T − µ) = (T − µ)A(T − µ) = M(µ)A

and
‖A1‖ ≤ ‖S1(µ)‖2‖(T − µ)A(T − µ)‖ = ‖S1(µ)‖2‖M(µ)A‖.

Thus γ(M(µ)) ≥ ‖S1(µ)‖−2 so that γ(M(z)) is bounded from below in a certain neigh-
bourhood of λ. Further function z 7→ T − z ∈ B(X) is an analytic vector-valued
function and, by the definition of G, T − z ∈ R(M(z)) for every z ∈ G.
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By [19], Theorem 2, there exists an analytic function S2 : G → B(X) such that
M(z)S2(z) = T − z, i.e. (T − z)S2(z)(T − z) = T − z for z ∈ G. Set

S(z) = S2(z)(T − z)S2(z) (z ∈ G).

Then
(T − z)S(z)(T − z) = (T − z)S2(z)(T − z)S2(z)(T − z) = T − z

and
S(z)(T − z)S(z) = S2(z)(T − z)S2(z)(T − z)S2(z)(T − z)S2(z)

= S2(z)(T − z)S2(z) = S(z)

for every z ∈ G.
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Žitná 25, 115 67 Praha 1
Czech Republic

16


